23,400 research outputs found

    Solving Degenerate Sparse Polynomial Systems Faster

    Get PDF
    Consider a system F of n polynomial equations in n unknowns, over an algebraically closed field of arbitrary characteristic. We present a fast method to find a point in every irreducible component of the zero set Z of F. Our techniques allow us to sharpen and lower prior complexity bounds for this problem by fully taking into account the monomial term structure. As a corollary of our development we also obtain new explicit formulae for the exact number of isolated roots of F and the intersection multiplicity of the positive-dimensional part of Z. Finally, we present a combinatorial construction of non-degenerate polynomial systems, with specified monomial term structure and maximally many isolated roots, which may be of independent interest.Comment: This is the final journal version of math.AG/9702222 (``Toric Generalized Characteristic Polynomials''). This final version is a major revision with several new theorems, examples, and references. The prior results are also significantly improve

    Quantitative Aspects of Sums of Squares and Sparse Polynomial Systems

    Get PDF
    Computational algebraic geometry is the study of roots of polynomials and polynomial systems. We are familiar with the notion of degree, but there are other ways to consider a polynomial: How many variables does it have? How many terms does it have? Considering the sparsity of a polynomial means we pay special attention to the number of terms. One can sometimes profit greatly by making use of sparsity when doing computations by utilizing tools from linear programming and integer matrix factorization. This thesis investigates several problems from the point of view of sparsity. Consider a system F of n polynomials over n variables, with a total of n + k distinct exponent vectors over any local field L. We discuss conjecturally tight bounds on the maximal number of non-degenerate roots F can have over L, with all coordinates having fixed phase, as a function of n, k, and L only. In particular, we give new explicit systems with number of roots approaching the best known upper bounds. We also give a complete classification for when an n-variate n + 2-nomial positive polynomial can be written as a sum of squares of polynomials. Finally, we investigate the problem of approximating roots of polynomials from the viewpoint of sparsity by developing a method of approximating roots for binomial systems that runs more efficiently than other current methods. These results serve as building blocks for proving results for less sparse polynomial systems

    New data structure for univariate polynomial approximation and applications to root isolation, numerical multipoint evaluation, and other problems

    Full text link
    We present a new data structure to approximate accurately and efficiently a polynomial ff of degree dd given as a list of coefficients. Its properties allow us to improve the state-of-the-art bounds on the bit complexity for the problems of root isolation and approximate multipoint evaluation. This data structure also leads to a new geometric criterion to detect ill-conditioned polynomials, implying notably that the standard condition number of the zeros of a polynomial is at least exponential in the number of roots of modulus less than 1/21/2 or greater than 22.Given a polynomial ff of degree dd with f12τ\|f\|_1 \leq 2^\tau for τ1\tau \geq 1, isolating all its complex roots or evaluating it at dd points can be done with a quasi-linear number of arithmetic operations. However, considering the bit complexity, the state-of-the-art algorithms require at least d3/2d^{3/2} bit operations even for well-conditioned polynomials and when the accuracy required is low. Given a positive integer mm, we can compute our new data structure and evaluate ff at dd points in the unit disk with an absolute error less than 2m2^{-m} in O~(d(τ+m))\widetilde O(d(\tau+m)) bit operations, where O~()\widetilde O(\cdot) means that we omit logarithmic factors. We also show that if κ\kappa is the absolute condition number of the zeros of ff, then we can isolate all the roots of ff in O~(d(τ+logκ))\widetilde O(d(\tau + \log \kappa)) bit operations. Moreover, our algorithms are simple to implement. For approximating the complex roots of a polynomial, we implemented a small prototype in \verb|Python/NumPy| that is an order of magnitude faster than the state-of-the-art solver \verb/MPSolve/ for high degree polynomials with random coefficients

    Generalization and variations of Pellet's theorem for matrix polynomials

    Full text link
    We derive a generalized matrix version of Pellet's theorem, itself based on a generalized Rouch\'{e} theorem for matrix-valued functions, to generate upper, lower, and internal bounds on the eigenvalues of matrix polynomials. Variations of the theorem are suggested to try and overcome situations where Pellet's theorem cannot be applied.Comment: 20 page

    Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables

    Full text link
    Analytic combinatorics studies the asymptotic behaviour of sequences through the analytic properties of their generating functions. This article provides effective algorithms required for the study of analytic combinatorics in several variables, together with their complexity analyses. Given a multivariate rational function we show how to compute its smooth isolated critical points, with respect to a polynomial map encoding asymptotic behaviour, in complexity singly exponential in the degree of its denominator. We introduce a numerical Kronecker representation for solutions of polynomial systems with rational coefficients and show that it can be used to decide several properties (0 coordinate, equal coordinates, sign conditions for real solutions, and vanishing of a polynomial) in good bit complexity. Among the critical points, those that are minimal---a property governed by inequalities on the moduli of the coordinates---typically determine the dominant asymptotics of the diagonal coefficient sequence. When the Taylor expansion at the origin has all non-negative coefficients (known as the `combinatorial case') and under regularity conditions, we utilize this Kronecker representation to determine probabilistically the minimal critical points in complexity singly exponential in the degree of the denominator, with good control over the exponent in the bit complexity estimate. Generically in the combinatorial case, this allows one to automatically and rigorously determine asymptotics for the diagonal coefficient sequence. Examples obtained with a preliminary implementation show the wide applicability of this approach.Comment: As accepted to proceedings of ISSAC 201
    corecore