540 research outputs found

    On MDS Negacyclic LCD Codes

    Full text link
    Linear codes with complementary duals (LCD) have a great deal of significance amongst linear codes. Maximum distance separable (MDS) codes are also an important class of linear codes since they achieve the greatest error correcting and detecting capabilities for fixed length and dimension. The construction of linear codes that are both LCD and MDS is a hard task in coding theory. In this paper, we study the constructions of LCD codes that are MDS from negacyclic codes over finite fields of odd prime power qq elements. We construct four families of MDS negacyclic LCD codes of length n∣q−12n|\frac{{q-1}}{2}, n∣q+12n|\frac{{q+1}}{2} and a family of negacyclic LCD codes of length n=q−1n=q-1. Furthermore, we obtain five families of q2q^{2}-ary Hermitian MDS negacyclic LCD codes of length n∣(q−1)n|\left( q-1\right) and four families of Hermitian negacyclic LCD codes of length n=q2+1.n=q^{2}+1. For both Euclidean and Hermitian cases the dimensions of these codes are determined and for some classes the minimum distances are settled. For the other cases, by studying qq and q2q^{2}-cyclotomic classes we give lower bounds on the minimum distance

    Euclidean and Hermitian LCD MDS codes

    Full text link
    Linear codes with complementary duals (abbreviated LCD) are linear codes whose intersection with their dual is trivial. When they are binary, they play an important role in armoring implementations against side-channel attacks and fault injection attacks. Non-binary LCD codes in characteristic 2 can be transformed into binary LCD codes by expansion. On the other hand, being optimal codes, maximum distance separable codes (abbreviated MDS) have been of much interest from many researchers due to their theoretical significant and practical implications. However, little work has been done on LCD MDS codes. In particular, determining the existence of qq-ary [n,k][n,k] LCD MDS codes for various lengths nn and dimensions kk is a basic and interesting problem. In this paper, we firstly study the problem of the existence of qq-ary [n,k][n,k] LCD MDS codes and completely solve it for the Euclidean case. More specifically, we show that for q>3q>3 there exists a qq-ary [n,k][n,k] Euclidean LCD MDS code, where 0≤k≤n≤q+10\le k \le n\le q+1, or, q=2mq=2^{m}, n=q+2n=q+2 and k=3orq−1k= 3 \text{or} q-1. Secondly, we investigate several constructions of new Euclidean and Hermitian LCD MDS codes. Our main techniques in constructing Euclidean and Hermitian LCD MDS codes use some linear codes with small dimension or codimension, self-orthogonal codes and generalized Reed-Solomon codes

    Application of Constacyclic codes to Quantum MDS Codes

    Full text link
    Quantum maximal-distance-separable (MDS) codes form an important class of quantum codes. To get qq-ary quantum MDS codes, it suffices to find linear MDS codes CC over Fq2\mathbb{F}_{q^2} satisfying C⊥H⊆CC^{\perp_H}\subseteq C by the Hermitian construction and the quantum Singleton bound. If C⊥H⊆CC^{\perp_{H}}\subseteq C, we say that CC is a dual-containing code. Many new quantum MDS codes with relatively large minimum distance have been produced by constructing dual-containing constacyclic MDS codes (see \cite{Guardia11}, \cite{Kai13}, \cite{Kai14}). These works motivate us to make a careful study on the existence condition for nontrivial dual-containing constacyclic codes. This would help us to avoid unnecessary attempts and provide effective ideas in order to construct dual-containing codes. Several classes of dual-containing MDS constacyclic codes are constructed and their parameters are computed. Consequently, new quantum MDS codes are derived from these parameters. The quantum MDS codes exhibited here have parameters better than the ones available in the literature.Comment: 16 page
    • …
    corecore