25 research outputs found

    Evaluation of Some Algorithms for Hardware-Oriented Message Authentication

    Get PDF
    In this technical report, we consider ultra light-weight constructions of message authentication in hardware applications. We examine several known constructions and evaluate details around their hardware implementations. These constructions are all based on the framework of universal hash functions

    The universality of iterated hashing over variable-length strings

    Get PDF
    Iterated hash functions process strings recursively, one character at a time. At each iteration, they compute a new hash value from the preceding hash value and the next character. We prove that iterated hashing can be pairwise independent, but never 3-wise independent. We show that it can be almost universal over strings much longer than the number of hash values; we bound the maximal string length given the collision probability

    Key recycling in authentication

    Full text link
    In their seminal work on authentication, Wegman and Carter propose that to authenticate multiple messages, it is sufficient to reuse the same hash function as long as each tag is encrypted with a one-time pad. They argue that because the one-time pad is perfectly hiding, the hash function used remains completely unknown to the adversary. Since their proof is not composable, we revisit it using a composable security framework. It turns out that the above argument is insufficient: if the adversary learns whether a corrupted message was accepted or rejected, information about the hash function is leaked, and after a bounded finite amount of rounds it is completely known. We show however that this leak is very small: Wegman and Carter's protocol is still ϵ\epsilon-secure, if ϵ\epsilon-almost strongly universal2_2 hash functions are used. This implies that the secret key corresponding to the choice of hash function can be reused in the next round of authentication without any additional error than this ϵ\epsilon. We also show that if the players have a mild form of synchronization, namely that the receiver knows when a message should be received, the key can be recycled for any arbitrary task, not only new rounds of authentication.Comment: 17+3 pages. 11 figures. v3: Rewritten with AC instead of UC. Extended the main result to both synchronous and asynchronous networks. Matches published version up to layout and updated references. v2: updated introduction and reference

    A New Version of Grain-128 with Authentication

    Get PDF
    A new version of the stream cipher Grain-128 is proposed. The new version, Grain-128a, is strengthened against all known attacks and observations on the original Grain-128, and has built-in support for authentication. The changes are modest, keeping the basic structure of Grain-128. This gives a high confidence in Grain-128a and allows for easy updating of existing implementations

    Pseudorandom Generator Based on Hard Lattice Problem

    Get PDF
    This paper studies how to construct a pseudorandom generator using hard lattice problems. We use a variation of the classical hard problem \emph{Inhomogeneous Small Integer Solution} ISIS of lattice, say \emph{Inhomogeneous Subset Sum Solution} ISSS. ISSS itself is a hash function. Proving the preimage sizes ISSS hash function images are almost the same, we construct a pseudorandom generator using the method in \cite{GKL93}. Also, we construct a pseudoentropy generator using the method in \cite{HILL99}. Most theoretical PRG constructions are not feasible in fact as they require rather long random bits as seeds. Our PRG construction only requires seed length to be O(n2log2n)O(n^{2}\log_{2} n) which is feasible practically

    Demonstration of Free-space Reference Frame Independent Quantum Key Distribution

    Full text link
    Quantum key distribution (QKD) is moving from research laboratories towards applications. As computing becomes more mobile, cashless as well as cardless payment solutions are introduced, and a need arises for incorporating QKD in a mobile device. Handheld devices present a particular challenge as the orientation and the phase of a qubit will depend on device motion. This problem is addressed by the reference frame independent (RFI) QKD scheme. The scheme tolerates an unknown phase between logical states that varies slowly compared to the rate of particle repetition. Here we experimentally demonstrate the feasibility of RFI QKD over a free-space link in a prepare and measure scheme using polarisation encoding. We extend the security analysis of the RFI QKD scheme to be able to deal with uncalibrated devices and a finite number of measurements. Together these advances are an important step towards mass production of handheld QKD devices
    corecore