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SUMMARY: Undeniable signature protocols were introduced at Crypto '89 

[CA]. The present article contains new undeniable signature protocols, and these 

are the first that are zero-knowledge. 

INTRODUCTION & MOTIVATION 

Digital signatures [DH] are easily verified as authentic by anyone using the 

corresponding public key. This "self-authenticating" property is quite suitable for 
some uses, such as broadcast of announcements and public-key certificates. But 

it is unsuitable for many other applications. Self-authentication makes signatures 

that are somewhat commercially or personally sensitive, for instance, much more 

valuable to the industrial spy or extortionist. 
Thus, self-authentication is too much authentication for many applications. 

On the other hand, the remaining previously known authentication schemes offer 
too little authentication. A judge or arbiter cannot use them to re~olve disputes as 
is possible with self authentication. With zero-knowledge "identification" 
techniques, for example, a judge would not be convinced of anything by a 

transcript of the interaction, because by definition anyone could generate 
indistinguishable transcripts. Also with conventional "identify-friend-or-foe" 

protocols, or any other system where both parties have all relevant secret keys, 

the cryptography cannot stop either party from producing valid transcripts. 
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In short, cooperation of the signer should be necessary to convince another 

party that a particular signature is valid-but a signer, falsely accused of having 

signed a particular message, should be able to prove his innocence. 

Undeniable Signatures 
The relatively new technique called "undeniable signatures" [CA] achieves 

these objectives. An undeniable signature, like a digital signature, is a number 

issued by a signer that depends on the signer's public key as well as on the 

message signed. Unlike a digital signature, however, an undeniable signature 

cannot be verified without cooperation of the signer. 

The validity or invalidity of an undeniable signature can be ascertained by 

conducting a protocol with the signer, assuming the signer participates. If a 

"confirmation" protocol is used, the cooperating signer gives exponentially-high 

certainty to the verifier that the signature does correspond to the message and the 

signer's public key. If instead a "disavowal" protocol is conducted, the signer 

gives exponentially-high certainty that the signature does not correspond to the 

message and the signer's public key. In both protocols a cheating signer, even 

with infinite computing power, has only an exponentially small chance of success 

and an overwhelming probability of being detected. 

Applications 
Undeniable signatures are preferable to digital signatures for many upcoming 

applications. 
Consider, for example, the signature a software supplier may issue on its 

software, allowing customers to check that the software is genuine and 

unmodified. With undeniable signatures, only paying customers are able to verify 

the signature, and they are ensured that the supplier remains accountable for the 

software. 
All manner of inter-organizational messages, such as so called EDI, are a 

natural candidate for signatures that provide for dispute resolution. But self

authentication would greatly increase the illicit salability of such information. 

Also for personal transactions, non-repudiation may be an essential 

component of security for the service provider; but the customer would like to 

ensure that, for instance, the signatures do not later end up in the newspaper. 
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Outline 
First the underlying cryptography and form of a signature will be presented, which 
are the same as in [CA]. Then the new confirmation protocol will be described in 
detail and its security argued. Next the new disavowal protocol is presented 
followed by sketches of proofs for its properties. Finally some more recent results 
are discussed. 

CRYPTOGRAPHIC SETTING AND SIGNATURES 

Consider using the group of known prime order p. All values transmitted 
between the participants are elements of this group, the multiplicatively denoted 
group operation is easily computed by all participants, and taking the discrete log 
in the group is assumed to be computationally infeasible. 

One potentially suitable representation is the multiplicative group of the field 
GF(2n), where p = 2n-1 is prime. A second is the group of squares modulo prime 
q, where q = 2p+l. (Notice that such choices rule out the Pohlig-Hellman attack 
on the discrete log [PH].) An attractive variation on the second approach 
represents group elements by the integers 1 top; the group operation is the same, 
except that all results are normalized by taking the additive inverse exactly when 
this yields a smaller least positive representative. 

A suitable group of prime order p and a primitive element g are initially 
established and made public for use by a set of signers. Consider a particular 
signer Shaving a private key x and a corresponding public key gx. A message rn 

(t:l) is signed by S to form a signature, denoted z, which should be equal to mX. 
Computing the private key from the public key, assuming only random 

messages are signed, is the the discrete log problem; forging signatures on 
random messages is at least as hard as breaking Diffie-Hellman key exchange. 

CONFIRMATION PROTOCOL 

A verifier V receiving z, which is claimed to be the signature of signer S on 
message m and thus equal to mx, can establish the signature's validity using the 
confirmation protocol of Figure 1. 
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Fig. 1. Confirmation protocol 

Each party should initially choose secret random group elements uniformly: 

S chooses q and V chooses a and b. The first message is formed by V as shown by 

the first arrow of Figure 1. The second message arrow shows the response of S 

as a pair of group elements. Next V sends a and b in message 3 so that S can 

reconstruct the first message. Only once this reconstruction is successful does S 

send message 4 to reveal q. Finally, by substituting z for mx, V can reconstruct 

message 2 and ensure that it was formed properly. 

SECURITY OF CONFIRMATION 

There are two essential properties: 
Theorem 1: The protocol of Figure 1 is zero-knowledge [GivlR]. 

Proof: If V sends a message 3 that should result in a message 4 being sent, V can 

form the message 2 determined by any random message 4. Any V not sending 

such a valid message 3 does not receive message 4, but can simulate the 

message 2 pair as gY and gXJ, by choosing y as a random group element. 

Theorem 2: Even with infinite computing power S cannot with probability 

exceeding p-1 provide a valid response for an invalid signature. 

Proof: Essentially the same argument as that of [CA] suffices. 
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DISAVOWAL PROTOCOL 

An alleged signer may wish to convince a verifier that a particular message z is 
not a valid signature corresponding to the signer's public key gx and message m, 

i.e. that z :f. mx. To do this, the alleged signer cooperates in an instance of a 

disavowal protocol. The signer can cheat with probability l/(k+l), where k is a 
mutually agreed constant and order k operations must be performed by the signer. 

In practice k might be 1023, for instance, and the protocol could be conducted 2 
times for a chance of cheating that is less than one in a million or 10 times to give a 

chance of only 2-100. 

Signer 
r 

Verifier 
se{O, ... ,k},a 

blob(r, s) 

a 

r 
Fig. 2. Disavowal protocol 

Consider a single use of the protocol of Figure 2. Initially V chooses an 
integers uniformly between 0 and k and chooses a independently and uniformly 
over the group elements. The first arrow shows how the pair of values sent by V 

should be formed. Now S can determine the value of s by trial and error. An 

efficient approach for this raises the first component of the message to the x 
power and forms a quotient with the second component. The k+ 1 trial quotients 
can then be computed each by a single multiply from the quotient of the valid 
signature with z. (Since these quotients are independent of a they can be used for 

multiple instances of the protocol.) If no s is found, S uses a random value. 
Next S sends message 2 containing a blob [BCC] committing to the value of 

s, but hidings until the randomly selected r is revealed. (An attractive example is 
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multivalued-blobs based on the discrete log problem that protect the verifier 
unconditionally, as described in [BCC] §§6.6 and 6.2.2.) Upon receiving the blob 
as message 2, V can send a. And before finally providing r as the final message, S 
checks that a can be used to reconstruct the first message. 

SECURITY OF DISAVOW AL 

Again two things are proved: 
Theorem 3: The protocol of Figure 2 is zero-knowledge. 
Proof: An interaction in which V sends the correct a, which V can always 
recognize, is trivially simulated. Any V not supplying an acceptable a only 
receives a blob, and so the type of zero-knowledge depends on the type of blob. 
Theorem 4: Even with infinite computing power S cannot with probability 
exceeding l/(k+ 1) provide a valid response for a valid signature. 
Proof: if z = mX, a hides s perfectly in the first message. Since the value 
committed to by the blob cannot be changed, S's best strategy is to guess s. 

RECENT WORK 

One new result is "convertible" undeniable signatures [BCDP]. These allow the 
signer to make a single value public that turns all of his undeniable signatures into 
self-authenticating digital signatures. The signer does not lose the exclusive ability 
to make signatures and can even selectively convert individual signatures. 

The author is aware of some work in preparation: 
A signer can "distribute" his undeniable signature signing and/or disavowal 

abilities among a set of trustees in such a way that a majority of the trustees are 
necessary and sufficient to perform these functions. 

By confirming signatures on random messages in advance, a signer can later 
simply send, such as by electronic mail, undeniable signatures that the recipient 
can confirm without further interaction. 

The confirmation and disavowal protocols remain zero-knowledge even if 
multiple instances are conducted in parallel, because of the initial commitment 
made by the verifier. Another consequence of such "verifier commit" protocols is 
that it can be made infeasible for covertly cooperating verifiers to be convinced 
by choosing their single challenge based on coin-flips. 

Blobs formed from undeniable signatures can be used to show that the 
signer can satisfy an agreed predicate. These proofs require only a few messages 
because blob opening is a parallelizeable confirmation protocol. Such proofs are 
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"undeniable" in the sense that anyone who trusts the randomness of the 
challenges can later conduct either the confirmation or disavowal protocol with 
the singer and be convinced whether or not the proof transcript is valid. 

CONCLUSION 

Undeniable signatures that are Zero-Knowledge can be achieved. They are 
essentially as efficient in confirmation, and nearly so in disavowal, as other known 

undeniable signature schemes. 
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