13,619 research outputs found

    A Logical Approach to Efficient Max-SAT solving

    Get PDF
    Weighted Max-SAT is the optimization version of SAT and many important problems can be naturally encoded as such. Solving weighted Max-SAT is an important problem from both a theoretical and a practical point of view. In recent years, there has been considerable interest in finding efficient solving techniques. Most of this work focus on the computation of good quality lower bounds to be used within a branch and bound DPLL-like algorithm. Most often, these lower bounds are described in a procedural way. Because of that, it is difficult to realize the {\em logic} that is behind. In this paper we introduce an original framework for Max-SAT that stresses the parallelism with classical SAT. Then, we extend the two basic SAT solving techniques: {\em search} and {\em inference}. We show that many algorithmic {\em tricks} used in state-of-the-art Max-SAT solvers are easily expressable in {\em logic} terms with our framework in a unified manner. Besides, we introduce an original search algorithm that performs a restricted amount of {\em weighted resolution} at each visited node. We empirically compare our algorithm with a variety of solving alternatives on several benchmarks. Our experiments, which constitute to the best of our knowledge the most comprehensive Max-sat evaluation ever reported, show that our algorithm is generally orders of magnitude faster than any competitor

    Inference in Probabilistic Logic Programs using Weighted CNF's

    Get PDF
    Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. Several classical probabilistic inference tasks (such as MAP and computing marginals) have not yet received a lot of attention for this formalism. The contribution of this paper is that we develop efficient inference algorithms for these tasks. This is based on a conversion of the probabilistic logic program and the query and evidence to a weighted CNF formula. This allows us to reduce the inference tasks to well-studied tasks such as weighted model counting. To solve such tasks, we employ state-of-the-art methods. We consider multiple methods for the conversion of the programs as well as for inference on the weighted CNF. The resulting approach is evaluated experimentally and shown to improve upon the state-of-the-art in probabilistic logic programming

    Inference with Constrained Hidden Markov Models in PRISM

    Full text link
    A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-constraints and present constraint solving techniques for efficient inference. Defining HMMs with side-constraints in Constraint Logic Programming have advantages in terms of more compact expression and pruning opportunities during inference. We present a PRISM-based framework for extending HMMs with side-constraints and show how well-known constraints such as cardinality and all different are integrated. We experimentally validate our approach on the biologically motivated problem of global pairwise alignment

    Low-rank semidefinite programming for the MAX2SAT problem

    Full text link
    This paper proposes a new algorithm for solving MAX2SAT problems based on combining search methods with semidefinite programming approaches. Semidefinite programming techniques are well-known as a theoretical tool for approximating maximum satisfiability problems, but their application has traditionally been very limited by their speed and randomized nature. Our approach overcomes this difficult by using a recent approach to low-rank semidefinite programming, specialized to work in an incremental fashion suitable for use in an exact search algorithm. The method can be used both within complete or incomplete solver, and we demonstrate on a variety of problems from recent competitions. Our experiments show that the approach is faster (sometimes by orders of magnitude) than existing state-of-the-art complete and incomplete solvers, representing a substantial advance in search methods specialized for MAX2SAT problems.Comment: Accepted at AAAI'19. The code can be found at https://github.com/locuslab/mixsa

    Fuzzy Maximum Satisfiability

    Full text link
    In this paper, we extend the Maximum Satisfiability (MaxSAT) problem to {\L}ukasiewicz logic. The MaxSAT problem for a set of formulae {\Phi} is the problem of finding an assignment to the variables in {\Phi} that satisfies the maximum number of formulae. Three possible solutions (encodings) are proposed to the new problem: (1) Disjunctive Linear Relations (DLRs), (2) Mixed Integer Linear Programming (MILP) and (3) Weighted Constraint Satisfaction Problem (WCSP). Like its Boolean counterpart, the extended fuzzy MaxSAT will have numerous applications in optimization problems that involve vagueness.Comment: 10 page
    • …
    corecore