94,838 research outputs found

    Zero-knowledge undeniable signatures (extended abstract)

    Get PDF
    Undeniable signature protocols were introduced at Crypto '89 [CA]. The present article contains new undeniable signature protocols, and these are the first that are zero-knowledge

    Leak-Free Mediated Group Signatures

    Get PDF
    Group signatures are a useful cryptographic construct for privacy-preserving non-repudiable authentication, and there have been many group signature schemes. In this paper, we introduce a variant of group signatures that offers two new security properties called leak-freedom and immediate-revocation. Intuitively, the former ensures that an insider (i.e., an authorized but malicious signer) be unable to convince an outsider (e.g., signature receiver) that she indeed signed a certain message; whereas the latter ensures that the authorization for a user to issue group signatures can be immediately revoked whenever the need arises (temporarily or permanently). These properties are not offered in existing group signature schemes, nor captured by their security definitions. However, these properties might be crucial to a large class of enterprise-centric applications because they are desirable from the perspective of the enterprises who adopt group signatures or are the group signatures liability-holders (i.e., will be hold accountable for the consequences of group signatures). In addition to introducing these new securit

    Practical forward secure group signature schemes

    Get PDF

    Lattice-Based Group Signatures: Achieving Full Dynamicity (and Deniability) with Ease

    Full text link
    In this work, we provide the first lattice-based group signature that offers full dynamicity (i.e., users have the flexibility in joining and leaving the group), and thus, resolve a prominent open problem posed by previous works. Moreover, we achieve this non-trivial feat in a relatively simple manner. Starting with Libert et al.'s fully static construction (Eurocrypt 2016) - which is arguably the most efficient lattice-based group signature to date, we introduce simple-but-insightful tweaks that allow to upgrade it directly into the fully dynamic setting. More startlingly, our scheme even produces slightly shorter signatures than the former, thanks to an adaptation of a technique proposed by Ling et al. (PKC 2013), allowing to prove inequalities in zero-knowledge. Our design approach consists of upgrading Libert et al.'s static construction (EUROCRYPT 2016) - which is arguably the most efficient lattice-based group signature to date - into the fully dynamic setting. Somewhat surprisingly, our scheme produces slightly shorter signatures than the former, thanks to a new technique for proving inequality in zero-knowledge without relying on any inequality check. The scheme satisfies the strong security requirements of Bootle et al.'s model (ACNS 2016), under the Short Integer Solution (SIS) and the Learning With Errors (LWE) assumptions. Furthermore, we demonstrate how to equip the obtained group signature scheme with the deniability functionality in a simple way. This attractive functionality, put forward by Ishida et al. (CANS 2016), enables the tracing authority to provide an evidence that a given user is not the owner of a signature in question. In the process, we design a zero-knowledge protocol for proving that a given LWE ciphertext does not decrypt to a particular message
    • …
    corecore