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Abstract. This paper focuses on the application of isogeometric analysis to model fric-
tionless large deformation contact between deformable bodies and rigid surfaces that may
be represented by analytical functions. The contact constraints are satisfied exactly with
the augmented Lagrangian method, and treated with a mortar-based approach combined
with a simplified integration method to avoid segmentation of the contact surfaces. The
spatial discretization of the deformable body is performed with NURBS and C0-continuous
Lagrange polynomial elements. The numerical examples demonstrate that isogeometric
surface discretization delivers more accurate and robust predictions of the response com-
pared to Lagrange discretizations.

1 INTRODUCTION

Large deformation contact problems in general involve geometrical, material and con-
tact nonlinearities, which need to be solved simultaneously. Non-smooth C0-continuous
finite element discretization techniques still constitute the most widely used approach in
solving computational contact problems. In order to improve the performance of contact
algorithms, various smoothing techniques have been proposed based on, e.g., Hermite C1,
Bézier and NURBS discretization of the contact surface. Although surface smoothing im-
proves the evolution of the contact pressure, these approaches in general do not preserve
consistency between volume and surface discretization. Within the framework of isogeo-
metric analysis, which was introduced by Hughes et al. [9], smooth surface discretization
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can be achieved by representing the contact geometry by a NURBS surface that is directly
inherited from the NURBS discretization of the volume.

The robustness of contact computations also depends on an accurate and smooth de-
scription of not only the contact geometry but also the contact pressure. It is well-known
that node-to-surface (NTS) contact formulations is affected by several pathologies, and
has been shown not to satisfy the contact patch test, which implies that mesh refinement
does not necessarily increase the accuracy of the contact pressure. Several improvements
to the NTS (or knot-to-surface, KTS, for isogeometric analysis) have been proposed, but
they either do not satisfy the contact patch test or cause LBB-instability. However, the
more recent mortar-based approaches constitute a method of consistently treating the
global and local contact interaction, satisfying both the patch test and LBB-stability,
albeit at a higher computational cost [2, 3, 5, 6, 7, 8, 14].

The penalty (PL) method is the simplest and apparently the most widely used ap-
proach for solving contact problems. It leads to a pure displacement formulation where
the constraints are enforced approximately. Furthermore, ill-conditioning may appear as
the penalty parameter is increased in order to improve the satisfaction of the contact
constraints. To avoid the drawbacks of the PL method, the augmented Lagrangian (AL)
method may be adopted. There are two solution schemes commonly used in the context
of the AL method. The so-called Uzawa method, which combines the AL regularization
with a first-order update of the Lagrange multipliers [20]. Alternatively, a Newton-like
solution scheme can be applied to solve the saddle-point problem for the displacements
and Lagrange multipliers simultaneously as proposed by Alart and Curnier [1]. In view of
the ascertained drawbacks of a non-mortar approach, we apply a mortar-based approach
to satisfy the contact constraints combined with the latter version of the AL method,
which is characterized by a remarkable degree of robustness and yields an asymptotic
quadratic convergence rate in the Newton iterations. For comparison purposes, we have
also implemented the PL method and C0-continuous Lagrange polynomial elements. In
this paper mortar-based isogeometric analysis as formulated by De Lorenzis et al. [12]
has been used to model large deformation contact problem between deformable and rigid
bodies.

2 LARGE DEFORMATION CONTACT PROBLEM

This section gives a summary of the contact variables and the contact constraints
within a continuum formulation of large deformation frictionless contact between two
bodies. More details can be found in the monograph of Wriggers [20].

In this study finite deformation quasi-static frictionless contact problems will be con-
sidered in a purely mechanical setting. Consider two bodies Bi, where the superscript
i = {s,m} denotes the slave (non-mortar) and master (mortar) bodies, respectively. The
relation between the initial (reference) configuration Xi, the displacement ui and the
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current configuration xi of a generic point of each body is given by

xi = Xi + ui. (1)

For modelling of contact between the two bodies Bs and Bm, the contact interface denoted
Γc := Γs

c = Γm
c is pulled back to Γc0 := Γs

c0 �= Γm
c0, where Γi

c and Γi
c0 denote the contact

boundary in the current and in the reference configuration of body Bi, respectively. In
the present formulation all contact integrals will be evaluated on Γs

c0. Defining gN =
(xs − xm) · nm to be the normal gap, λN the normal contact traction defined as the
normal component of the interface Piola traction t := tm = −ts = λNn

m; the Kuhn-
Tucker conditions for impenetrability on Γc0 are

gN ≥ 0, λN = t · nm ≤ 0 and gNλN = 0. (2)

The frictionless contact problem between deformable elastic bodies can be formulated
as a constrained minimization problem [20]:

min
u

Π(u) subject to gN ≥ 0 on Γc, (3)

where Π(u) is the potential energy.
In the PL method the contact constraints are enforced approximately

λN = εN〈gN〉− where 〈gN〉− =

{
gN , gN ≤ 0,
0, gN > 0,

(4)

where εN > 0 is the penalty parameter. Applying the above penalty regularization the
constrained minimization problem may be transformed into an unconstrained minimiza-
tion problem

min
u

ΠPL(u), (5)

where the potential energy Π(u) has been augmented by the following contact contribution
to the virtual work

δΠPL
c =

∫

Γc0

tnδgNdΓ. (6)

δgN denotes the variation of the normal gap.
For the solution of the constrained minimization problem we have adopted the AL

method as formulated by Alart and Curnier [1]. In the AL method, a dual field of
Lagrange multipliers λN is defined on the contact surface Γc, and the AL functional L is
constructed as

L(u, λN) = Π(u)+

∫

Γc0

ln(gN , λN)dΓ, ln(gN , λN) =

{ (
λN + εN

2
gN

)
gN , λ̂N ≤ 0,

− 1
2εN

λ2
N , λ̂N > 0.

(7)
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Here, εN > 0 is an arbitrary penalty parameter while the AL multiplier λ̂N = λN +
εNgN is used to discriminate between contact (λ̂N ≤ 0) and separation (λ̂N > 0). The
main advantage of the AL method over the PL method and the Lagrange multiplier
alternatives is that lN and L are C1-differentiable. Hence, the contact problem may now
be reformulated as an unconstrained saddle-point problem

min
u

max
λN

L(u, λN), (8)

and the necessary condition of the saddle point takes the form

δL(u, λN) = δΠ(u) +

∫

Γc0

[
λ̂eff
N δgN + CNδλN

]
dΓ = 0, (9)

where the following notation has been introduced [12]

λ̂eff
N =

∂lN
∂gN

=

{
λ̂N , λ̂N ≤ 0,

0, λ̂N > 0,
CN =

∂lN
∂λN

=

{
gN , λ̂N ≤ 0,

−λN

εN
, λ̂N > 0.

(10)

The AL multiplier λ̂eff
N is the state dependent normal contact traction, whereas CN

defines the constraints that are active depending on the contact state. Due to the C1-
differentiability of L, continuity of both λ̂eff

N and CN is preserved as the contact state
changes from contact to separation, hence upon discretization the resulting equations can
be efficiently solved with Newton’s method. Also note that in contrast to the PL method,
for the AL method the contact constraints are enforced exactly regardless of the value of
the penalty parameter, which can be kept conveniently low to improve the convergence
behavior.

3 DISCRETIZATION WITH B-SPLINES AND NURBS

In order to overcome the problems with standard Lagrange discretization, the contact
interfaces Γi

c and Γi
c0 are discretized with NURBS surfaces that are directly inherited from

NURBS volume discretization used for the solid body. This provides among others, the
advantage of higher inter-element continuity within patches which ensures smooth surface
representation without kinks between the elements. In what follows, some basic concepts
for B-spline and NURBS curves, surfaces and volumes are briefly reviewed, the reader is
referred to [4, 9, 13] for further details.

Geometrical objects are in general defined by explicit, implicit or parametric equa-
tions. Non-uniform rational B-splines (NURBS) curves, surfaces and volumes belong to
the latter category, as they depend on a set of continuous parameters. NURBS are a
generalization of B-splines and are constructed by projective transformation of B-spline
basis functions. Contrary to the Lagrange basis functions that are local to elements, the
B-spline parametric space is local to “patches”. Patches are subdomains within which
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polynomial order of the basis functions and material parameters are assumed to be kept
constant.

Univariate B-spline basis functions are defined by a knot vector Ξ, which is a set of
non-decreasing parametric coordinates. The parameter space is the space where the basis
functions are defined, and is partitioned into knot spans between the knots. The knot
vector is written as:

Ξ = {ξ1, ξ2, . . . , ξn+p+1} , (11)

where ξi is the ith knot value, i is the knot index, i = 1, 2, . . . , n+p+1, p is the polynomial
order, and n is the number of basis functions. If a knot ξi is placed mi times at the same
location in the parametric space, the multiplicity of knot ξi is mi, and the functions are
Cp−mi continuous at that location. If the knot vector has no repeated interior knots
ξi, it defines n − p non-zero knot spans (elements). If the knots are equally spaced;
ξi+1 − ξi = const., ∀i ∈ [1, n+ p], the knot vector is said to be uniform, otherwise it is
denoted as non-uniform. Furthermore Ξ is termed an open knot vector if the first and last
entries have multiplicity p+1. In what follows we assume that Ξ is an open non-uniform
knot vector.

B-spline basis functions for a given order are defined recursively by the Cox-de Boor
recursion formula:

N0
i (ξ) =

{
1, if ξi ≤ ξ < ξi+1,
0, otherwise,

(12)

and

Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Np−1
i+1 (ξ), ∀p ≥ 1. (13)

The order of the basis functions is equal to its polynomial degree, i.e. p = 0, 1, 2, 3, etc.,
describes constant, linear, quadratic, cubic, etc., piecewise polynomials, respectively. The
B-spline basis functions satisfy the following important properties:

1. Partition of unity:
∑n

i=1 N
p
i (ξ) = 1, ∀ξ ∈ [ξ1, ξn+p+1].

2. Local support: ∀i the support of Np
i is compact and contained in the interval

[ξi, ξi+p+1].

3. Non-negativeness: Np
i (ξ) ≥ 0, ∀ξ ∈ [ξi, ξi+p+1].

4. Continuity: ∀i each Np
i is Cp−mi continuous in the interval [ξi, ξi+p+1].

5. Non-interpolatory: Except for the end knots or knots where the multiplicity mi =
p− 1, Np

i (ξj) �= δij.

6. For p = 0 and p = 1, B-spline and Lagrange basis functions coincide.

5

973



Kjell M. Mathisen, Knut M. Okstad, Trond Kvamsdal and Siv B. Raknes

A B-spline curve in Rnsd can be expressed as a linear combination of the basis functions
Np

i with the spatial coordinates Pi of the control points:

C(ξ) =
n∑

i=1

Np
i (ξ)Pi, (14)

where nsd denotes the number of spatial dimensions and Pi ∈ Rnsd . What separates
B-spline curves from curves constructed from a linear combination of the Lagrange basis
functions with the nodal point coordinates, is that B-spline curves are related to a set
of control point coordinates. These control points are the equivalent to the nodes, but
B-spline curves will generally not pass through the control points.

NURBS curves can be constructed analogously to B-spline curves by replacing Np
i with

rational basis functions Rp
i :

C(ξ) =
n∑

i=1

Rp
i (ξ)Pi, (15)

where the rational basis functions are obtained from a weighted linear combination of the
B-spline functions by

Rp
i (ξ) =

Np
i wi∑n

j=1 N
p
j (ξ)wj

=
Np

i wi

W (ξ)
. (16)

where wi is the weight associated with the ith control point Pi. The weights normally
have to fulfil the condition

wi > 0 ∀i ∈ [1, n] . (17)

As a NURBS curve does not necessarily interpolate control points, the weights can be
used to influence the shape of the curve independently from the position of the control
points. If the weights are increased, the curve approaches the shape of the control poly-
gon, containing all the control points. While B-spline curves in general are not able to
represent conic sections, by selecting appropriate values for the weights NURBS curves
may represent conic sections, like circles, exactly. Provided that all of the weight func-
tions are unity, NURBS basis functions are identical to B-spline functions. Thus, NURBS
inherits the fundamental properties of the B-spline basis functions.

We may extend the univariate B-spline and NURBS concepts to multiple dimensions
with the use of tensor products. With npd parametric directions, for each parametric
direction d = 1, . . . , npd, we define an open non-uniform knot vector associated with the
dth direction of a patch:

Ξd =
{
ξd1 , ξ

d
2 , . . . , ξ

d
nd+pd+1

}
, (18)

Here, pd is the polynomial order of the accompanying B-spline basis functions, ξdi is the
ith knot and nd is the number of accompanying control points in the dth direction. Next,
we define a multi-index i ∈ Znpd and the set

I =
{
i =

{
i1, . . . , inpd

}
|id ∈ {1, . . . , nd} , d = 1, . . . , npd

}
. (19)
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A corresponding multi-index of polynomial orders and parametric coordinates are defined
by

p =
{
p1, . . . , pnpd

}
and ξ =

{
ξ1, . . . , ξnpd

}
. (20)

For a given choice of p, for each multi-index i ∈ I, npd-dimensional NURBS basis functions
can be obtained by tensor products of one-dimensional NURBS basis functions as follows:

Rp
i (ξ) =

wiB
p
i (ξ)∑

j∈I wjB
p
j (ξ)

, (21)

where the npd-dimensional B-spline basis functions are obtained by

Bp
i (ξ) =

nd∏
d=1

Npd
id
(ξd). (22)

For a given control mesh, the corresponding NURBS surface and volume may now be
defined analogously to the NURBS curve:

S(ξ1, ξ2) =

n1∑
i1=1

n2∑
i2=1

Rp1,p2
i1,i2

(ξ1, ξ2)Pi1,i2 , (23)

and

V(ξ1, ξ2, ξ3) =

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

Rp1,p2,p3
i1,i2,i3

(ξ1, ξ2, ξ3)Pi1,i2,i3 . (24)

Following the concept of isogeometric analysis [9], NURBS basis functions are used
to discretize both the geometry in the reference and the current configuration and the
unknown displacement field and its variation:

X =

ncp∑
A=1

RAXA, x =

ncp∑
A=1

RAxA, u =

ncp∑
A=1

RAuA, and δu =

ncp∑
A=1

RAδuA, (25)

where ncp =
∏2

d=1 nd is the number of control points associated with the contact surface
(i.e. the product of the two parametric directions associated with the control surface),
RA is the two-dimensional NURBS basis function accompanying control point A, whereas
XA, xA, uA and δuA are the corresponding reference coordinate, current coordinate,
displacement and displacement variation vectors, respectively.

The above parameterization also applies to each individual knot span element of the
contact surface:

Xe =
ne∑
a=1

RaXa, xe =
ne∑
a=1

Raxa, ue =
ne∑
a=1

Raua, and δue =
ne∑
a=1

Raδua, (26)
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where ne =
∏2

d=1(pd + 1) is the number of control points whose basis functions have
support on a single knot span element of the corresponding contact surface.

Analogous interpolations are used for the Lagrange polynomial discretization, where
standard Lagrangian basis functions and nodal points are used in place of NURBS basis
functions and control points, respectively. In what follows, the above global and local
parameterization will be applied by adding the superscript s and m for the slave and
master contact surfaces, respectively.

4 CONTACT BETWEEN RIGID AND DEFORMABLE BODIES

For some simple analytical surfaces such as planar, cylindrical and spherical contact
surfaces, the normal gap gN may be determined in a closed form rather than iteratively
by use of the closest point projection algorithm. For example the geometry of a rigid
sphere is uniquely defined by its radius R and the coordinates of the center xm ∈ R3. In
our work we assume that the rigid surface is the master surface Γm

c . Let vn = xs − xm,
the normal gap gN between a point xs on the slave surface Γs

c and a corresponding point
on the master surface Γm

c of a rigid sphere may then be computed directly by subtracting
the radius R from ‖vn‖:

gN = ‖xs − xm‖ −R = ‖vn‖ −R =
√

vT
nvn −R. (27)

By substituting the NURBS interpolations from Eq. (26) the expression for the variation
of the normal gap on discretized form for the special case of a rigid spherical master
surface become:

δgN =

[

ns
e

∑

a=1

Rs
a(ξ

1
s , ξ

2
s )δu

s
a − δum

]

· nm, (28)

where (ξ1s , ξ
2
s ) are the parametric coordinates on Γc0 and nm denotes the outward normal

of the rigid spherical master surface Γm
c pointing towards xs . Similar expressions may be

derived for other simple analytical surfaces.
In order to formulate the variational problem in matrix form, it is convenient to intro-

duce the following auxiliary vectors:

δu =











δus
1
...

δus
ns
e

δum











and N =











Rs
1(ξ

1
s , ξ

2
s )n

m

...
Rs

ns
e
(ξ1s , ξ

2
s )n

m

−nm











. (29)

The expression for the variation of the normal gap may now be cast in a more compact
matrix form

δgN = δuTN (30)
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5 MORTAR-BASED CONTACT FORMULATION

In order to relax the over-constrained knot-to-surface (KTS) contact formulation, a
mortar approach may be applied. In this work, the original KTS contact constraints are
relaxed based on the averaging of the normal gap penetration, as formulated in Tur et
al. [18], Temizer et al. [17] and De Lorenzis et al. [11, 12]. Hence, the contact constraints
are only enforced in an average sense at the control points and at the nodes with the
NURBS and Lagrange discretizations, respectively. Like in Tur et al. [18], integration is
in this work carried out without segmentation of the contact surfaces. In general this will
introduce an error, which however can be reduced by increasing the number of quadrature
points on the contact surface. In order to ensure a converged solution, 2pd Gauss-Legendre
quadrature points is employed in each direction d within each knot span element, see e.g.
Hughes et al. [10] for a thorough discussion of efficient quadrature schemes appropriate
for isogeometric analysis.

The mortar formulation implemented in this work for both the PL and the AL method
is based on the approach presented by De Lorenzis et al. [11, 12]. For completeness, the
main steps of the AL based mortar method is presented below.

With the mortar method, the contact contribution to the variation of the AL functional
δL, here denoted δΠAL

c becomes (see Eq. (9))

δΠAL
c =

∫

Γc0

[
λ̂eff
N δgN + CNδλN

]
dΓ =

ns
cp∑

A=1

(λ̂eff
NAδgNA + CNAδλNA)AA, (31)

where AA denote the area of “competence”

AA =

∫

Γc0

RAdΓ, (32)

and

λ̂eff
NA =

{
λ̂NA = λNA + εNgNA, λ̂NA ≤ 0,

0, λ̂NA > 0,
CNA =

{
gNA, λ̂NA ≤ 0,

− 1
εN

λNA, λ̂NA > 0,
(33)

are the control point counterparts of the nominal AL multiplier λ̂eff
N and contact constraint

CN , respectively.
Note that, contrary to the mortar formulation based on the PL method, the summation

is here extended to all control points, and not only the active ones (i.e. those with
λ̂NA ≤ 0).

The main difference of the mortar formulation from the standard KTS, or node-to-
surface (NTS) for Lagrange discretization, is the definition of the normal gap. The control
point normal gap is defined as the weighted average of the corresponding “local” normal
gaps with the basis functions as weights

gNA =
1

AA

∫

Γc0

RA gNdΓ. (34)

9
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The variation of the control point normal gap is defined analogously

δgNA =
1

AA

∫

Γc0

RAδgNdΓ. (35)

The above definitions of the control point quantities substituted into Eq. (31) yields

δΠAL
c =

ns
cp,a∑

A=1

(λ̂NA

∫

Γc0

RAδgNdΓ + δλNA gNAAA)−
1

εN

ns
cp,i∑

A=1

δλNAλNAAA, (36)

where ns
cp,a and ns

cp,i define number of active and inactive control points, respectively (i.e.

those with λ̂NA ≤ 0 and λ̂NA > 0, respectively).
Next, we define λ̂NI to be the interpolated value of the AL multiplier over the active

control points

λ̂NI =

ns
cp,a∑

A=1

λ̂NARA. (37)

Substituted into Eq. (31) yields

δΠAL
c =

∫

Γc0

λ̂NIδgNdΓ +

ns
cp,a∑

A=1

δλNA gNAAA − 1

εN

ns
cp,i∑

A=1

δλNAλNAAA. (38)

Let δλ and Nλ denote the vector of the variation of the control point Lagrange multi-
plier unknowns and the accompanying residuals

δλ =




δλ1
...

δλncp


 and Nλ =




Nλ1

...
Nλncp


 (39)

where

NλA
=

{
gNAAA, λ̂NA ≤ 0,

− 1
εN

λNAAA, λ̂NA > 0.
(40)

Collecting the unknown control point displacements u and the control point Lagrange
multiplier unknowns λ in the vector z

z =

[
u

λ

]
, (41)

and substituting the definitions in Eq. (29) and (39) into Eq. (38) yields

δΠAL
c = δuT

∫

Γc0

λ̂NINdΓ + δλTNλ = δzTR, (42)

10
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where R denote the expression of the residual for the Newton-Raphson iterative scheme

R =

[
Ru

Rλ

]
=

[ ∫
Γc0

λ̂NINdΓ

Nλ

]
. (43)

In order to solve the nonlinear equations a consistent linearization of the above expressions
must be conducted to obtain the consistent tangent stiffness.

6 NUMERICAL RESULTS

A large deformation plain strain example is considered to demonstrate that isogeomet-
ric surface discretization delivers more accurate and robust predictions of the response
compared to Lagrange discretization. A rigid cylinder is pressed vertically into a slab
(v = −0.075) and then moved in the horizontal direction (u = 2). The problem has
been assessed in the finite deformation regime with two different material models. First,
the standard compressible neo-Hookean hyperelastic material behavior is assumed for the
slab, with material parameters E = 1 and ν = 0.3. Second, we consider a J2−finite
strain model expressed in principal stretch form [16, 19], which represent an hyperelastic
extension of J2−flow theory with a standard neo-Hookean model for the elastic part, and
nonlinear isotropic hardening with an associative flow rule based on von Mises yield cri-
terion with isotropic hardening following a saturation law for the plastic part [16]. The
nonlinear isotropic hardening rule is defined in terms of the yield stress in uniaxial tension

σy = σ0 + (σ∞ − σ0) (1− exp(−βep)) (44)

where σ0 = 79.66 is the initial yield stress, σ∞ = 171.26 is the residual yield stress,
β = 17.8 is the saturation exponent and ep is the equivalent plastic strain. The material
parameters corresponds to an approximation of a two term extended Voce rule that was
used to model aluminum alloy AA6060 typically used in bumper systems for cars in [15].

The rectangular slab that is fixed at the bottom has widthW = 3.0 and heightH = 1.0,
while the radius of the rigid cylinder is R = 0.5 (see Figure 1a). The slab is analyzed
using NURBS and Lagrange basis functions of order p = 2, 3, 4, since for p = 1 NURBS
and Lagrange approximations coincide. All NURBS and Lagrange discretizations include
49 basis functions in the horizontal and 25 in the vertical direction, respectively. We
employ a standard Qp pure displacement formulation for both the NURBS and Lagrange
discretizations of the slab with p+ 1 Gauss-Legendre quadrature points in each direction
within each knot span/Lagrange element.

A similar problem has also been studied by De Lorenzis et al. [11]. However, they
consider the cylinder being elastic (E = 1000 and ν = 0.3), account for friction (µ = 0.3)
and employed the PL method. Therefore, for the hyperelastic case, we cannot expect full
compliance with the results obtained in [11].

Since for the hyperelastic case the Lagrange discretization fails due to divergence for p =
4, the solution in terms of strain energy versus horizontal displacement of the cylinder for
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NURBS and Lagrange discretizations presented in Figure 1b only shows results obtained
for quadratic and cubic order. The plot of the strain energy demonstrates the remarkable
smoothness obtained with the NURBS discretizations, while in contrast the Lagrange
solutions are stiffer and experience oscillations. We observe that Lagrange discretizations
exhibit oscillations that increases with polynomial order of the basis functions, while in
contrast for NURBS oscillations diminish with increased polynomial order. As a result
Lagrange discretizations exhibit convergence problems in the Newton iterations while for
NURBS the smoothness of the contact pressure increases monotonically with the order
of the basis functions. The obtained results stem from the higher degree of smoothness
which is achieved by representing the contact geometry by a NURBS surface that is
directly inherited from the NURBS discretization of the volume.

Figure 1c shows the solution in terms of external energy versus horizontal displacement
obtained for the elastoplastic material. In contrast to the elastic case the external energy
is similar for all discretizations. Figure 1d shows the maximum equivalent plastic strain
versus horizontal displacement obtained for the various discretizations.

Finally in Figure 2, 3 and 4 the L2-projected equivalent plastic strain is plotted on the
deformed configurations for an imposed horizontal displacement of the cylinder u = 0,
u = 1 and u = 2 for the quadratic, cubic and quartic order of NURBS and Lagrange
discretizations, respectively. All results are shown with different scales adapted to the
minimum and maximum values obtained in each case. For the Lagrange discretizations,
we can clearly see oscillation patterns in the solution field for the equivalent plastic strain,
while in contrast the NURBS solutions are smooth. Although we observe oscillations in
the equivalent plastic strain, the global measure in terms of energy is almost coinciding
between the various Lagrange and NURBS discretizations.

7 CONCLUDING REMARKS

This paper has addressed the application of isogeometric analysis to model frictionless
large deformation contact between deformable bodies and rigid surfaces that may be
represented by analytical functions. The numerical results show that using NURBS is
favorable compared with classical finite elements with Lagrange polynomials as basis
functions for a large deformation plain strain problem involving both hyperelastic and
elastoplastic materials.

The study also reveals that while the performance of the element may be determined
from global measures, namely, graphs of energy or reaction forces versus displacements for
elastic materials, this may be misleading for elastoplastic materials. On the other hand,
equivalent plastic strain (or von Mises stress) distribution in the form of contour plots,
immediately reveal deficiencies of ill-conceived element formulations.
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Figure 1: Ironing problem: a) Geometry and boundary conditions for the ironing problem. b) Strain
energy for quadratic and cubic order NURBS and Lagrange discretizations for the elastic case. c) External
energy for quadratic, cubic and quartic order NURBS and Lagrange discretizations for the elastoplastic
case. d) Maximum equivalent plastic strain for quadratic, cubic and quartic order NURBS and Lagrange
discretizations for the elastoplastic case.
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a) b)

c) d)

e) f)

Figure 2: Ironing problem – Equivalent plastic strain: a) Q2 Lagrange, u = 0. b) Q2 NURBS, u = 0. c)
Q2 Lagrange, u = 1. d) Q2 NURBS, u = 1. e) Q2 Lagrange, u = 2. f) Q2 NURBS, u = 2.
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a) b)

c) d)

e) f)

Figure 3: Ironing problem – Equivalent plastic strain: a) Q3 Lagrange, u = 0. b) Q3 NURBS, u = 0. c)
Q3 Lagrange, u = 1. d) Q3 NURBS, u = 1. e) Q3 Lagrange, u = 2. f) Q3 NURBS, u = 2.
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a) b)

c) d)

e) f)

Figure 4: Ironing problem – Equivalent plastic strain: a) Q4 Lagrange, u = 0. b) Q4 NURBS, u = 0. c)
Q4 Lagrange, u = 1. d) Q4 NURBS, u = 1. e) Q4 Lagrange, u = 2. f) Q4 NURBS, u = 2.
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