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ABSTRACT

Computational algebraic geometry is the study of roots of polynomials and poly-

nomial systems. We are familiar with the notion of degree, but there are other ways

to consider a polynomial: How many variables does it have? How many terms does

it have? Considering the sparsity of a polynomial means we pay special attention

to the number of terms. One can sometimes profit greatly by making use of spar-

sity when doing computations by utilizing tools from linear programming and integer

matrix factorization. This thesis investigates several problems from the point of view

of sparsity. Consider a system F of n polynomials over n variables, with a total of

n+ k distinct exponent vectors over any local field L. We discuss conjecturally tight

bounds on the maximal number of non-degenerate roots F can have over L, with all

coordinates having fixed phase, as a function of n, k, and L only. In particular, we

give new explicit systems with number of roots approaching the best known upper

bounds. We also give a complete classification for when an n-variate n + 2-nomial

positive polynomial can be written as a sum of squares of polynomials. Finally, we

investigate the problem of approximating roots of polynomials from the viewpoint of

sparsity by developing a method of approximating roots for binomial systems that

runs more efficiently than other current methods. These results serve as building

blocks for proving results for less sparse polynomial systems.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Polynomial equations can be analyzed in many ways. We are familiar with the

notion of degree, but there are other ways to consider a polynomial: How many

variables does it have? How many terms does it have? Does this affect the solution

set?

For example, the univariate polynomial p(x) = c0 + c1x + · · · + cd−1x
d−1 + cdx

d

with ci ∈ R and cd 6= 0 has exactly d complex roots (counting multiplicities) by the

Fundamental Theorem of Algebra. However, what if we assume that some of the

coefficients ci are 0? Consider the polynomial q(x) = b1x
a1 + b2x

a2 + · · ·+ btx
at with

a1 < · · · < at=d and 0 6= bi ∈ R for all i. Again, we know that q has d complex roots

(counting multiplicities), but we can also use Descartes’ Rule of Signs to bound the

number of real roots: q has at most 2t− 1 real roots.

The function q is an example of a sparse polynomial: Utilizing sparsity means

we pay special attention to the number of terms. One can sometimes profit greatly

by making use of sparsity when doing computations with polynomials. Sparsity

also applies to multi-variate polynomials as well and leads us to some beautiful open

problems. This thesis investigates several problems from the point of view of sparsity,

using the geometric structure of the exponent set of the polynomials.

The remainder of the dissertation is organized as follows: Section 1 will discuss

the relevant background and history to the thesis questions as well as some tools

necessary to solve them. Section 2 will discuss bounding the number of roots of an

n × n system with n + 2 distinct exponent vectors over any local field L. Section 3

gives a complete classification to whether or not a positive n variate n+2-nomial can
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be written as a sum of squares. Section 4 gives a method of quickly approximating

roots of certain sparse polynomial systems. Section 5 will summarize the results and

discuss some open problems related to these problems.

1.2 Univariate Polynomials

One of the beginning cases to consider for polynomials is single variable polyno-

mial equations. One of the most well-known classical results concerning polynomials

is the Fundamental Theorem of Algebra:

Theorem 1.1 (Fundamental Theorem of Algebra). Let p be the polynomial p(x) =

c0 + c1x + · · · + cd−1x
d−1 + cdx

d, with ci ∈ C for all i and cd 6= 0. The equation

p(x) = 0 has exactly d solutions counting multiplicities.

However, this does not tell us exactly how many roots there are or what form

they take: How many are real? rational? positive? A result that partially answers

these questions is Descartes’ Rule of signs:

Theorem 1.2 (Descartes’ Rule of Signs). Let q the polynomial q(x) = b1x
a1+b2x

a2+

· · · + btx
at, with a1 < · · · < at= d and 0 6= bi ∈ R for all i. Let S = the number of

sign changes of the sequence (b1, b2, . . . , bt). Then the number of positive solutions

(counting multiplicities) of q(x) = 0 is either equal to S, or equal to S mod 2. In

particular, the number of positive roots of q(x) is at most t− 1.

By replacing q(x) by q(−x), we see that Descartes’ Rule of Signs also gives us

an upper bound on the number of real roots of q: it has at most 2t− 1 real roots (0

may also be a root).

Descartes’ Rule of Signs is an example of a result that employs sparsity : con-

sidering the number of terms of the polynomial, or, more generally, the structure of

a polynomial system. This can be useful particularly in real world applications, as

2



we see from Descartes’ Rule that real or positive solutions may be connected to the

number of terms. We will explore this notion further in Section 2. To generalize the

notion of sparsity to multi-variate polynomials, we must introduce some geometric

notions.

1.3 Newton Polytopes and Mixed Volume

Let K be a field, and K∗ := K \ {0}. When considering sparsity, we express a

polynomial f ∈ K[x1, . . . , xn] as f(x) =
∑t

i=1 cix
ai , with ci ∈ K∗, x = (x1, . . . , xn),

ai ∈ Zn are distinct, and if α = (α1, . . . , αn) ∈ Zn, then xα = xα1
1 · · · xαn

n . We define

the support of f to be the exponent set {a1, . . . , at} (this set is commonly denoted

with the letter A). A geometric object studied in the context of sparsity is the

Newton Polytope of a polynomial.

Definition 1.3. Let f(x) =
∑t

i=1 cix
ai as before. We define the Newton Polytope of

f to be the convex hull of its support:

Newt(f) = Conv{a1, . . . , at} ⊂ Rn.

Some examples of Newton Polytopes are given in Figure 1.1. Note that the

Newton Polytope only contains information about the exponents of the polynomial.

We can also build geometric objects that include information about the coefficients

of the polynomial, which will be defined in Section 2. We can see fairly easily through

several examples that the geometric structure of the Newton Polytope is intimately

related to the overall structure of the polynomial.

Example 1.4. Consider the polynomial f(x1, x2) = 4 − 3x1x2 + 20x41x
4
2. Note that

while the Newton Polytope sits in R2 (see Figure 1.2), its affine dimension is 1; it just

a line segment. f(x1, x2) is a univariate polynomial in disguise: by the substitution

3



(a) Newt(−5 + 2x21 + 10x31)

x2

x1

(b) Newt(7 + x1x
2
2 − 2x21x2 + 5x31x

2
2 + 8x41)

Figure 1.1: Examples of Newton Polytopes

x1x2 = y1, we get the equivalent polynomial g(y1) = 4− 3y1 + 20y41.

x2

x1

Figure 1.2: Newt(f)

Example 1.5. Consider a polynomial f(x) :=
∑

a∈A cax
a, with ca 6= 0, ca ∈ R.

Suppose f(x) is positive semi-definite: for all x ∈ Rn, f(x) ≥ 0. If α ∈ A is a vertex

of Newt(f), then one can show that α ∈ (2Z)n and cα > 0:

If α is a vertex of Newt(f), then there exists v = (v1, v2, . . . , vn) ∈ Rn such that

v · α > v · a for all a ∈ A. Consider the following curve:

(x1, . . . , xn) = (z1t
v1 , z2t

v2 , . . . , znt
vn), t ∈ R, z ∈ Rn.

4



Then

F (t) = f(z1t
v1 , z2t

v2 , . . . , znt
vn) =

∑

a∈A
caz

atv·a

= cαz
αtv·α + lower order terms

Since f(x) ≥ 0 for all x, F (t) ≥ 0 for all t. As t → ∞, the leading term dominates,

so this implies cαz
α > 0 for all z ∈ Rn. By substituting z = (1, 1, . . . , 1), we see

that cα > 0, and when zi = −1, zj = 1 for j 6= i, we see that αi ∈ 2Z, so we have

α ∈ (2Z)n.

One of the most well-known results concerning roots of sparse polynomial systems

is Bernstein’s Theorem, which will be given in Subsection 1.4. To present this result,

we need to introduce the notion of mixed volume. A more complete treatment of

this material may be found in [59], and will be explored further in Section 4.

Definition 1.6. Given two convex polytopes P and Q, the Minkowski sum of P and

Q, P +Q, is the convex polytope {p+ q : p ∈ P, q ∈ Q}.

An example of a Minkowski sum in R2 is given in Figure 1.3. The vertices of P+Q

are sums of vertices of P and Q. If f and g are two polynomials, it easy to check

that Newt(f · g) = Newt(f) + Newt(g). When discussing multivariate polynomial

systems, we wish to investigate the interaction of the variables in the polynomials.

Definition 1.7. Given n polytopes Q1, . . . , Qn in Rn, their mixed volume

µ(Q1, . . . , Qn) equals the following alternating sum of ordinary Euclidean volumes:

∑

I⊂[n]

(−1)n−|I| vol

(

∑

j∈I
Qj

)

5



+ =

Figure 1.3: Minkowski sum of a square and a triangle

For the example from Figure 1.3, the mixed volume would be

(−1)2−1(1) + (−1)2−1(1/2) + (−1)2−2(3 + 1/2) = 2.

Another method of computing the mixed volume is by constructing a lifting of the

polytopes. Let A1,A2, . . . ,An be a collection of supports of polynomials, Ai ⊂ Zn.

Let Qi := ConvAi. Note that Qi ∈ Rn. For each i, create a lifting function li by

choosing a random1 value li(a) for each a ∈ Ai. Consider the polytope

Q̄i := Conv{a, li(a) : a ∈ Ai}.

Note that Q̄i ⊂ Rn+1. Now compute the lower convex hull L of the Minkowski

sum Q̄1+ · · ·+ Q̄n. The facets of L are of the form F̄1+ · · ·+ F̄n, where F̄i is a face of

the corresponding Q̄i and
∑n

i=1 dim(F̄i) = n. We say a facet is mixed if dim(F̄i) = 1

for all i. By projecting the lower hull to Rn, we get a subdivision of the Minkowski

sum Q1 + · · ·+Qn.

Theorem 1.8 (Theorem 1.3.5 [59]). The mixed volume µ(Q1, . . . , Qn) is equal to the

sum of the volume of the mixed facets under the previous construction.

1More precisely, we simply need the vector of values of (l1, . . . , ln) to lie outside a finite union
of hyperplanes H, and H depends only on the supports A1, . . . ,An.

6



1.4 Results for Multivariate Polynomials

When discussing roots of multivariate polynomials, we are typically looking at

n × n systems: n polynomials f1, . . . , fn with a total of n variables. A root is non-

degenerate if the Jacobian matrix of the system at that point has full rank.

1.4.1 Bounds on total number of roots

Now that we have introduced the notion of Newton Polytope and mixed volumes,

we can discuss some results on the number of roots of multivariate polynomials.

Theorem 1.9 (Bézout’s Theorem [15]). Let f1, f2, . . . , fn be n polynomials in n

variables, with deg fi = di. If the system f1 = · · · fn = 0 has finitely many roots, the

total number of roots in Cn is no more than d1 · · · dn.

For example, the system xd11 − 1 = xd22 − 1 = · · · = xdnn − 1 = 0 attains the upper

bound of d1 · · · dn roots. Bézout’s theorem does not, however, take into account the

interactions of the terms between the equations. The main purpose of defining mixed

volume in Subsection 1.3 is for the following result:

Theorem 1.10 (Bernstein’s theorem [13]). Given n subsets A1, . . . ,An of Zn, and

Qi = Conv(Ai), consider the sparse polynomial system of equations

∑

a∈A1

c1,ax
a = 0

∑

a∈A2

c2,ax
a = 0

...

∑

a∈An

cn,ax
a = 0

7



For almost all choices of coefficients (ci,a)i∈[n],a∈Ai
, the number of roots of this system

in (C∗)n equals the mixed volume µ(Q1, . . . , Qd).

Example 1.11. [59] Consider the system

c1x
3y2 + c2x+ c3y

2 + c4 = 0

c5xy
4 + c6x

3 + c7y = 0

Bézout’s Theorem gives us a bound of 25 roots. By computing the mixed volume

of the Newton Polytopes, Bernstein’s Theorem gives us a bound on the number of

non-zero roots, which is 18. It can be checked that, for generic coefficients, this is

the true bound.

1.4.2 Bounds on number of positive roots

Efforts have been made to come up with a version of Descartes’ Rule for multi-

variate polynomials. The first result was by Khovanskii:

Theorem 1.12 (Khovanskii’s bound [45]). Let f1, f2, . . . , fn be n polynomials in

n variables. Suppose that n + k + 1 exponent vectors were used to form all the

polynomials in the system F = {f1, . . . , fn}. If F has finitely many non-degenerate

zeros with all positive coordinates, then this number is no more than

2(
n+k
2 )(n+ 1)n+k.

Note that, while this is exponential in n+ k, this result does not depend on the

degree of the fi. Further efforts were made to find a tighter bound on the number of

positive roots of a polynomial system, and while progress was made (see [20]), no sub-

exponential bounds have been found. A seemingly reasonable conjecture attributed

to Kushnirenko was proposed:

8



Conjecture 1.13 (Kushnirenko’s conjecture). Let f1, f2, . . . , fn be n polynomials in

n variables. Let mi = number of terms of fi, then the number of non-degenerate

isolated positive roots of this system is at most

(m1 − 1)(m2 − 1) · · · (mn − 1).

In 2002, Bertrand Haas [39] came up with the first counterexample to Kush-

nirenko’s conjecture. He was able to build a family of bivariate, 2 polynomial sys-

tems, with each polynomial having 3 terms, with exactly 5 positive roots, which is

more than the proposed (3 − 1) · (3 − 1) = 4. The smallest such system had degree

106. It was asked whether this is the smallest degree possible in order to break the

conjecture. In 2007, Rusek and Shih [31] found a 2 × 2 system, each with 3 terms,

of degree 6 with 5 positive roots. The method for finding such a system involved

an important mathematical object called the A-discriminant of a polynomial, which

will be discussed in Subsection 1.5. General results for a sub-exponential bound

are unknown; however, in Section 2, we will discuss some new results giving sharp

bounds for certain sparse systems.

1.5 A-Discriminant

One of the most powerful tools underlying results in sparsity is theA-discriminant.

We will begin with a motivating example.

Example 1.14. Consider the univariate polynomial f(x) = ax2 + bx + c. A well-

known notion is the discriminant of f : b2−4ac. We know from the quadratic formula

that determining the sign of the discriminant will give us the number of real roots

for f : b2 − 4ac > 0 gives us 2 real roots, b2 − 4ac = 0 gives us 1 real root (which is

degenerate), and b2 − 4ac < 0 gives us 0 real roots.

9



These results can be generalized further to any univariate trinomial:

Example 1.15. Consider the polynomial f(x) = xD − cxd + 1, D > d > 0, c > 0.

Note that by Descartes’ Rule of signs, this will have 0, 1, or 2 positive roots.

What happens to the graph of f(x) as c varies? In Figure 1.4, we see that the

number of positive zeros of f will change as c decreases. When c is sufficiently large,

the graph will dip below the x-axis, resulting in 2 positive roots. As c decreases, at

some point, it will touch the x-axis resulting in 1 (degenerate) root. We will denote

by γ the c-value where this occurs. For c < γ, the graph will be above the x-axis,

resulting in 0 positive roots. Thus, if we want to determine how many positive roots

a f will have, we can find the value of γ.

(a) c > γ (b) c = γ (c) c < γ

Figure 1.4: Graph of xD − cxd + 1 as c varies

For f to have a degenerate roots ζ, the system of equations f(ζ) = f ′(ζ) = 0

must be satisfied. Since f has constant term 1, ζ 6= 0, so we can consider the system

f(ζ) = ζf ′(ζ) = 0 instead. We can represent this as:

10









1 1 1

0 d D



















1

−cζd

ζD













=







0

0






.

Note that (1,−cζd, ζD)T is a vector in the nullspace of







1 1 1

0 d D






. It is easy to

compute that the nullspace of this matrix is 1-dimensional, and another vector in its

span is (D− d,−D, d)T . Thus, (1,−cζd, ζD) is a scalar multiple of (D− d,−D, d)T .

Via a clever rearrangement, we get the following relationship:

(

1

D − d

)D−d(−c
D

)−D (
1

d

)d

= 1

Which we can rewrite as

∆{0,d,D}(c) =

(

1

D − d

)D−d(−c
D

)−D (
1

d

)d

− 1 = 0.

Solving ∆{0,d,D}(c) = 0 gives us γ.

∆{0,d,D} is called the A-discriminant. The term comes from the common notation

of using A to denote the support set of f . Note that the support A is fixed, while

the coefficient is allowed to vary. More generally, we define the A-discriminant as

follows:

Definition 1.16. Let A = {a1, . . . , at} ⊂ Zn of cardinality t and c1, . . . , ct ∈ C∗, we

define the A-discriminant variety ∇A ⊂ Pt−1
C to be the closure of the following set:

{[c1 : · · · : ct] ∈ Pt−1
C : f(x) =

t
∑

i=1

cix
ai has a degenerate root in Cn}.

We then define the A-discriminant to be the unique (up to sign) irreducible polyno-

11



mial defining ∇A.

Note that for Example 1.15, the A-discriminant variety is the point γ where

(

1

D − d

)D−d(−γ
D

)−D (
1

d

)d

= 1.

Note that the A-discriminant for the univariate trinomial is quite nice; it is just a

binomial. In fact, this result generalizes to any support whereA is a (non-degenerate)

circuit:

Definition 1.17. We call A ⊂ Rn a (non-degenerate) circuit iff A is affinely de-

pendent, but every proper subset of A is affinely independent. Also, we say A is a

degenerate circuit iff A contains a point a and a proper subset B such that a ∈ B,

A \ a is affinely independent, and B is a non-degenerate circuit.

For instance, in n = 2, both and are circuits, but is a degenerate

circuit. For any degenerate circuit A, the subset B named above is always unique.

In this restricted setting, there is a very compact description for ∇A:

Lemma 1.18. [Prop. 1.8, pg. 274 [37]] Suppose f =
∑n+2

i=1 cix
ai,

A = {a1, a2, . . . , an+2} ⊂ Zn is a non-degenerate circuit. Let Â denote the (n+ 1)×

(n+ 2) matrix whose jth column is the transpose of {1} × aj, i.e.

Â :=







1 1 · · · 1

a1 a2 · · · an+2






.

Let b = (b1, . . . , bn+1,−1)T be a generator for the right nullspace of Â. Then:

1. ∆(c1, . . . , cn+2) is, up to a multiple by a nonzero monomial term,
∏n+2

i=1

(

ci
bi

)bi
−

1.
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2. For all [c1 : · · · : cn+2] ∈ Pn+1
R , we have the equivalence

∏n+2
i=1

(

sign(bici)
ci
bi

)sign(bici)bi
= 1 for some [c1 : · · · : cn+2] ∈ Pn+1

R with

sign(c1b1) = · · · = sign(cn+2bn+2) ⇔ Z+(
∑n+2

i=1 cix
ai) contains a degenerate

point ζ. In particular, Z+(f) has at most one degenerate point.

1.6 Factoring Integer Matrices

One of the ways to approach strongly sparse systems is to use a monomial change

of variables to rewrite the system in a simpler form. Since the exponents of the system

are integer-valued, we need a way to perform operations on the matrix of exponents

while keeping the entries as integers.

Definition 1.19. Let Zn×n denote the set of n×n matrices with all entries integral,

and let GLn(Z) denote the set of all matrices in Zn×n with determinant ±1 (the set

of unimodular matrices). Recall that any n× n matrix [uij ] with uij=0 for all i>j

is called upper triangular.

Given any M ∈ Zn×n, we then call an identity of the form UM = H, with

H=[hij]∈Zn×n in row echelon form and U ∈GLn(Z), a Hermite factorization of M .

Also, if we have the following conditions in addition:

1. the left-most nonzero entry in any row of H is positive.

2. for any i, hi,j the left-most nonzero entry of row i =⇒ 0 ≤ hi′,j < hi,j for all

i′<i.

then we call H the Hermite normal form of M .

Also, given any identity of the form UMV = S with U, V ∈ GLn(Z) and S

diagonal a Smith factorization. In particular, if S=[si,j] and we require additionally

that si,i ≥ 0 and si,i|si+1,i+1 for all i ∈ {1, . . . , n} (setting sn+1,n+1 := 0), then S is

uniquely determined and is called the Smith normal form of M .

13



Finally, we call any map defined by x 7→ xA a monomial change of variables.

Note that if S = diag(s1, . . . , sn) is the Smith Factorization of A, then | det(A)| =

| det(S)|. Moreover, max si ≤ | det(A)| ≤ (maxi,j |aij|)nnn/2 (by Hadamard’s inequal-

ity).

Proposition 1.20. We have that xAB = (xA)B for any A,B ∈Zn×n. Also, for any

field K, the map defined by mU(x) = xU , for any unimodular matrix U ∈ Zn×n, is

an automorphism of (K∗)n. Finally, for any column vector v ∈ Zn, the smallest

valuation of an entry of Uv is k if and only if the smallest valuation of an entry of

v is k.

Theorem 1.21. [86, Ch. 8, pg. 137] For any A = [ai,j] ∈ Zn×n, the Hermite and

Smith factorizations of A can be computed within O
(

n3.376 log2(nmaxi,j |ai,j|)
)

bit

operations. Furthermore, given a Smith Factorization of A of the form UMV = S

with U, V ∈GLn(Z) and S diagonal, then we have the following bounds for the entries

of U and V :

For V : maxi,j |vij| ≤ nn+1(|ai,j|)2n

For U : maxi,j |uij| ≤ n2n+5(
√
nmaxi,j |ai,j|)4n maxi,j |ai,j|.

The Hermite and Smith factorization of matrices will be utilized in Sections 4,

3, and 4. Example 1.22 shows how the Smith form can be used to solve binomial

systems. This is explored further in Section 4.

Example 1.22. Consider the bivariate binomial system:















x41x
3
2 = 6

x31x
2
2 = 2
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Then with A =







4 3

3 2






and C = (6, 2), we can represent the system as xA = C.

We have the following Smith factorization:

UAV =







1 −1

−2 3






·







4 3

3 2






·







0 1

1 −1






=







1 0

0 1






= S

So we can consider the equation yUAV = CV :















y1 = 60 · 21 = 2

y2 = 61 · 2−1 = 3

Then clearly (y1, y1) = (2, 3) is a solution for this system2.

Now to recover the solutions to the original system, we take yU = x:

(x1, x2) = (21 · 3−2, 2−1 · 33) = (2/9, 27/2).

2In general, the Smith factorization will not lead to a linear system.
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2. BOUNDING THE NUMBER OF ROOTS OF SPARSE POLYNOMIAL

SYSTEMS

2.1 Introduction

Let L be any local field, i.e., C, R, any finite algebraic extension of Qp, or Fq((t)).

Also let f1, . . . , fn ∈ L
[

x±1
1 , . . . , x±1

n

]

be Laurent polynomials such that the total

number of distinct exponent vectors in the monomial term expansions of f1, . . . , fn

is n + k. We call F := (f1, . . . , fn) an (n + k)-nomial n × n system over L. We

study the distribution of the non-degenerate roots of F in the multiplicative group

(L∗)n, as a function of n, k, and L only. This is a fundamental problem in fewnomial

theory over local fields. Our main focus will be the number of roots in a fixed angular

direction from the origin.

Fewnomial theory over R has since found applications in Hilbert’s 16th Problem

[43], the complexity of geometric algorithms [35, 90, 19, 64, 8, 7, 48, 49], model

completeness for certain theories of real analytic functions [95, 76], and the study of

torsion points on curves [28]. Fewnomial theory over number fields has applications to

sharper uniform bounds on the number of torsion points on elliptic curves [27], integer

factorization [58], additive complexity [71], and polynomial factorization and inter-

polation [42, 44, 6, 38, 26]. Since any number field embeds in some finite extension

of Qp, we thus have good reason to study fewnomial bounds over non-Archimedean

fields. However, for n, k≥2, tight bounds remain elusive [55, 73, 20, 3, 4].

The material in this section is reprinted with permission from “Fewnomial systems with many
roots, and an adelic tau conjecture” by Kaitlyn Phillipson and J. Maurice Rojas, In Proceedings of

Bellairs workshop on tropical and non-Archimedean geometry, Contemporary Mathematics, volume
605, pages 45-71, Copyright 2013 by Kaitlyn Phillipson and J. Maurice Rojas.
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Definition 2.1. Let y ∈L∗. When L∈{R,C} we let |y| denote the usual absolute

value and define φ(y) := y
|y| to be the generalized phase of y. In the non-Archimedean

case, we let M denote the unique maximal ideal of the ring of integers of L and call

any generator ρ ofM a uniformizer for L. Letting ord denote the corresponding valu-

ation on L we then alternatively define the generalized phase as φ(y) := y
ρord y mod M.

Finally, for general local L, we define YL(n, k) to be the supremum, over all (n+ k)-

nomial n × n systems F over L, of the number of non-degenerate roots of F in Ln

with all coordinates having generalized phase 1.

Note that y ∈ C has generalized phase 1 if and only if y is positive. In the non-

Archimedean case, φ(y) can be regarded simply as the first digit of an expansion

of y as a Laurent series in ρ. It is well-known in number theory that φ(y) is a

natural extension of the argument (or angle with respect to the positive ray) of a

complex number.1 Our choices of uniformizer and angular direction above are in fact

immaterial for the characteristic zero case: see Proposition 2.22 of Subsection 2.6,

which also discusses the positive characteristic case.

Descartes’ classic 17th century bound on the number of positive roots of a sparse

(a.k.a. lacunary) univariate polynomial [84, 94], along with some late to post-20th

century univariate bounds of Voorhoeve, H. W. Lenstra (Jr.), Poonen, Avendano,

and Krick, can then be recast as follows:

Theorem 2.2. Let p be prime and k≥ 1. Then: (1) YR(1, k) = k and YC(1, k)= k,

(2) YQ2(1, 1) = 2, (3) YQ2(1, 2) = 6, (4) YQp(1, 1) = 1 for p≥ 3, (5) YQp(1, 2) = 3 for

p≥ 5, and (6) YFq((t))(1, k) =
qk−1
q−1

for any prime power q. Also: (7) YQ2(1, k)≥ 2k,

(8) 3≤YQ3(1, 2)≤9, (9) YQp(1, k)≥2k − 1 for p≥3, and (10) YQp(1, k)≤k2 − k + 1

for p>1 + k.

1See, e.g., Schikhof’s notion of sign group in [75, Sec. 24, pp. 65–67].
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Remark 1. The assertions above are immediate consequences of [84, pg. 160], [93,

Cor. 2.1], [53, Example, pg. 286 & pp. 289–290], [5, Thm. 1.4, Ex. 1.5, & Thm.

1.6], and [66, Sec. 2]. Also, the polynomials
∏k

i=1(x1 − i), 3x101 + x21 − 4, x1+pp−1

1 −

(1 + pp−1)x1 + pp−1,
∏

z1,...,zk−1∈Fq

(x1 − z1 − z2t− · · · − zk−1t
k−1), and

∏k
i=1(x

2
1 − 4i−1)

respectively attain the number of roots stated in Assertions (1), (3), (5), (6), and

(7).

YL(1, 1) can in fact grow without bound if we let L range over arbitrary finite exten-

sions of Qp.
2 Note also that for any local field L 6=C and fixed (n, k), the supremum

of the total number of roots of F in (L∗)n — with no restrictions on the phase of the

coordinates — is easily derivable from YL(n, k) (see Proposition 2.22 of Subsection

2.6).

2.2 Strongly Sparse Systems

As a warm-up, let us first unite the simplest multivariate case.

Proposition 2.3. For any k≤0, n≥1, and any local field L, we have YL(n, k)=0.

Also, YL(n, 1) = YL(1, 1)
n. In particular, YQ2(n, 1) = 2n and YL(n, 1) = 1 for all

L∈{C,R} ∪ {Q3,Q5, . . .} ∪ {Fq((t)) | q a prime power}.

Proof. First note that by Gaussian elimination, k≤0 immediately implies that any

(n + k)-nomial n × n system is either equivalent to an n × n system where all the

polynomials are monomials or an n×n system with at least one polynomial identically

zero. Neither type of system can have a root in (L∗)n with Jacobian of rank n. So

we obtain the first equality.

Similarly, any (n+1)-nomial n×n system is either equivalent to an n×n system

consisting solely of binomials or an n×n system with at least polynomial having 1 or

2For instance, when L is the splitting field of g(x1) :=xp
1
−1 over Qp, g has roots 1, 1+µ1, . . . , 1+

µp−1 where the µi are distinct elements of L, each with valuation 1

p−1
(see, e.g., [68, pp. 102–109]).
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fewer monomial terms. The latter type of system can not have a root in (L∗)n with

Jacobian of rank n, so we may assume that we have an n×n binomial system. After

dividing each binomial by a suitable monomial we can then assume our system has the

form (xa1−c1, . . . , xan−cn) for some a1, . . . , an∈Zn and c1, . . . , cn∈L∗. Furthermore,

via a monomial change of variables, we may in fact assume that xai = xdii for all i,

for some choice of integers d1, . . . , dn. The latter reduction is routine, but we are

unaware of a treatment in the literature allowing general fields. So we present a

concise version below.

For any integral matrix A = [ai,j ] ∈ Zn×n with columns a1, . . . , an, let us write

xA=(xa1 , . . . , xan) where the notation xai =x
a1,i
1 · · · xan,i

n is understood. By Proposi-

tion 1.20 we know that xAB=(xA)B for any n× n matrix B.

Recall from Subsection 1.6 that an integral matrix U ∈Zn×n is said to be unimod-

ular if and only if its determinant is ±1. It is easily checked that the substitution

x= yU induces an automorphism on (L∗)n that also preserves the number of roots

with all coordinates having generalized phase 1. One can always write UAV = D

for some unimodular U and V , and a diagonal matrix D with nonnegative diagonal

entries d1, . . . , dn.

Applying the last two paragraphs to our binomial system xA − c, we see that to

count the maximal number of roots in (L∗)n (with all coordinates having generalized

phase 1) we may assume that our system is in fact (xd11 − c1, . . . , x
dn
n − cn). We thus

obtain YL(n, 1)=YL(1, 1)
n and, by Assertions (2), (1), (4), and (6) of Theorem 2.2,

we are done.
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Example 2.4. Consider the 3-nomial 2× 2 system

x41 − 2x21x
2
2 − 8 = 0

3x21x
2
2 − 12 = 0

By Gaussian Elimination, we can reduce this to the system to

x41 = 16

x21x
2
2 = 4

Note that, for our matrix A =







4 2

0 2






, the Smith Factorization is:







0 1

1 −3






·







4 2

0 2






·







1 1

1 0






=







2 0

0 4







So via the change of variables x = (x1, x2) = yU = (y2, y1y
−3
2 ), we can solve the

equivalent system yD = cV :

y21 = 64

y42 = 16

The positive solution for this system is (y1, y2) = (8, 2), which gives us the positive

solution for the original system: (x1, x2) = (2, 8 · 2−3) = (2, 1).

Note that this approach no longer works for (n+ 2)-nomial n× n systems, as we

can no longer separate the variables into individual polynomials. The lower bound

YR(n, 2)≥n+1 was first proved through an ingenious application of Dessins d’Enfants
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[17]. Explicit examples evincing YR(n, 2)≥n+1 were previously known only for n≤3

[18].

Theorem 2.5. For any n ≥ 2, any local field L, and any ε ∈ L∗ with generalized

phase 1 and ord ε sufficiently large, the roots in L̄n of the (n + 2)-nomial n × n

system Gε defined by
(

x1x2 − ε

(

1 +
x21
ε

)

, x2x3 −
(

1 + εx21
)

, x3x4 −
(

1 + ε3x21
)

, . . . , xn−1xn −
(

1 + ε2n−5x21
)

, xn −
(

1 + ε2n−3x21
)

)

are all non-degenerate, lie in (L∗)n, and have generalized phase 1 for all their coor-

dinates. In particular, Gε has exactly n + 1 non-degenerate roots in Rn
+, (Q

∗
p)

n, or

(Fq((t))
∗)n (each with generalized phase 1 for all its coordinates), according as ε is

1/4, p, or t.

Our new extremal examples from Theorem 2.5 provide a new and arguably sim-

pler proof that YR(n, 2)≥n + 1. Note also that the L=R case of our general lower

bound slightly improves an earlier
⌊

n+k−1
min{n,k−1}

⌋min{n,k−1}
lower bound from [18]. Non-

trivial lower bounds, for n≥k− 1≥2, were unknown for the non-Archimedean case.

We prove Theorem 2.5 in Subsection 2.4 for the Archimedean case and Subsection 2.5

for the Non-Archimedean case. Another important construction underlying Theorem

2.5 is a particular structured family of univariate polynomials.

Lemma 2.6. For any n≥2, the degree n+ 1 polynomial Rn defined by

u(1 + εu)2(1 + ε5u)2 · · · (1 + ε4⌊n/2⌋−3u)2 − ε2
(

1 + u
ε

)2
(1 + ε3u)2(1 + ε7u)2 · · · (1 +

ε4⌈n/2⌉−5u)2

has exactly n + 1 roots in R+, Q
∗
p, or Fp((t))

∗, according as ε is 1/4, p, or t. In

particular, for these choices of ε, all the roots of Rn have generalized phase 1.
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2.3 Triangulations and Mixed Volume

For less sparse systems, we can utilize the combinatorial structure of the supports

of the polynomials to derive results on the number of roots. In Subsection 1.3, we

gave the definition of mixed volume. We expand on this further.

Let ConvA denote the convex hull of any set A⊆Rn. Assuming A is finite, we

say that a triangulation of A is coherent (or regular) iff its simplices are exactly the

domains of linearity for some function ℓ : ConvA −→ R that is convex, continuous,

and piecewise linear. (For n ≥ 2 and #A ≥ 6 one can easily find non-coherent

triangulations [59].) We call ℓ a lifting of A (or a lifting of ConvA), and we let

Â := {(a, ℓ(a)) | a∈A}. Abusing notation slightly, we also refer to Â as a lifting of

A (with respect to ℓ).

Remark 2. It follows directly from our last definition that a lifting function ℓ on

ConvA is uniquely determined by the values of ℓ on A. So we will henceforth specify

such ℓ by specifying just the restricted image ℓ(A).

Example 2.7. Consider f(x) := 1 − x1 − x2 +
6
5
(x41x2 + x1x

4
2). Then supp(f) =

{(0, 0), (1, 0),

(0, 1), (1, 4), (4, 1)} and has convex hull a pentagon. It is then easily checked that

there are exactly 5 possible triangulations for supp(f), all of which happen to be

coherent (see Figure 2.1).

Definition 2.8. (See also [40].) For any polytope Q̂⊂Rn+1, we call a face P̂ of Q̂

a lower face iff P̂ has an inner normal with positive (n + 1)st coordinate. Letting

π : Rn+1 −→ Rn denote the natural projection forgetting the last coordinate, the

lower facets of Q̂ thus induce a natural polyhedral subdivision Σ of Q :=π
(

Q̂
)

. In

particular, if Q̂⊂Rn+1 is a Minkowski sum of the form Q̂1+ · · ·+Q̂n where the Q̂i are
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Figure 2.1: Triangulations of supp(f)

polytopes of dimension ≤ n+1, Êi is a lower edge of Q̂i for all i, and P̂ = Ê1+· · ·+Ên

is a lower facet of Q̂, then we call P̂ a mixed lower facet of Q̂. Also, the resulting

cell π
(

P̂
)

=π
(

Ê1

)

+ · · ·+ π
(

Ên

)

of Σ is called a mixed cell of Σ.

Example 2.9. Let us consider the family of systems Gε from Theorem 2.5 for n=2.

In particular, let (A1,A2) be the pair of supports of Gε, and let (Q1, Q2) be the

corresponding pair of convex hulls in R2. Let us also define a pair of liftings (ℓ1, ℓ2)

via the exponents of the powers of ε appearing in the corresponding monomial terms.

More precisely, ℓ1 sends (0, 0), (2, 0), and (1, 1) respectively to 1, 0, and 1; and ℓ2

sends (1, 1), (2, 0), and (0, 1) respectively to 0, 1, and 0. These lifting functions then

affect the shape of the lower hull of the Minkowski sum Q̂1 + Q̂2 of lifted polygons,

which in turn fixes a subdivision Σℓ1,ℓ2 of Q1 +Q2 via the images of the lower facets

of Q̂1 + Q̂2 under π. (See Figure 2.2)

Figure 2.2: Mixed subdivision of supports of Gε for n = 2
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The mixed cells of Σℓ1,ℓ2 , for this particular lifting, correspond to the lighter

parallelograms: from left to right, they are exactly E1,0 + E2,0, E1,1 + E2,0, and

E1,1 + E2,1, where E1,s (resp. E2,s) is an edge of Q1 (resp. Q2) for all s. More

precisely, E1,0, E1,1, E2,0, and E2,1 are respectively the convex hulls of {(0, 0), (1, 1)},

{(1, 1), (2, 0)}, {(0, 0), (0, 1)}, and {(0, 1), (2, 0)}. Note also that these mixed cells,

through their expression as edges sums (and the obvious correspondence between

vertices and monomial terms), correspond naturally to three binomial systems. In

order, they are (x1x2 − ε, x2 − 1) , (x1x2 − x21, x2 − 1), and (x1x2 − x21, x2 − εx21). In

particular, the first (resp. second) polynomial of each such pair is a sub-sum of the

first (resp. second) polynomial of Gε.

Definition 2.10. (See also [40, 33, 72] and Subsection 1.3.) Let A1, . . . ,An ⊂ Rn

be finite point sets with respective convex hulls Q1, . . . , Qn. Also let ℓ1, . . . , ℓn be

respective lifting functions for A1, . . . ,An and consider the polyhedral subdivision

Σℓ1,...,ℓn of Q :=Q1 + · · ·+Qn obtained via the images of the lower facets of Q̂ under

π. In particular, if dim P̂1 + · · · + dim P̂n=n for every lower facet of Q̂ of the form

P̂1 + · · · + P̂n, then we say that (ℓ1, . . . , ℓn) is mixed. For any mixed n-tuple of

liftings we then define the mixed volume of (Q1, . . . , Qn) to be M(Q1, . . . , Qn) :=
∑

C a mixed cell
of Σℓ1,...,ℓn

vol(C), following the notation of Definition 2.8.

As an example, the mixed volume of the two triangles from Example 2.9, relative to

the stated (mixed) lifting, is the sum of the areas of the three parallelograms in the

illustration, i.e., 3.

Theorem 2.11. (See [33, Ch. IV, pg. 126] and [40].) The formula for M(Q1, . . . , Qn)

from Definition 2.10 is independent of the underlying mixed n-tuple of liftings (ℓ1, . . . , ℓn).

Furthermore, if Q′
1, . . . , Q

′
n ⊆ Rn are any polytopes with Q′

i ⊇ Qi for all i, then
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M(Q1, . . . , Qn)≤M(Q′
1, . . . , Q

′
n). Finally, the n-dimensional mixed volume satisfies

M(Q, . . . , Q)=n! vol(Q) for any polytope Q⊂Rn.

Lemma 2.12. Let n ≥ 2, and let O and ei respectively denote the origin and ith

standard basis vector in Rn+1. Consider the triangles T̂1 :=Conv{en+1, 2e1, e1 + e2},

T̂n := Conv{O, 2e1 + (2n − 3)en+1, en}, and T̂i := Conv{O, 2e1 + (2i − 3)en+1, ei +

ei+1} for all i ∈ {2, . . . , n − 1}. Then the Minkowski sum T̂ := T̂1 + · · · + T̂n has

exactly n + 1 mixed lower facets. More precisely, for any j ∈ {0, . . . , n}, we can

obtain a unique mixed lower facet, P̂j := Ê1,1 + · · ·+ Êj,1 + Êj+1,0 + · · ·+ Ên,0, with

vol
(

π
(

P̂j

))

= 1, in the following manner: for all i ∈ {1, . . . , n}, define Êi,1 (resp.

Êi,0) to be the convex hull of the second (resp. first) and third listed vertices for T̂i.

Finally, M
(

π
(

T̂1

)

, . . . , π
(

T̂n

))

= n + 1 and, for each j ∈ {0, . . . , n}, the vector

vj :=en+1 + e1 −
∑j

i=1(j + 1− i)ei is a nonzero inner normal for the lower facet P̂j.

Proof. By Theorem 2.11 our mixed volume in question is bounded above by n! vol(Q)

where Q is the polytope with vertices the columns of the matrix A from the proof

of Theorem 2.5. The vertices of Q form a circuit, and the signs of the entries

of the vector b from the proof of Theorem 2.11 thereby encode an explicit trian-

gulation of Q (see, e.g., [37, Prop. 1.2, pg. 217]). More precisely, defining Q(i)

to be the convex hull of the points corresponding to all the columns of A except

for the ith column, we obtain that
{

Q(2), Q(4), . . . , Q
(

2
⌊

n+2
2

⌋)}

(for n even) and
{

Q(3), Q(5), . . . , Q
(

2
⌈

n+2
2

⌉

− 1
)}

(for n odd) form the simplices of a triangulation

of Q. Note in particular that the volume of Q(i) is exactly 1/n! times the absolute

value of the determinant of the submatrix of A obtained by deleting the first and ith

columns. Note also that this submatrix is block-diagonal with exactly 2 blocks: an

(i − 2) × (i − 2) upper-left upper-triangular block and an (n − i + 2) × (n − i + 2)

lower-right lower-triangular block. It is then clear that vol(Q(i)) is 1 or 2, according
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as i= 2 or i≥ 3. So vol(Q) is then 1 + 2
(⌊

n+2
2

⌋

− 1
)

= n + 1 (when n is even) or

2
(⌈

n+2
2

⌉

− 1
)

=n+ 1 (when n is odd).

Since any n-tuple of columns chosen from the last n+ 1 columns of A is linearly

independent, each cell π
(

P̂j

)

has positive volume. (The linear independence follows

directly from our preceding block diagonal characterization of certain submatrices of

A.) So once we show that each such cell is distinct, we immediately obtain that our

mixed volume is at least n + 1 and thus equal to n + 1. Toward this end, we now

check that each vj is indeed an inner normal to P̂j.

For any i ∈ {1, . . . , n} let Âi = (αi, βi, γi) denote the triple of vertices of the

triangle T̂i, ordered so that π(αi) = O and π(βi) = 2e1. It then clearly suffices to

prove that, for any j ∈{0, . . . , n}, the inner product vj · x is minimized on each Âi

exactly at the vertices of the edge Êi,s, where s is 1 or 0 according as i≤j or i≥j+1.

Equivalently, this means that the minimum values in the triple (vj · αi, vj · βi, vj · γi)

must occur exactly at the second and third (resp. first and third) coordinates when

i≤ j (resp. i≥ j + 1). This follows from a direct but tedious computation that we

omit.

2.4 Archimedean Local Fields

If L is an Archimedean local field, then L = R or C. Note that the maximal

number of roots in (C∗)n of an (n + k)-nomial n × n system F over C is undefined

for any fixed n and k: consider ((xd1 − 1) · · · (xd1 − k), x2 − 1, . . . , xn − 1) as d −→ ∞.

Nevertheless, the maximal number of roots in Rn
+ is well-defined and finite for any

fixed n, k≥1. The latter assertion is a very special case of Khovanski’s Theorem on

Complex Fewnomials (see [45, Thm. 1 (pp. 82–83), Thm. 2 (pp. 87–88), and Cor. 3′

(pg. 88)]), which estimates the number of roots in angular sub-regions of Cn for a

broad class of analytic functions. [45] does not appear to state any explicit upper
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bounds for YC(n, k), but one can in fact show that it suffices to study the real case.

Theorem 2.13. For all n, k≥1, we have YC(n, k)=YR(n, k).

Proof. The inequality YC(n, k)≥YR(n, k) is immediate since any real (n+ k)-nomial

n × n system is automatically a complex (n + k)-nomial n × n system. So we need

only prove that YC(n, k)≤YR(n, k). To do the latter, it clearly suffices to show that

for any (n+ k)-nomial n×n system G :=(g1, . . . , gn) over C, with N non-degenerate

roots in Rn
+, we can find an (n + k)-nomial n × n system F := (f1, . . . , fn) — with

all coefficients real — having at least N non-degenerate roots in Rn
+. So, for all i,

let us define fi :=e
√
−1tgi + e−

√
−1tḡi where (̄·) denotes complex conjugation, ḡi is the

polynomial obtained from gi by conjugating all its coefficients, and t ∈ [0, 2π) is a

constant to be determined later. Clearly, for all i, the coefficients of fi are all real,

and any exponent vector appearing in fi also appears in gi.

It is also clear that for any ζ∈Rn
+ with G(ζ)=0 we have

fi(ζ)=e
√
−1tgi(ζ) + e−

√
−1tḡi(ζ)=e

√
−1tgi(ζ) + e

√
−1tgi(ζ)=0.

So any root of G in Rn
+ is a root of F in Rn

+.

Let Jac(F )(ζ) denote the Jacobian determinant of F evaluated at ζ, and assume

now that ζ∈Rn
+ is a non-degenerate root of G. To see that ζ is also a non-degenerate

root of F (for a suitable choice of t), note that the multi-linearity of the determinant

implies the following:

Jac(F )(ζ) =
∑

s=(s1,...,sn)∈{±}n
e
√
−1(n+(s)−n−(s))tJac(g1,s1 , . . . , gn,sn)(ζ),

where n±(s) is the number of ± signs in s, gi,+ :=gi, and gi,− := ḡi. In particular, we

see that Jac(F )(ζ)=J
(

e
√
−1t
)

for some J ∈C
[

x1,
1
x1

]

. Moreover, J is not identically

zero since the coefficient of xn1 is Jac(G)(ζ) 6=0. Clearly then, J has at most 2n roots

in C∗ and thus there are at most 2n values of t∈ [0, 2π) for which Jac(F )(ζ) vanishes.

Thus, assuming G has N non-degenerate roots in Rn
+, F fails to have at least
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N non-degenerate roots in Rn
+ for at most 2nN values of t ∈ [0, 2π). This shows

the existence of a real n× n system F with at least N non-degenerate roots in Rn
+,

finishing the proof of the theorem.

The next result we need is a beautiful generalization, by Bernd Sturmfels, of

Viro’s Theorem. We use ∂Q for the boundary of a polytope Q.

Definition 2.14. Suppose A⊂Zn is finite and vol(ConvA)>0. We call any function

s : A −→ {±} a distribution of signs for A, and we call any pair (Σ, s) with Σ a

coherent triangulation of A a signed (coherent) triangulation of A. We also call any

edge of Σ with vertices of opposite sign an alternating edge.

Given a signed triangulation for A we then define a piece-wise linear manifold —

the Viro diagram VA(Σ, s) — in the following local manner: For any n-cell C ∈Σ,

let LC be the convex hull of the set of midpoints of the alternating edges of C, and

then define VA(Σ, s) :=
⋃

C an n-cell
of Σ

LC \ ∂ Conv(A). Finally, when A= supp(f) and s

is the corresponding sequence of coefficient signs, then we call VΣ(f) :=VA(Σ, s) the

Viro diagram of f .

Viro’s Theorem (see, e.g., Proposition 5.2 and Theorem 5.6 of [37, Ch. 5, pp.

378–393] or [92]) states that, under certain conditions, one may find a triangulation

Σ with the positive zero set of f homeomorphic to VΣ(f). Sturmfels’ Theorem for

Complete Intersections [87, Thm. 4] extends this to polynomial systems, and we will

need just the n× n case.

Definition 2.15. Suppose A1, . . . ,An⊂Zn and each Ai is endowed with a lifting ℓi

and a distribution of signs si. Then, following the notation of Definition 2.10, we call

a mixed cell E1+ · · ·+En of Σℓ1,...,ℓn an alternating mixed cell of (Σℓ1,...,ℓn , s1, . . . , sn)

iff each edge Ei is alternating (as an edge of the triangulation of Ai induced by ℓi).
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Example 2.16. Returning to Example 2.9, it is clear that, when ε∈R∗, we can en-

dow the supports of Gε with the distribution of signs corresponding to the underlying

coefficients. In particular, when ε>0, each of the 3 mixed cells is alternating.

Sturmfels’ Theorem for Complete Intersections (special case). Suppose

A1, . . . ,An are finite subsets of Zn, (ci,a | i∈{1, . . . , n} , a∈Ai) is a vector of nonzero

real numbers, and (ℓ1, . . . , ℓn) is a mixed n-tuple of lifting functions for A1, . . . ,An.

Let Σℓ1,...,ℓn denote the resulting polyhedral subdivision of Conv(A1)+· · ·+Conv(An)

(as in Subsection 1.3) and let si := (sign(ci,a) | a∈Ai) for all i. Then, for all t > 0

sufficiently small, the system of polynomials

(

∑

a∈A1

c1,at
ℓ1(a)xa, . . . ,

∑

a∈An

cn,at
ℓn(a)xa

)

has exactly N roots in Rn
+, where N is the number of alternating cells of

(Σℓ1,...,ℓn , s1, . . . , sn).

2.4.1 Proof of the Archimedean case of Theorem 2.5

Let L̄ be the algebraic closure of L. First note that all the roots of Gε in L̄
n lie in

(

L̄∗)n. (Clearly, setting any xi=0 results in a pair of univariate polynomials having

no roots in common, or a nonzero constant being equal to zero.) Let (g1, . . . , gn) :=Gε

and let A denote the matrix whose columns are the vectors in the union of the

supports of the gi. More precisely, A is the n× (n+ 2) matrix below:

































0 2 1 0

1 1

1

. . .

1

1 1

































Now let Ā denote the (n + 1) × (n + 2) matrix obtained by appending a row of
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1s to the top of A. It is then easily checked that Ā has right null-space of dimension

1, generated by the transpose of

b :=(b1, . . . , bn+2) =(−1, (−1)n, (−1)n+12, . . . , (−1)n+n2).

Let us rewrite the equation gi = 0 as xai+2 = βi(x
2
1), where ai denotes the i

th column

of A and βi is a suitable degree one polynomial with coefficients that are powers of

ε. Since the entries of b sum to 0, we then easily obtain that

1b1ub2β1(u)
b3 · · · βn(u)bn+2 =1

when ζ=(ζ1, . . . , ζn) is a root of Gε in
(

L̄∗)n and u :=ζ21 . In other words, the degree

n+ 1 polynomial Rn(u) from Lemma 2.6 must vanish. Furthermore, the value of ζn

is uniquely determined by the value of u, thanks to the equation gn=0. Proceeding

with the remaining equations gn−1 = 0, . . . , g1 = 0 we see that the same holds for

ζn−1, . . . , ζ2 and ζ1 successively. So Gε has no more than n + 1 roots, counting

multiplicities, in
(

L̄∗)n. Note in particular that by Lemma 2.12, combined with

Bernstein’s Theorem (over a general algebraically closed field [13, 29]), Gε having at

least n+1 distinct roots in
(

L̄∗)n implies that there are exactly n+1 roots in
(

L̄∗)n

and they are all non-degenerate.

When L=R we immediately obtain, from Lemma 2.12 and Sturmfels’ Theorem,

that Gε has at least n + 1 positive roots for ε> 0 sufficiently small. (This trivially

implies the L=C case as well.)

The only assertion left to prove is that G1/4 has exactly n+1 roots in the positive

orthant, and this follows from Lemma 2.6.

2.4.2 Proof of Lemma 2.6

Let us first define An and Bn respectively as

u(1 + εu)2(1 + ε5u)2 · · · (1 + ε4⌊n/2⌋−3u)2 and (ε + u)2(1 + ε3u)2(1 + ε7u)2 · · · (1 +
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ε4⌈n/2⌉−5u)2. Clearly, Rn=An −Bn.

Lemma 2.17. Assume ε=1/4. Then, for all n≥2, we have

Rn

(

16n−2/u
)

=

(−4n−2

u

)n+1

Rn(u).

Also, for all even n≥2, we have Rn(4
n−2) = 0.

Lemma 2.18. Assume ε=1/4 and consider Rn as a function on R. Then, for all

n ≥ 2, we have (a) Rn(0)<0 and (b) (−1)ℓRn(16
ℓ/4)>0 for all ℓ∈{0, . . . , ⌈n/2⌉−1}.

These subsidiary lemmata are proved below.

Returning to the proof of Lemma 2.6, we now consider two exclusive cases.

Real Case: By Lemma 2.18, Rn has ⌈n
2
⌉ − 1 sign changes in the open interval

(

0, 16
⌈n/2⌉−1

4

)

. So by the Intermediate Value Theorem, Rn has ⌈n
2
⌉ − 1 roots in this

interval. By Lemma 2.17, for every such root ζ, 16n−2

ζ
yields a new root. When n

is odd, this gives us 2(⌈n
2
⌉ − 1) = n + 1 positive roots. When n is even, we get n

positive roots and, by Lemma 2.17, the new positive root 4n−2. So Rn has n + 1

positive roots.

2.4.3 Proof of Lemma 2.17

Recall that we wrote Rn = An − Bn where An and Bn are suitable monomials.

Assuming n≥3 is odd we obtain the following:

An

(

16n−2

u

)

=
16n−2

u

⌊n/2⌋
∏

i=1

(

1 + 43−4i4
2n−4

u

)2

=
16n−2

u

⌊n/2⌋
∏

i=1

(

1 +
42n−4i−1

u

)2

=
16n−2

u

⌊n/2⌋
∏

i=1

(

42n−4i−1

u

(

1 + 44i−2n+1u
)

)2

=
42n−4

u
· 4S

un−1

⌊n/2⌋
∏

i=1

(

1 + 44i−2n+1u
)2
,

where S = 2

⌊n/2⌋
∑

i=1

(2n − 4i − 1). A minor calculation shows that S + 2n − 4 =

(n− 2)(n+ 1), so replacing i by ⌊n/2⌋ − i+ 1, we get
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An

(

16n−2

u

)

=

(

4n−2

u

)n+1

u

⌊n/2⌋
∏

i=1

(1 + 43−4iu)2 =

(

4n−2

u

)n+1

An(u).

An almost identical calculation proves the same transformation law for Bn(u). Since

Rn=An −Bn, we thus obtain our transformation law for odd n.

For even n, a similar calculation yields An

(

16n−2

u

)

=
(

4n−2

u

)n+1

Bn(u) and

Bn

(

16n−2

u

)

=
(

4n−2

u

)n+1

An(u). So we obtain Rn

(

16n−2

u

)

= −
(

4n−2

u

)n+1

Rn(u) and

thus the first assertion is proved.

The final assertion follows immediately from our transformation law since 16n−2/4n−2=

4n−2 and (−4n−2/4n−2)n+1=−1 for even n.

2.4.4 Proof of Lemma 2.18

To prove (a), merely observe that Rn(0)=− 1
16
<0 for all n ≥ 2.

To prove (b), the cases n≤ 4 can be verified by direct computation. So let us

assume n≥5 and separate into two exclusive cases.

(ℓ even): Let us first observe the following elementary inequality:

(n−1)/2
∏

i=1

(

1− 15/16

1 + 256i−2

)

≥ 7

200

(

1 +
1

4n−1

)

for all odd n≥3. (2.1)

Inequality (2.1) follows easily by induction, after one first verifies the cases n ∈

{3, 5, 7} directly. The identity 1+16z
1+z

=16
(

1− 15/16
1+z

)

then easily implies the following

equality:

(

1 + 42n−8

1 + 42n−10

)(

1 + 42n−12

1 + 42n−14

)

· · ·
(

1 + 4−2

1 + 4−4

)

= 16(n−1)/2

(n−1)/2
∏

i=1

(

1− 15/16

1 + 256i−2

)

(2.2)
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Combining (2.1) and (2.2) we then obtain, for any odd n≥5:

An(4
2n−7)

Bn(42n−7)
=

42n−7 · 42n−2

(

1
4
+ 42n−7

)2

(n−1)/2
∏

i=1

(

1− 15/16

1 + 256i−2

)2

≥ 42n−7 · 42n−2

(

1
4
+ 42n−7

)2

72

2002

(

1 +
1

4n−1

)2

=
42n−7 · 42n−7

(

1
4
+ 42n−7

)2 · 4
5 · 72
2002

(

1 +
1

4n−1

)2

=

(

1 + 1
4n−1

1 + 1
42n−6

)2

· 4
5 · 72
2002

≥ 45 · 72
2002

= 1.2544 > 1

We thus obtain

Aℓ

(

42ℓ−7
)

> Bℓ

(

42ℓ−7
)

for all odd ℓ≥3 (2.3)

Recall that for any odd n, (i) An+1(u)=An(u)
(

1 + u
42n−1

)2
and Bn+1(u)=Bn(u),

and (ii) An+2(u)=An(u)
(

1 + u
42n−1

)2
and Bn+1(u)=Bn(u)

(

1 + u
42n+1

)2
. Combining

the recurrences (i) and (ii) with Inequality (2.3), we then easily obtain by induction

and re-indexing that An(16
ℓ/4)>Bn(16

ℓ/4) for all ℓ∈{0, . . . , n− 3} with ℓ even. So

we are done.

(ℓ odd): This case follows almost identically as the last case, save for minor changes

in the indexing. In particular, one first uses Inequality (2.1) to prove that Aℓ

(

42ℓ−7
)

<

Bℓ

(

42ℓ−7
)

for all even ℓ≥4. One then increases the subscript from ℓ to n by induction,

and re-indexes ℓ, just as before. So we omit the details for brevity.

2.5 Non-Archimedean Local Fields

A tool we will need is the non-Archimedean Newton Polytope, along with a recent

refinement incorporating generalized phase.

Definition 2.19. Given any complete non-Archimedean field K with uniformizing
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parameter ρ, and any Laurent polynomial f(x) :=
∑m

i=1 cix
ai ∈K[x±1

1 , . . . , x±1
n ], we

define itsNewton Polytope over K to be NewtK(f) :=Conv{(ai, ord ci) | i∈{1, . . . ,m}}.

Also, the polynomial associated to summing the terms of f corresponding to points of

the form (ai, ord ci) lying on a lower face of NewtK(f), and replacing each coefficient

c by its first digit φ(c), is called a lower polynomial.

A remarkable fact true over non-Archimedean algebraically closed fields, but false

over C, is that the norms of roots of polynomials can be determined completely combi-

natorially. What is less well-known is that, under certain conditions, the generalized

phases can also be found by simply solving some lower binomial systems. Henceforth,

we abuse notation slightly by setting ord(y1, . . . , yn) :=(ord y1, . . . , ord yn).

Theorem 2.20. (Special case of [4, Thm. 3.10 & Prop. 4.4].) Suppose K is a

complete non-Archimedean field with residue field K and uniformizer ρ. Also let

f1, . . . , fn∈K[x±1
1 , . . . , x±1

n ], Q̂ :=
∑n

i=1 NewtK(fi), and let (v, 1) be an inner normal

to a mixed lower facet of Q̂ of the form Ê := Ê1+ · · ·+ Ên where Êi is a lower edge of

NewtK(fi) for all i. Suppose also that the lower polynomials g1, . . . , gn corresponding

to the normal (v, 1) are all binomials, and that π
(

Ê
)

has standard Euclidean volume

1. Then F := (f1, . . . , fn) has 1 or 0 roots ζ ∈ (K∗)n with ord ζ = v and generalized

phase θ∈ (K∗)n according as g1(θ)= · · · = gn(θ)= 0 or not. In particular, F has at

most one root with valuation vector v.

Note that while the number of roots with given n-tuple of first digits may depend on

the uniformizer ρ (see Proposition 2.22 in Subsection 2.6), the total number of roots

with ord ζ=v is independent of ρ.

Example 2.21. Let p be any prime, n=3, and let (A1,A2,A3) be the triple of sup-

ports for the system Gp (see Theorem 2.5). Also let ℓ1, ℓ2, ℓ3 be the respective liftings
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obtained by using the p-adic valuations of the coefficients of Gp. Lemma 2.12 then

tells us that we obtain exactly 4 mixed cells (two views of which are shown in Fig-

ure 2.3), with corresponding lower facet normals (1, 0, 0, 1), (0, 0, 0, 1), (−1,−1, 0, 1),

(−2,−2,−1, 1). In particular, the corresponding lower binomial systems are the

following:

x1x2 − 1

x2x3 − 1

x3 − 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1x2 − x21

x2x3 − 1

x3 − 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1x2 − x21

x2x3 − x21

x3 − 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1x2 − x21

x2x3 − x21

x3 − x21
Each mixed cell has volume 1, and each corresponding binomial system has unique

solution (1, 1, 1)∈(F∗
p)

3. Theorem 2.20 then tells us that the roots of Gp in (Q∗
p)

3 are

of the following form: (p(1+O(p)), 1+O(p), 1+O(p)), (1+O(p), 1+O(p), 1+O(p)),

(p−1(1 +O(p)), p−1(1 +O(p)), 1 +O(p)), and

(p−2(1 +O(p)), p−2(1 +O(p)), p−1(1 +O(p))).

Figure 2.3: Liftings of Gp

2.5.1 Proof of the non-Archimedean case of Theorem 2.5

Due to Theorem 2.20, we can prove Theorem 2.5 two different ways:

Proof directly via construction of Gε:

By Theorem 2.11 our mixed volume in question is bounded above by n! vol(Q)

where Q is the polytope with vertices the columns of the matrix A from the proof
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of Theorem 2.5. The vertices of Q form a circuit, and the signs of the entries

of the vector b from the proof of Theorem 2.11 thereby encode an explicit trian-

gulation of Q (see, e.g., [37, Prop. 1.2, pg. 217]). More precisely, defining Q(i)

to be the convex hull of the points corresponding to all the columns of A except

for the ith column, we obtain that
{

Q(2), Q(4), . . . , Q
(

2
⌊

n+2
2

⌋)}

(for n even) and
{

Q(3), Q(5), . . . , Q
(

2
⌈

n+2
2

⌉

− 1
)}

(for n odd) form the simplices of a triangulation

of Q. Note in particular that the volume of Q(i) is exactly 1/n! times the absolute

value of the determinant of the submatrix of A obtained by deleting the first and ith

columns. Note also that this submatrix is block-diagonal with exactly 2 blocks: an

(i − 2) × (i − 2) upper-left upper-triangular block and an (n − i + 2) × (n − i + 2)

lower-right lower-triangular block. It is then clear that vol(Q(i)) is 1 or 2, according

as i= 2 or i≥ 3. So vol(Q) is then 1 + 2
(⌊

n+2
2

⌋

− 1
)

= n + 1 (when n is even) or

2
(⌈

n+2
2

⌉

− 1
)

=n+ 1 (when n is odd).

Since any n-tuple of columns chosen from the last n+ 1 columns of A is linearly

independent, each cell π
(

P̂j

)

has positive volume. (The linear independence follows

directly from our preceding block diagonal characterization of certain submatrices of

A.) So once we show that each such cell is distinct, we immediately obtain that our

mixed volume is at least n + 1 and thus equal to n + 1. Toward this end, we now

check that each vj is indeed an inner normal to P̂j.

For any i ∈ {1, . . . , n} let Âi = (αi, βi, γi) denote the triple of vertices of the

triangle T̂i, ordered so that π(αi) = O and π(βi) = 2e1. It then clearly suffices to

prove that, for any j ∈{0, . . . , n}, the inner product vj · x is minimized on each Âi

exactly at the vertices of the edge Êi,s, where s is 1 or 0 according as i≤j or i≥j+1.

Equivalently, this means that the minimum values in the triple (vj · αi, vj · βi, vj · γi)

must occur exactly at the second and third (resp. first and third) coordinates when

i≤ j (resp. i≥ j + 1). This follows from a direct but tedious computation that we
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omit.

Lemma 2.12 and Theorem 2.20 immediately imply that, when φ(ε)=1 and ord ε≥

1, Gε has at least n+ 1 roots in Ln with all coordinates having generalized phase 1.

In particular, for each vector vj from Lemma 2.12, it is easily checked that (1, . . . , 1)

is a root of the corresponding lower binomial system of Gε over the residue field of

L.

Proof via Rn(u):

Via the same construction as the Archimedean case, Rn(u) = u(1 + εu)2(1 +

ε5u)2 · · · (1 + ε4⌊n/2⌋−3u)2 − ε2
(

1 + u
ε

)2
(1 + ε3u)2(1 + ε7u)2 · · · (1 + ε4⌈n/2⌉−5u)2 must

vanish. Recall that An := u(1 + εu)2(1 + ε5u)2 · · · (1 + ε4⌊n/2⌋−3u)2 and Bn := (ε +

u)2(1+ ε3u)2(1+ ε7u)2 · · · (1+ ε4⌈n/2⌉−5u)2. For L∈{Qp,Fq((t))} (and thus ε∈{p, t}

respectively), we easily obtain that P := NewtL(An) has exactly 1 + ⌊n/2⌋ lower

edges, Q :=NewtL(Bn) has exactly ⌈n/2⌉ lower edges, and the vertices of P and Q

interlace. (NewtL(R4) is shown in Figure 2.4) More precisely, NewtL(Rn)=Conv(P ∪

Q) has exactly n + 1 lower edges, each having horizontal length 1. In particular,

{(2, 1), (0, 1), . . . , (2 − 2n, 1)} is a representative set of inner normals for the lower

edges, and each corresponding lower binomial is a degree one polynomial with pair

of coefficients (±1,∓1). Also, for any i∈{2, 0, . . . , 2− 2n}, we can find a di∈Z such

that εdiRn(ε
iu)=±1∓ u+O(ε). So by Hensel’s Lemma, Rn has exactly n+ 1 roots

in Qp (resp. Fp((t))) when ε=p (resp. ε= t), and each such root has first digit 1.

2.6 Invariance of YL(n, k)

Let us now see how the value of YL(n, k) depends weakly (if at all) on the under-

lying uniformizer, and how counting roots with coordinates of generalized phase 1 is

as good as counting roots in any other direction. In what follows, we let WL(n, k)

denote the supremum, over all (n + k)-nomial n × n systems F over L, of the total
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Figure 2.4: NewtL(R4(u)) and inner normals

number of non-degenerate roots of F in (L∗)n.

Proposition 2.22. (1) For L any finite extension of Qp, and n, k≥1, the value of

YL(n, k) in Definition 2.1 is independent of the choice of uniformizer ρ. Also, the

same holds for L=Fq((t)) when n=1.

(2) YL(n, k) counts the supremum of the number of roots in any fixed angular direction

in the following sense: let θ1, . . . , θn be elements of the complex unit circle, elements of

{±1}, or units in the residue field of L, according as L is C, R, or non-Archimedean.

Also, letting F and G denote (n+k)-nomial n×n systems over L, there is an F with

exactly N non-degenerate roots (ζ1, . . . , ζn)∈Ln satisfying φ(ζi)= θi for all i if and

only if there is a G with exactly N non-degenerate roots in Ln with all coordinates

having generalized phase 1.

(3) WC(n, k)=+∞, WR(n, k)=2nYR(n, k), and WL(n, k)=(qL − 1)nYL(n, k) for any
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finite extension L of Qp with residue field cardinality qL. Also, we have

WFq((t))(n, k) ≤ (q − 1)nYFq((t))(n, k) ≤ (q − 1)nWFq((t))(n, k).

Proof. Assertion (2): To prove independence of direction, fix a uniformizer ρ

once and for all (for the non-Archimedean case) and assume F has exactly N non-

degenerate roots (ζ1, . . . , ζn)∈Ln satisfying φ(ζi)=θi for all i. Defining

G(x1, . . . , xn)=F (t1x1, . . . , tnxn) for any t1, . . . , tn of valuation 0 with φ(ti)= θi for

all i, we then clearly obtain a suitable G with exactly N non-degenerate roots with

all coordinates having generalized phase 1. The preceding substitutions can also be

inverted to give the converse direction, so we obtain independence of direction, and

(in the non-Archimedean case) for any ρ.

Assertion (3): The first equality was already observed in Subsection 2.4.

Now recall that any y ∈ R∗ (resp. y ∈ L, y ∈ Fq((t))) can be written in the

form y = uz where u ∈ {±1} (resp. u is a unit in the residue field of L or u ∈

F∗
q), |y| = |z|, and z has generalized phase 1. So Assertion (2) then immediately

implies WR(n, k) ≤ 2nYR(n, k), WL(n, k) ≤ (qL − 1)nYL(n, k), and WFq((t))(n, k) ≤

(q − 1)nYFq((t))(n, k). Note also that YFq((t))(n, k)≤WFq((t))(n, k), independent of the

underlying uniformizer.

So now we need only proveWR(n, k)≥2nYR(n, k) andWL(n, k)≥(qL−1)nYL(n, k).

Toward this end, note that for any F with N non-degenerate roots in Rn (resp. Ln),

with all coordinates of generalized phase 1, the substitution xi=y
2
i (resp. xi=y

qL
i ) for

all i yields a new system with exactly N non-degenerate roots in Rn (resp. Ln) with

n-tuple of generalized phases (θ1, . . . , θn) for any θ1, . . . , θn in {±1} (resp. units in the

residue field). Clearly then, WR(n, k)≥2nYR(n, k) and WL(n, k)≥(qL − 1)nYL(n, k).

Assertion (1): For L as in the first part, Assertion (3) tells us that YL(n, k)=
WL(n,k)
(qL−1)n

where qL is the residue field cardinality of L. WL(n, k) is independent of ρ, so the first
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part is proved. The second assertion follows immediately from Section 2 of [66].

2.7 Bounds: Known and Conjectural

Theorem 2.23. For any local field L, YL(n, 2) ≥max {YL(1, 1)n−1YL(1, 2), n+ 1}.

More generally,

YL(n, k) ≥ max
{

YL(1, 1)
n−k+1YL(1, 2)

k−1, YL
(⌊

n
k−1

⌋

, 2
)k−1−[n]k−1 YL

(⌊

n
k−1

⌋

+ 1, 2
)[n]k−1

}

when n≥ k − 1≥ 1, and YL(n, k) ≥ YL
(

1,
⌊

n+k−1
n

⌋)n−[k−1]n
YL
(

1,
⌊

n+k−1
n

⌋

+ 1
)[k−1]n

when 1≤n≤k − 1. More explicitly, the following lower bounds hold:

L n≥k − 1≥1 1≤n≤k − 1

R
⌊

n+k−1
k−1

⌋k−1−[n]k−1
⌊

n+2k−2
k−1

⌋[n]k−1 ⌊

n+k−1
n

⌋n−[k−1]n ⌊2n+k−1
n

⌋[k−1]n

Q2 2n3k−1 2n
⌊

n+k−1
n

⌋n−[k−1]n ⌊2n+k−1
n

⌋[k−1]n

Qp (p≥3)

⌊

n+k−1
k−1

⌋k−1−[n]k−1
⌊

n+2k−2
k−1

⌋[n]k−1 (

2
⌊

n+k−1
n

⌋

− 1
)n−[k−1]n (

2
⌊

n+k−1
n

⌋

+ 1
)[k−1]n

Fq((t)) max
{

q + 1,
⌊

n+k−1
k−1

⌋}k−1−[n]k−1

max
{

q + 1,
⌊

n+2k−2
k−1

⌋}[n]k−1
(

q⌊n+k−1
n ⌋−1
q−1

)n−[k−1]n (

q⌊ 2n+k−1
n ⌋−1
q−1

)[k−1]n

Proof. First note that since YL(n, k) is integer-valued when finite, YL(n, k) is actually

attained by some (n+ k)-nomial n× n system over L when YL(n, k) is finite.

Now, any n×n polynomial system of the form (b(x1), . . . , b(xn−1), r(xn)) — with

b ∈ L[x1] a binomial and r ∈ L[x1] a trinomial, both possessing nonzero constant

terms — is clearly an (n + 2)-nomial n × n system. So we immediately obtain

YL(n, 2)≥YL(1, 2)YL(1, 1)n−1 simply by picking b and r (via Theorem 2.2 and Remark

1) to have maximally many roots over L with all coordinates of generalized phase 1.

That YL(n, 2)≥n + 1 follows immediately from Theorem 2.5, so we obtain the first

asserted inequality.

The remaining lower bounds for YL(n, k) follow from similar concatenation tricks.
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First, note that any n× n polynomial system of the form

(b(x1), . . . , b(xn−k+1), r(xn−k+2), . . . , r(xn)) is clearly an (n + k)-nomial n × n sys-

tem. So, specializing b and r appropriately once again, the inequality YL(n, k) ≥

YL(1, 1)
n−k+1YL(1, 2)

k−1 holds for n≥k − 1.

A slightly more intricate construction gives our next lower bound: letting

Fn(x1, . . . , xn) denote an (n + 2)-nomial n × n system over L possessing a nonzero

constant term, observe that when k−1≤n and ℓ :=⌊ n
k−1

⌋, the block-diagonal system

F defined by

Fℓ(x1,1, . . . , x1,ℓ), . . . , Fℓ(xk−1−[n]k−1,1, . . . , xk−1−[n]k−1,ℓ),

Fℓ+1(y1,1, . . . , y1,ℓ+1), . . . , Fℓ+1(y[n]k−1,1, . . . , y[n]k−1,ℓ+1)

involves exactly (k− 1− [n]k−1)ℓ+ [n]k−1(ℓ+1)=(k− 1)ℓ+ [n]k−1=n variables, and

n polynomials via the same calculation. Also, the total number of distinct exponent

vectors of F is exactly

(k−1−[n]k−1)(ℓ+2)+[n]k−1(ℓ+3)−(k−1)+1=(k−1)ℓ+[n]k−1+2(k−1)−k+2=n+k,

since all the polynomials share a nonzero constant term. Furthermore, any ordered

n-tuple consisting of k−1− [n]k−1 non-degenerate roots of Fℓ in L
ℓ followed by [n]k−1

non-degenerate roots of Fℓ+1 in Lℓ+1 (with all coordinates having generalized phase

1) is clearly a non-degenerate root of F in Ln with all coordinates having generalized

phase 1. Picking Fℓ and Fℓ+1 to be appropriate specializations of the systems from

Theorem 2.5, we thus obtain YL(n, k)≥YL
(⌊

n
k−1

⌋

, 2
)k−1−[n]k−1 YL

(⌊

n
k−1

⌋

+ 1, 2
)[n]k−1 .

So the case n≥k − 1 is done.

Now simply note that any n× n system of the form

(m(x1), . . . ,m(xn−[k−1]n), µ(y1), . . . , µ(y[k−1]n))

— with m ∈ L[x1] an ℓ-nomial, µ ∈ L[y1] an (ℓ + 1)-nomial, ℓ := ⌊n+k−1
n

⌋, and

n≤k−1 — is easily verified to be an (n+k)-nomial n×n system. So picking m and
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µ to have maximally many roots with generalized phase 1, we immediately obtain

YL(n, k)≥YL
(

1,

⌊

n+ k − 1

n

⌋)n−[k−1]n

YL

(

1,

⌊

n+ k − 1

n

⌋

+ 1

)[k−1]n

for n≤k − 1.

To conclude, the entries in our table are simply specializations of our recursive

lower bounds using the explicit values given by Theorem 2.2.

That YR(n, k) <∞ for n ≥ 2 was first proved around 1979 by Khovanskii and

Sevastyanov [46, 45], yielding an explicit, singly-exponential upper bound. Based on

the seminal results [30, Pg. 105], [57, Thm. 2], and [53], the second author proved

in [70, Thm. 1] that YL(n, k) <∞ for any fixed n, k, and non-Archimedean field

L of characteristic zero. (See [73] and the table below for explicit upper bounds.)

The finiteness of YFq((t))(n, k) for n≥2 remains unknown, in spite of recent results of

Avendaño and Ibrahim [4] giving explicit upper bounds for the number of roots in

Ln of a large class of n× n systems over any non-Archimedean local field L.

We will use Landau’s O-notation for asymptotic upper bounds modulo a constant

multiple, along with the companion Ω-notation for asymptotic lower bounds. The

best known upper and lower bounds on YL(n, k) (as of November 2012), for L ∈

{R,Q3,Q5, . . .} and n, k≥2, can then be summarized as follows:

L Upper Bound on YL(n, k) Lower Bound on YL(n, k)

R 2O(k2)nk−1 [20]4 Ω
(⌊

n+k−1
min{n,k−1}

⌋)min{n,k−1}
(Theorem 2.23 here)

Qp (O(k3n log k))
n
[73] Ω

(⌊

n+k−1
min{n,k−1}

⌋)min{n,k−1}
(Theorem 2.23 here)

3While there have been important recent refinements to this bound (e.g., [74]) the asymptotics
of [20] have not yet been improved in complete generality.
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Also, Bertrand, Bihan, and Sottile proved the (tight) upper bound YR(n, 2)≤n + 1

in [14]. The implied Ω-constants above can be taken to be 1.

Most importantly, note that for the Archimedean case (resp. the p-adic rational

case with p ≥ 3), YL(n, k) is bounded from above by a polynomial in n when k is

fixed (resp. a polynomial in k when n is fixed). Based on this asymmetry of upper

bounds, Rojas posed the following conjecture (mildly paraphrased) at his March 20

Geometry Seminar talk at the Courant Institute in March 2007.

Conjecture 2.24 (The Local Fewnomial Conjecture).

There are absolute constants C2 ≥C1 > 0 such that, for any L ∈ {C,R,Q3,Q5, . . .}

and any n, k≥2, we have (n+k−1)C1 min{n,k−1} ≤ YL(n, k) ≤ (n+k−1)C2 min{n,k−1}.

Remark 3. Should the Local Fewnomial Conjecture be true, it is likely that similar

bounds can be asserted for the number of roots counting multiplicity, in the char-

acteristic zero case. This is already known for (L, n) = (R, 1) [94], and [53, 73]

provide evidence for the p-adic rational case. Note, however, that the equality

(x1 + 1)q
m+1=xq

m+1
1 + xq

m

1 + x1 + 1 over Fq (as observed in [66]) tells us that for L

of positive characteristic it is impossible to count roots over L∗ — with multiplicity

— solely as a function of n, k, and L.

Theorem 2.23 thus reveals the lower bound of the Local Fewnomial Conjecture to be

true (with C1=1) for the special case k=2. From our table above we also see that

the upper bound from the Local Fewnomial Conjecture holds for n≤k − 1 (at least

for C2 ≥ 7), in the p-adic rational setting. We intend for our techniques here to be

a first step toward establishing the Local Fewnomial Conjecture for n>k − 1 in the

p-adic rational setting.
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3. SPARSITY AND SUMS OF SQUARES

3.1 Introduction and Main Results

Let Hn,2d be the space of real polynomials in n variables of degree at most 2d.

Let us define the following cones in Hn,d:

Pn,2d = {f ∈ Hn,2d : f(x) ≥ 0 for all x ∈ Rn}

Σn,2d = {f ∈ R[x]n,2d : f =
∑

i

f 2
i for some fi ∈ Hn,2d}

We call polynomials in the set Pn,2d positive semi-definite (or PSD, or non-

negative) polynomials, and polynomials in the set Σn,2d sums of squares (or SOS)

polynomials. It is a standard exercise to show that the sets Pn,2d and Σn,2d are convex

cones in the vector space of degree 2d polynomials. It is clear that Σn,2d ⊂ Pn,2d. It

has been established since 1888 by Hilbert that Σn,2d ( Pn,2d except in the following

three cases: n = 1, 2d = 2, and (n = 2, 2d = 4).

PSD and SOS polynomials have applications in optimization theory. The problem

of minimizing a polynomial (F = minx∈Rn f(x)) is equivalent to finding the maximum

scalar translation that keeps the polynomial positive (F = maxf−γ∈Pn,2d
γ). The

issue is that determining whether or not a polynomial is PSD is NP-Hard. However,

determining if a polynomial is SOS is doable in polynomial-time via Semi-Definite

Programming [60]. Thus, it would be beneficial to know when it is valid to replace the

criteria of the polynomial being positive with the polynomial being SOS, a method

known as relaxation.

Unfortunately, we cannot assume that most positive polynomials are sums of
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squares. It was shown in [22] that for a fixed d ≥ 2, the volumes of the cones Pn,2d

and Σn,2d are drastically and quantifying different. However, if we instead fix the

number of variables, fix the number of terms, and allow d to vary, we could gain

some new information.

The main result of this paper is, given a support of a polynomial f supported on

a circuit (see Definition 1.17), to completely classify whether or not f ∈ Pn,2d implies

f ∈ Σn,2d.

Theorem 3.1. Given a polynomial f =
∑

a∈A cax
a, ca 6= 0. Assume that f is PSD

and |A| = n+ 2. Then if A is a non-degenerate circuit:

1. If Newt(f) has n+ 2 vertices, then f is SOS.

2. If Newt(f) has n + 1 vertices, then f has an interior point ai with coefficient

ci. Then we can say that:

a. If ai ∈ (2Z)n and ci > 0, then f is SOS.

b. If ai 6∈ (2Z)n or ci < 0, then let U = A\ ai. If ai ∈ the maximal mediated

set of U , then f is SOS.

Also, if A is a degenerate circuit, then f can be reduced to a polynomial with less

variables.

Remark 4. Theorem 3.1 and Proposition 3.10 were proved independently in 2013

by Phillipson and by Iliman and de Wolff and published in 2016 in [41] by Iliman

and de Wolff. The proofs of Proposition 3.10 [41] and this work are distinct.

3.2 Background

It is natural to consider the support of a polynomial when determining whether or

not it is positive. Reznick proved several results concerning the relationship between
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PSD polynomials and Newton Polytopes in [67], which will be used later in this

section:

Theorem 3.2. Let f(x) =
∑

a∈A cax
a with all ca nonzero. Assume that f(x) is

PSD.

a. If 0 ≤ g ≤ f , then Newt(g) ⊆ Newt(f).

b. If f ∈ Σn,2d with f =
∑

i f
2
i , then Newt(fi) ⊆ 1

2
Newt(f) for all i.

c. If α ∈ A is a vertex of Newt(f), then cα > 0 and α ∈ (2Z)n.

d. If F is a face of Newt f , then fF (x) =
∑

a∈F cax
a is PSD.

Note that part (c) of Theorem 3.2 was proved in Example 1.5. Using 3.2, part (c),

we have an immediate corollary for (n+ 1)-nomials in sufficiently general position:

Corollary 3.3. Let f =
∑

a∈A cax
a, ca 6= 0. Assume that A does not lie in an affine

hyperplane in Rn. If |A| ≤ n+ 1, then f is SOS if and only if f is PSD.

We also have an immediate result for polynomials supported on a non-degenerate

circuit that is not a simplex:

Corollary 3.4. Let f =
∑n+2

i=1 cix
ai, ci 6= 0 for all i, A = {a1, . . . , an+2} ⊂ Zn for

all i. Suppose f is a PSD polynomial, A is a non-degenerate circuit, and Conv(A)

is not a simplex. Then f is SOS.

Proof. It is clear that ai is a vertex of Conv(A) for all i, so by 3.2, ai ∈ (2Z)n and

ci > 0 for all i, so f is trivially SOS.
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3.3 Case of Degenerate Circuit

Proposition 3.5. Suppose g ∈ R[x1, . . . , xn] and a ∈ Zn+1 has nonzero last coordi-

nate. Then

a. xa + g(x) is PSD ⇐⇒ a ∈ (2Z)n+1 and g is PSD.

b. xa + g(x) is SOS ⇐⇒ a ∈ (2Z)n+1 and g is SOS.

Proof. Define G(x) = xa + g(x). Note that a is a vertex of Newt(G) since a ·

(0, 0, . . . , 1) > 0 = v · (0, 0, . . . , 1) for v ∈ supp(g).

For the proof of (a): assume first that G(x) is PSD. Then since a is a vertex of

Newt(G), a ∈ (2Z)n+1, and

0 < G(x1, . . . , xn, 0) = g(x),

so g is PSD.

Now assume that g(x) > 0 and a ∈ (2Z)n+1. Then xa ≥ 0 for all x, so

G(x) = g(x) + xa ≥ g(x) ≥ 0.

For the proof of (b): First observe that if g(x) is SOS and a ∈ (2Z)n+1, then

clearly G(x) is SOS.

Now, let G(x) be SOS. Then G(x) is PSD, so a ∈ (2Z)n+1.

Also, G(x) =
∑

i(fi)
2, so

g(x) = G(x1, . . . , xn) =
∑

i

(fi(x1, . . . , xn, 0)
2,

so g(x) is SOS.
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Lemma 3.6. Let A be a degenerate circuit, and let f be a PSD polynomial with

supp(f) = A. Then the condition that f is SOS reduces to a polynomial with less

variables.

Proof. Let A = {a1, . . . , an+2} be a degenerate circuit. By dividing by a suitable

monomial term, we can assume that ~0 ∈ A. Via the definition of degenerate circuit,

there exists B ⊂ A and aj ∈ B such that A \ {aj} is affinely independent and B

is a non-degenerate circuit. This implies that |B| = n + 1 and B is contained in a

hyperplane of dimension n− 1. Moreover, we can assume that ~0 ∈ B.

Without loss of generality, assume that an+2 6∈ B. Note that an+2 must be a

vertex of Conv(A). Consider the n× (n+2) matrix A whose columns are the vectors

ai:

A =





a1 a2 · · · an+1 an+2






.

Recall from Section 1.6 that we can compute the Hermite Factorization of A as

UA = H, with H = [hi,j ] ∈ Zn×m upper triangular and U ∈ GLn(Z). We claim the

first n+ 1 columns of H have zero in the last row, with the (n+ 2)th column having

a nonzero entry in the last row. Since A is a degenerate circuit, rankA = n, so we

know that A has no non-zero rows.

Now consider the truncated matrix

A′ =





a1 a2 · · · an+1







This matrix has rank n − 1, so the Hermitian form of A′ has one row of zeros. We

can compute its Hermite form U ′A′ = H ′ with H ′ ∈ Zn×m upper triangular and
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U ′ ∈ GLn(Z). Since U ′ operates on A′ column-by-column, we have that U is either

U ′ itself or U ′ with the last row multiplied by −1. Either way, we have the desired

result.

Thus, if we have a polynomial f =
∑

a∈A cax
a with ca 6= 0, then we can introduce

a change of coordinates

(x1, . . . , xn) = (y1, . . . , yn)
U = (yu11

1 yu21
2 · · · yun1

n , . . . , yu1n
1 yu2n

2 · · · yunn
n ). Then we ob-

tain a polynomial of the form

G(y) = cay
a + g(y)

with g(y) ∈ R[y1, . . . , yn−1], ca = cn+2, and a is the last column of H, which is

assumed to have nonzero last coordinate. Thus, this polynomial is in the form of

Proposition 3.5, and we are done.

3.4 When Support of Polynomial is a Simplex

When the support of the polynomial is a simplex, positivity need not imply SOS.

Consider the Motzkin polynomial:

M(x1, x2) = 1− 3x21x
2
2 + x21x

4
2 + x41x

2
2

M(x, y) is a bivariate polynomial with support of size 4, with Newton Polytope

shown in Figure 3.1. To show M(x1, x2) is PSD, we use the Weighted Arithmetic-

Geometric Inequality:

Theorem 3.7 (Weighted Arithmetic-Geometric Inequality). Given weights
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w1, w2, . . . , wn > 0, numbers u1, . . . , un > 0, if w = w1 + · · ·+ wn > 0, then

w1u1 + · · ·+ wnun
w

≥ w
√

uw1
1 · · · uwn

n

with equality iff u1 = u2 = · · · = un and wi > 0 for all i .

Using 3.7, we have that

1 + x21x
4
2 + x41x

2
2 ≥ 3 3

√

1 · x21x42 · x41x22 = 3x21x
2
2,

which shows that M(x1, x2) ≥ 0 for all x1, x2 ∈ R. However, it can be shown via a

simple contradiction argument thatM(x1, x2) cannot be written as a sum of squares.

x2

x1

Figure 3.1: Newt(M)

3.4.1 Bounding the coefficients of a PSD polynomial

Assume that f =
∑

a∈A cax
a,A = {a1, a2, . . . , an+2} ⊂ Zn, with Conv(A) an n-

simplex. Without loss of generality, we can assume that an+2 ∈ RelInt(Conv(A)). If

we fix coefficients c1, . . . , cn+1, we can bound the coefficient an+2. The lemma below
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is a special case of Lemma 2.6 in [63]:

Lemma 3.8. Let A = {a1, a2, . . . , an+2} ⊂ (Z+)
n be a non-degenerate circuit such

that Conv(A) is a simplex with an+2 ∈ RelInt(Conv(A)). Assume that ai ∈ (2Z)n

for all i 6= n+ 2. Let Â denote the (n+ 1)× (n+ 2) matrix whose jth column is the

transpose of {1} × aj, i.e.

Â :=



















1 1 · · · 1

a1 a2 · · · an+2



















.

Let b = (b1, . . . , bn+1,−1)T be a generator for the right nullspace of Â. Then for

any c1, c2, . . . , cn+1 > 0, and x ∈ Rn, we have

c1x
a1 + c2x

a2 + · · ·+ cn+1x
an+1 ≥ xan+2

n+1
∏

i=1

(

ci
bi

)bi

. (3.1)

Proof. Note that b1 + · · · + bn+1 = 1 and b1a1 + · · · bn+1an+1 = an+2. In particular,

(b1, . . . , bn+1) are the barycentric coordinates for an+2, and bi > 0 for all i = 1, . . . , n+

1. To apply the Weighted Arithmetic-Geometric Inequality, let wi = bi, ui =
cix

ai

bi
.

Then

c1x
a1 + c2x

a2 + · · ·+ cn+1x
an+1 ≥ (b1 + · · ·+ bn+1)

(

n+1
∏

i+1

(

cix
ai

bi

)bi
)1/(b1+···+bn+1)

≥ xb1a1+···+bn+1an+1

n+1
∏

i=1

(

ci
bi

)bi

≥ xan+2

n+1
∏

i=1

(

ci
bi

)bi

.
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Note that equality holds in 3.1 if there exists z ∈ Rn such that c1za1
b1

= · · · =
cn+1z

an+1

bn+1
.

Corollary 3.9. Let f =
∑n+2

i=1 cix
ai , ci ∈ R∗, A = {a1, a2, . . . , an+2} ⊂ Zn, with

Conv(A) an n-simplex. Assume that ai ∈ (2Z)n for all i 6= n + 2 and an+2 ∈

RelInt(Conv(A)). Let Â be as defined in Lemma 3.8. If ci > 0 for all i = 1, . . . , n+1

and

|cn+2| ≤
n+1
∏

i=1

(

ci
bi

)bi

,

then f is PSD.

The converse of Corollary 3.9 also holds, with some additions.

Proposition 3.10. Let f =
∑n+2

i=1 cix
ai , ci ∈ R∗, A = {a1, a2, . . . , an+2} ⊂ Zn, with

Conv(A) an n-simplex. Assume an+2 ∈ RelInt(Conv(A)). Let Â be as defined in

Lemma 3.8. If f is PSD, then for all i = 1, . . . , n + 1, ai ∈ (2Z)n and ci > 0. We

also have one of the following conditions hold for cn+2:

1. an+2 ∈ (2Z)n and cn+2 > 0,

2. |cn+2| ≤
∏n+1

i=1

(

ci
bi

)bi
.

Proof. The first assertions follow from 3.2. Condition (1) is trivial. For Condition (2),

we can assume WLOG that cn+2 < 0. Consider γ =
∏n+1

i=1

(

ci
bi

)bi
. Since (b1, . . . , bn+1)

are the barycentric coordinates for an+2, we have that bi > 0 for i 6= n + 2, so

we have that γ > 0 and 1 = sign(c1b1) = · · · = sign(cn+1bn+1) = sign(−γbn+2).

Also note that
∏n+1

i=1

(

ci
bi

)bi (−γ
−1

)−1
= 1. Thus, by Lemma 1.18, the polynomial

f̄ = c1x
a1 + · · ·+ cn+1x

an+1 − γxan+2 has a degenerate root ζ = (ζ1, . . . , ζn) ∈ Rn
+. If
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we plug this into the original polynomial f , we get

f(ζ1, . . . , ζn) = c1ζ
a1 + cn+2ζ

an+2

= c1ζ
a1 + cn+1ζ

an+1 − γζan+2 + γζan+2 + cn+2ζ
an+2

= (cn+2 + γ)ζan+2 .

(cn+2 + γ)ζan+2 > 0 iff |cn+2| ≤ γ.

3.4.2 Agiforms

To further discuss PSD polynomials supported on a simplex, we introduce nota-

tion first given by Reznick in [67].

Definition 3.11. Given U ⊂ (2Z)n, Let C(U) = Conv(U) ∩ Zn, and let E(U) =

Conv(U) ∩ (2Z)n. If B ⊂ Zn, define Ave(B) to be the set of averages of even points

of B:

Ave(B) =

{

s+ t

2
: s, t ∈ (B ∩ (2Z)n)

}

,

and we let Ave(B) denote the set of averages of distinct points of even points of B:

Ave(B) =

{

s+ t

2
: s 6= t, s, t ∈ (B ∩ (2Z)n)

}

.

If L ⊂ Nn, U ⊆ L, and, for every v ∈ L \ U , v is the average of two distinct even

points in L, then we say that L is U-mediated.

Theorem 3.12. [67] If U ∪ (2Z)n is an affinely independent set, then there exists a

U-mediated set U∗ satisfying Ave(U) ⊆ U∗ ⊆ C(U) which contains every U-mediated

set.

U∗ is called the maximal U-mediated set. In the proof of Theorem 3.12, an

algorithm is given to compute U∗. We now have the following result by Reznick [67]:

53



Theorem 3.13. Given U = {u1, u2, . . . , un+1}, an affinely independent subset of

(2Z)n, let un+2 ∈ Conv(U) ∩ Zn with (λ1, . . . , λn+1) ∈ Rn+1
≥0 the barycentric co-

ordinates of un+2; i.e.,
∑n+1

i=1 λi = 1 and un+2 =
∑n+1

i=1 λiui. Then if f(x) :=

λ1x
u1 + · · ·+ λn+1x

un+1 − xun+2,

a. f(x) is PSD,

b. f(x) is SOS if and only if un+2 ∈ U∗.

Reznick refers to a polynomial that fits the criteria in 3.13 as an agiform1 . If

we consider the Motzkin polynomial M(x1, x2) = 1 − 3x21x
2
2 + x21x

4
2 + x41x

2
2, we see

that f(x1, x2) = 1
3
M(x1, x2) is an agiform. Reznick’s result was initially given for

homogeneous polynomials; however, since de-homogenization does not affect positiv-

ity and SOS conditions [60], this theorem holds for non-homogeneous polynomials

as stated here.

We claim that Theorem 3.13 can be extended to a generalized agiform fµ(x) =

λ1x
u1 + · · ·+ λn+1x

un+1 − µxun+2 for 0 < µ < 1:

Proof. Part (a): We know that f1(x) = λ1x
u1 + · · ·+ λn+1x

un+1 − xun+2 and f0(x) =

λ1x
u1 + · · · + λn+1x

un+1 are both PSD. By the earlier remark in Subsection 3.1, the

set of PSD polynomials is convex, so any point lying between (λ1, . . . , λm, 0) and

(λ1, . . . , λm, 1) represents a PSD polynomial. For a given µ ∈ [0, 1], this point may

be given as

(1− µ)(λ1, . . . , λm, 0) + µ(λ1, . . . , λm, 1) = (λ1, . . . , λm, µ)

Thus, fµ(x) is PSD, as well.

1This term comes from the Arithmetic-Geometric Inequality; sadly, it has no connection to the
Texas A&M Aggies.
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Part (b): If un+2 ∈ U∗, then f1(x) is SOS. Since f0(x) is also clearly SOS, we can

use the same argument as part (a) to show fµ(x) is SOS.

Now, if fµ(x) is SOS, it is not immediately clear that un+2 ∈ U∗; however, we

can generalize Reznick’s original proof to show this, which we include here:

Suppose f = fµ(x) is SOS. Then f =
∑r

k=1 h
2
k for some r and some polynomials

hk. For each k, let hk(x) =
∑

v∈Zn bk(v)x
v. Then

fµ(x) =
∑

k

(

∑

v

bk(v)x
v

)2

. (3.2)

Let R be the union of the supports of the bk:

R = {v : bk(v) 6= 0 for some k}.

Let L = 2R∪U ∪{un+2}. We will show that L is U -mediated (which shows that

un+2 ∈ U∗).

Let B(v) = (b1(v), b2(v), . . . , br(v)), and let G(v, v′) = B(v) · B(v′). Note that if

we expand the right-hand side of 3.2, we see that the coefficient of xu is

a(u) =
∑

v+v′=u

G(v, v′) =
∑

v

G(v, u− v).

If G(v, v′) < 0, then bk(v)bk(v
′) < 0 for some k, so v 6= v′ and v, v′ ∈ R. This

show that for u ∈ L\U , if there exists v with G(v, u−v) < 0, then we can write u as

a sum of distinct points in R (namely, v and u− v). Thus, to show L is U -mediated,

it suffices to show that for any u ∈ L \ U , there exists v with G(v, u− v) < 0.

Note that a(ui) = λi for i = 1, . . . , n+ 1, a(un+2) = µ, and a(u) = 0 for all other

u. We have that µ = a(un+2) =
∑

G(v, un+2), so since µ < 0, G(v0, un+2 − v0) < 0

for some v0 (which immediately shows that un+2 ∈ U∗). If u 6= un+2, then u ∈
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L \ (U ∪ {un+2})(= 2R), so a(u) = 0 =
∑

G(v, u − v). However, since u ∈ 2R,

bk(
1
2
u) 6= 0 for some k, so G(1

2
u, 1

2
u) =

∑

k(bk(
1
2
u))2 > 0, so there must exist v with

G(v, u− v) < 0 to make the sum vanish.

A relatively simple argument can bound the last coefficient of an agiform:

Lemma 3.14. Let U = {u1, u2, . . . , un+1}, an affinely independent subset of (2Z)n,

let un+2 ∈ Conv(U)∩Zn with (λ1, . . . , λm) ∈ Rm
≥0 the barycentric coordinates of un+2;

i.e.,
∑n+1

i=1 λi = 1 and un+2 =
∑n+1

i=1 λiui. Then if fµ(x) := λ1x
u1 + · · ·+ λn+1x

un+1 −

µxun+2 is PSD, either (1) un+2 ∈ (2Z)n and µ < 0 or (2) |µ| < 1.

Proof. (1) is trivial. For (2), suppose µ > 1. Then consider polynomial f evaluated

at x = (1, 1, . . . , 1):

fµ(1, 1, . . . , 1) = λ1 + · · ·+ λn+1 − µ = 1− µ < 0,

which contradicts that f is PSD.

For µ < −1, choose index i such that un+2i 6∈ 2Z, and consider the polynomial

fµ(x1, . . . ,−xi, . . . , xn) = λ1x
u1 + · · ·+ λn+1x

un+1 + µxun+2

Now repeat the same argument for µ > 1.

Finally, we will show that any PSD polynomial supported on a simplex can be

reduced to an agiform:

Theorem 3.15. Let f =
∑n+2

i=1 cix
ai , A = {a1, a2, . . . , an+2} ⊂ Zn, with Conv(A)

an n-simplex. Assume that an+2 ∈ RelInt(Conv(A)). Assume that f is PSD. Then
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there exists a change of coordinates so that f can be considered in the form of theorem

3.13.

Proof. As in 3.8, let b = (b1, . . . , bn+1,−1)T is a generator for the right nullspace

of Â. As in the proof of Proposition 3.10, we can compute γ =
∏n+1

i=1

(

ci
bi

)bi
and

define f̄ = c1x
a1 + · · ·+ cn+1x

an+1 − γxan+2 . f̄ has a degenerate root ζ = (ζ1, . . . , ζn).

Moreover, by the Weighted Arithmetic Geometric Inequality, this happens precisely

when

c1ζ
a1

b1
= · · · = cn+1ζ

an+1

bn+1

= α

for some α ∈ R>0. In other words,

(c1ζ
a1 , . . . , cn+1ζ

an+1 ,−γζan+2) = α(b1, . . . , bn+1,−1).

If we replace x with ζ ⊙ x = (ζ1x1, . . . , ζnxn), we get

f(ζ1x1, . . . , ζnxn) =
n+2
∑

i=1

ciζ
aixai

= α

(

n+1
∑

i=1

bix
ai +

cn+2

γ
xan+2

)

,

and given that the b vector is in the nullspace of Â, it follows that
∑n+1

i=1 bi = 1

and
∑n+1

i=1 aibi = an+2. Also, by Proposition 3.10, |cn+2| ≤ γ, so | cn+2

γ
| ≤ 1. Thus,

f(ζ1x1, . . . , ζnxn) is a scalar multiple of a generalized agiform.

Since multiplying each variable by a positive scalar affects neither the positivity

nor the SOS condition, we see that any polynomial supported on a simplex can be
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reduced to a generalized agiform.

3.5 Further Discussion on Agiforms

Theorem 3.16. Let U = {u1, u2, u3} ⊂ (2Z)2 form the vertices of a 2-simplex. Then

Ave(E(U)) = C(U).

Proof. First, consider a lemma:

Lemma 3.17. Let ∆ ⊂ R2 be a non-degenerate triangle with vertices

U∆ = {(a1, b1), (a2, b2), (a3, b3)} with ai, bi ∈ 2Z such that Area(∆) = 2. Then

Ave(E(U∆)) = C(∆).

Consider a general U = {u1, u2, u3} ⊂ (2Z)2 such that S := Conv(U) forms a

2-simplex. I claim that S can be triangulated using triangles with area 2 with even

integral vertices.

Consider 1
2
U ⊂ Z2. We can triangulate Conv(1

2
U) using every lattice point of

Conv(1
2
U). By Pick’s theorem, each triangle will have area 1. Scale the triangulation

by 2 to get the desired triangulation.

Now, if u ∈ C(U), u is a lattice point in some sub-triangle of S of area 2, which

I will denote ∆′. By 3.17, u = 1
2
(s + t), where s, t ∈ ∆′ ∩ (2Z)2. Since ∆′ ∈ C(U),

we have s, t ∈ E(U). Thus, u ∈ Ave(E(U)), so C(U) = Ave(E(U)).

Proof of lemma 3.17. Consider the midpoints of the sides of ∆, which are, without

loss of generality,

(

a2 − a1
2

,
b2 − b1

2

)

,

(

a2 − a3
2

,
b2 − b3

2

)

,

(

a3 − a1
2

,
b3 − b1

2

)

The midpoints are distinct points in Z2, and they are distinct from the vertices.

Hence, there are at least 6 boundary points on ∆.
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By Pick’s theorem, Area(∆) = i+ b
2
− 1, where i is the number of interior points

and b is the number of boundary points. Thus, we have

Area(∆) = 2 = i+
b

2
− 1 ≥ i+

6

2
− 1 = i+ 2.

Thus, i = 0, b = 6, so C(U∆) consists solely of the vertices of ∆ and the midpoints.

Clearly, the midpoints are elements of Ave(E(U∆)), so C(U∆) = Ave(E(U∆)).

Example 3.18 (Counterexample of Theorem 3.16 for n ≥ 3). Consider

U = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (2, 2, 2)}. The convex hull of U is shown in figure 3.2.

Figure 3.2: Conv(U)

We can compute that |C(U)| = 11 and E(U) = U ; however,

|Ave(U)| ≤
(

4

2

)

+ 4 = 10.

Thus, Ave(U) 6= C(U).

Additionally, we can compute Ave(U) to see that (1, 1, 1) is the only point not

in Ave(U). It is interesting to compute the mediated set of U : We find that U∗ =

Ave(U) in this case.
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4. FASTER SOLUTION TO SMALE’S 17TH PROBLEM FOR CERTAIN

SPARSE SYSTEMS

4.1 Introduction

Polynomial system solving has occupied a good portion of research in algebraic

geometry for centuries, and inspired numerous algorithms in engineering and opti-

mization. In recent years, homotopy continuation (see, e.g., [61, 56, 54, 85, 9] and

Figure 4.1) has emerged as the most practical and efficient approach to leveraging

high performance computing for the approximation of roots of large polynomial sys-

tems. A refinement particularly useful for sparse systems is polyhedral homotopy

[40, 91, 52]. To be brutally concise, polyhedral homotopy reduces the solution of an

arbitrary polynomial system to (a) solving a finite collection of binomial systems to

high precision and then (b) iterating a multivariate rational function.

t = 0 t = 1

R
o
ot
s
of

g
(x
)
=

0

R
o
ot
s
of

f
(x
)
=

0

Figure 4.1: Homotopy continuation between two sets of roots

It is thus important to have rigorous and, ideally, optimal complexity estimates

for solving binomial systems. Our first main theorem yields an algorithm with near
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optimal complexity for solving binomial systems.

Definition 4.1. Let C∗ :=C \ {0}. Given x, x̄∈C with x 6=0, we say that x̄ is an

ε-approximation of x ⇐⇒ |x− x̄|≤ ε. When x, x̄∈Cn with x=(x1, . . . , xn)∈ (C∗)n

and x̄ = (x̄1, . . . , x̄n), we say that x̄is an ε-approximation of x ⇐⇒ |x̄ − x| ≤ ε

with | · | denoting the standard Euclidean norm. We call f ∈ C[x±1
1 , . . . , x±1

n ] a

binomial if and only if f has exactly 2 terms in its monomial term expansion. Fi-

nally, for any matrix A = [ai,j ] ∈ Zn×n we define the n-tuple of monomials xA :=
(

x
a1,1
1 · · · xan,1

n , . . . , x
a1,n
1 · · · xan,n

n

)

, and let ω denote the least real number such that

two n× n complex matrices can always be multiplied using O(nω) arithmetic oper-

ations.

Remark 5. The best current estimate on ω (as of July 2014) is ω∈ [2, 2.3728639) [36]. ⋄

Theorem 4.2. Suppose c = (c1, . . . , cn) ∈ (C∗)n, σ := maxi{| log |ci||}, A = [ai,j ] ∈

Zn×n, d :=maxi,j |ai,j|, and detA 6=0. We can find an ε-approximation of a root of

F :=xA − c in Cn using O
(

nω+1 log2(dn)
)

bit operations, followed by

O(n2 log(dn)(n log(ndσ) + log log(1/ε))) field operations over C.

Note that the dependence on the relative accuracy 2−N is logarithmic in N . We

are unaware of any explicit complexity bounds for n≥ 2. Note also that evaluating

xA − c already requires Ω(n+ log d) multiplications, since there are n monomials to

evaluate. Also, ℓ multiplications starting from x1 yield a power of x1 with exponent

no larger than 2ℓ.

More importantly, our approach is simple, being based on a careful combination

of binary search, Newton iteration, and integer matrix factorization. Estimating

Smale’s γ-invariant (see [81, 23] and Subsection 4.2 below) is a key part to our

complexity analysis. Furthermore, Theorem 4.2 strongly implies that a solution of

Smale’s 17th Problem (see [82, 83] and the next subsection) is possible.
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Definition 4.3. Let F : Cn −→ Cn be any analytic function. An approximate root

of F (in the sense of Smale), with associated true root ζ ∈Cn, is a point z(0) ∈Cn

such that the resulting sequence of Newton iterates
(

z(j)
)

j∈N converges to the root ζ

of F fast enough for |z(j) − ζ|/|z(0) − ζ|≤(1/2)2
j
to hold for all j∈N.

z(0)z(1)

(a) An approximate root

z(0)

(b) Not an approximate root

Figure 4.2: Comparison of Newton’s method

Remark 6. It is worth noting that the rate of convergence specified above is close to

the best one can hope for: For example, it is known that approximating
√
c within

ε>0 (for any positive c∈ [1, 2]) takes Ω(log log(1/ε)) arithmetic operations [24].

In Subsection 4.2, we give some well-known methods of certifying a point as being

an approximate root of a polynomial system. The proof of Theorem 4.2 contains the

following result:

Corollary 4.4. Suppose c = (c1, . . . , cn) ∈ (C∗)n, σ := maxi{| log |ci||}, A = [ai,j ] ∈

Zn×n, d :=maxi,j |ai,j|, and detA 6=0. We can find an approximate root of F :=xA−c

in Cn (in the sense of Smale) using O
(

nω+1 log2(dn)
)

bit operations, followed by

O(n3 log(dn) log(dnσ)) field operations over C.
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Corollary 4.4 then suggests the following likely conjecture to solve Smale’s 17th

problem in the case of binomial systems:

Conjecture 4.5. Suppose c=(c1, . . . , cn)∈ (C∗)n, where ci is an independent, stan-

dard complex Gaussian random variable. σ := maxi{| log |ci||}, A = [ai,j ] ∈ Zn×n,

d :=maxi,j |ai,j|, and detA 6=0. Then there exists some K ∈ N such that we can find

an approximate root of F := xA − c using O
(

nω+1 log2(dn)
)

bit operations, followed

by O(nK+3 log(d)2K+1 log(n)) field operations over C on average.

4.1.1 Review of Smale’s 17th Problem and new speed-ups

Smale’s 17th Problem elegantly summarizes the subtleties behind polynomial sys-

tem solving, and suggests an advance:

Can a zero of n complex polynomial equations in n unknowns be found approxi-

mately, on the average, in polynomial-time with a uniform algorithm? [Emphases

added.]

Let f1, . . . , fn∈C[x1, . . . , xn] be polynomials with respective degrees di and suppose

F :=(f1, . . . , fn) is the polynomial system whose complex roots we would like to find.

(When all possible coefficients are non-zero, such systems are sometimes referred

to as dense, in contrast to the setting of sparse systems, like those considered in

Theorem 4.2 above.) We clarify the notions of “uniform algorithm” and “polynomial-

time” below. As motivation, let us first see how the emphasized terms highlight

fundamental difficulties in polynomial system solving:

“a zero”: We can not expect a fast algorithm approximating all the roots since, for

n≥2, there may be infinitely many. In which case, for d1≥3 (e.g., the case of

elliptic curves [79]), the roots will likely not admit a rational parametrization.

When there are only finitely many roots, systems like (x21−1, . . . , x2n−1) show

that the number of roots can be exponential in n.
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“found approximately”: Even restricting to integer coefficients, the number of

digits of accuracy needed to separate distinct roots can be exponential in n,

e.g.,

((2x1 − 1)(3x1 − 1), x2 − x21, . . . , xn − x2n−1)

has roots with nth coordinates 1

22
n−1 and 1

32
n−1 . So, especially for irrational

coefficients, we will need a more robust notion of approximation than digits of

accuracy.

“on the average”: Restricting to integer coefficients, distinguishing between a

system having finitely many or infinitely many roots is NP-hard (see, e.g.,

[65, 47]). Furthermore, as already long known in the numerical linear algebra

community (e.g., results on the distribution of eigenvalues of random matrices

[32, 88]), even if the number of roots is finite, the accuracy needed to separate

distinct roots can vary wildly as a function of the coefficients. So averaging

over all inputs allows us to amortize the complexity of potentially intractable

instances.

The original statement of Smale’s 17th Problem measures time (or complexity) as

the total number of (a) (exact) field operations over R, (b) comparisons over R, and

(c) bit operations [82]. (The underlying computational model is a BSS machine over

R [23], which is essentially a classical Turing machine [62, 2, 80], augmented so that it

can perform any field operation or comparison over R in one time step.) Polynomial-

time was then meant as polynomial in the number of (nonzero) coefficients of F .

Smale interpreted the number of coefficients (which can be as high as
∑n

i=1

(

di+n
n

)

for F as specified above) as the input size.

Remark 7. The precise probability distribution over which one averages was never

specified in Smale’s original statement [82, 83]. In all the literature so far on the
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problem (see, e.g., [82, 83, 10, 11, 12, 25]), the Bombieri-Weyl measure was used: For

any F as specified above, replace its coefficients by independent complex Gaussians

with mean 0. The variance of the coefficient of xa11 · · · xann in fi is then set to be the

multinomial coefficient di!
a1!···an!(di−

∑
j aj)!

.

While the Bombieri-Weyl measure satisfies some very nice group invariance prop-

erties (see, e.g., [50, 77, 21, 34]), there is currently no widely-accepted notion of a

“natural” probability distribution for a random polynomial. For instance, there are

several different distributions of interest already for the matrix eigenvalue problem

(see, e.g., [32, 69, 1]). More to the point, much work has gone into finding useful

properties of the roots of random polynomials that are distribution independent (see,

e.g., [16, 89]).

4.1.2 Uniformity and honest solutions of the problem

The meaning of uniform algorithm is more technical and is formalized in [23] (see

also [62, 2, 80] for the classical Turing case). Roughly, if one imagines that our current

computers could do a fixed number of (exact) field operations and comparisons over

R during each clock-cycle, uniformity simply means that we can actually write a

program that carries out our algorithm.

For example, aside from a non-constructive step (involving a start system, and

initial solution, guaranteed to make homotopy continuation run fast on average)

the first partial solution to Smale’s 17th Problem [78] ran in polynomial-time. It

was precisely this non-constructive step that made the algorithm [78] non-uniform.

Beltrán and Pardo then made major advances in [10, 11, 12]. A rough summary is

the following result:

Theorem 4.6. [12, Thm. 13] There is a randomized algorithm that, for an input

random polynomial system F (as specified in Remark 7), does the following: After
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sampling a number of independent real standard Gaussians linear in the input size,

the algorithm either outputs an approximate root to F (after a finite number of it-

erations of rational functions) or fails to stop. The probability of success is 1, and

the average number of arithmetic operations is O

(

d3/2n2
(

∑n
i=1

(di+n)!
d!n!

)2

log(dn)

)

,

where d :=maxi di.

Note in particular that the complexity bound is polynomial in n if d is fixed, and vice-

versa. More to the point, were it not for the random sampling, Beltran and Pardo’s

algorithm would be a full solution to Smale’s 17th Problem. The next advance was

by Bürgisser and Cucker [25] yielding a deterministic algorithm with average-case

complexity sub-exponential, but super-polynomial in the input size. (The averaging

being over the random F .)

Very recently, Lairez [51] developed a deterministic algorithm that is a derandom-

izatiom of the Beltrán and Pardo’s algorithm; this was found to have average-case

complexity O
(

nd3/2
(
∑n

i=1

(

di+n
n

))2
)

, which gives a complete solution to Smale’s 17th

Problem.

Conjecture 4.5 thus points to the possibility that the underlying notion of input

size might be replaceable by evaluation complexity, measured in terms of field opera-

tions. Note in particular that the complexity of evaluating a dense F (as in Theorem

4.6) is O
(

∑n
i=1

(di+n)!
di!n!

log di

)

, while the complexity of evaluating a binomial system

(as in Theorem 4.2 and Conjecture 4.5) is O(n2 log d).

4.2 Background and Preliminary Results

In this subsection, we provide the foundation of the method of approximating

roots of binomial systems by first presenting a certification of Newton’s method,

then giving an algorithm that quickly approximates an root of a univariate binomial.
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4.2.1 Gamma theory and certification of Newton’s method

The following subsection presents a result that give criteria for a point to be an

approximate root of a polynomial system in the sense of Definition 4.3.

Definition 4.7. For any f : Cn → Cn analytic in a neighborhood about z ∈ Cn, we

set

γ(f, z) := sup
k≥2

∣

∣

∣

∣

(f ′(z))−1f (k)(z)

k!

∣

∣

∣

∣

1/(k−1)

where for n > 1, f ′(z) =
[

∂fi
∂zj

]

i,j
, f (k)(z) are multi-linear maps, and | · | is the

operator norm induced by the 2-norm.

For general n, f (k)(z) is a multi-linear operator, taking (Cn)k → Cn. Further, if

f : Cn → Cn, v(1), . . . , v(k) ∈ Cn, then

f (k)(z)(v(1), . . . , v(k)) =

































D1(v
(1), . . . , v(k))

...

Dn(v
(1), . . . , v(k))

































, (4.1)

where Di is a multi-linear polynomial (linear with respect to each v(j)) defined as:

for any exponents α
(1)
1 , . . . , α

(1)
n , . . . , α

(k)
1 , . . . , α

(k)
n , with

∑n
l=1 α

(j)
l = 1 for all j,

then the coefficient of

(v
(1)
1 )α

(1)
1 · · · (v(1)n )α

(1)
n · · · (v(k)1 )α

(k)
1 · · · (v(k)n )α

(k)
n (treating the vi’s as variables) is exactly
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∂k

∂x
∑k

l=1 α
(l)
1

1 · · · ∂x
∑k

l=1 α
(l)
n

n

fi(z)

Theorem 4.8. [81] Suppose f : Cn → Cn is analytic in a neighborhood of z con-

taining a root ζ of f , and f ′(ζ) is invertible. If

|z − ζ| ≤ 3−
√
7

2
· 1

γ(f, ζ)
,

then z is an approximate root of f (in the sense of Definition 4.3) with associated

true root ζ.

Example 4.9. Consider the univariate binomial f(x1) = xd1 − c with c ∈ C. We can

compute

γ(f, z) = sup
k≥2

∣

∣

∣

∣

d(d− 1) · · · (d− k + 1)zd−k

k!dzd−1

∣

∣

∣

∣

1/(k−1)

= sup
k≥2

∣

∣

∣

∣

(d− 1) · · · (d− k + 1)

k!
· 1

zk−1

∣

∣

∣

∣

1/(k−1)

≤ sup
k≥2

∣

∣

∣

∣

(d− 1)k−1

2k−1
· 1

zk−1

∣

∣

∣

∣

1/(k−1)

≤ sup
k≥2

∣

∣

∣

∣

∣

(

d− 1

2z

)k−1
∣

∣

∣

∣

∣

1/(k−1)

≤
∣

∣

∣

∣

d− 1

2z

∣

∣

∣

∣

.

This gives us a lower bound for 1/γ: if ζ is a true root of f(x1) = xd1 − c, and x̃

satisfies

|x̃− ζ| ≤ (3−
√
7)|ζ|

d− 1

(

≤ 3−
√
7

2
· 1

γ(f, ζ)

)

,

then x̃ is an approximate root of f(x1).
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4.2.2 Univariate binomials

The first step of our algorithm is ensuring that univariate binomials can be ap-

proximated quickly. Approximating d
√
c for c > 0 uses a modification of an algorithm

first proposed by Ye [96]:

Theorem 4.10 (Hybrid Algorithm [96]). Let f(x1) = xd1 − c, c > 0, d ≥ 2. We

can find an approximate real root x̃ of f with associated true root ζ > 0 such that

|x̃ − ζ| ≤ ε using O(log d(log logmax{c, c−1} + log log(1/ε)) arithmetic operations.

In particular, we can find x̃ in O(log(d) + log logmax{c, c−1}) field operations such

that

|x̃− ζ| ≤ |ζ|
4d− 5

.

Remark 8. note that 1
4d−5

≤ (3−
√
7)

d−1
for d ≥ 2.

Proof. We begin with a proposition proved by Ye in [96]:

Proposition 4.11. Let α = d−1
2
. If ζ is a root of f(x) = xd − c, ζ ∈ (0, R) for

some R > 0, and ζ ∈ [(1− 1
8α
)x̂, x̂] ⊂ (0, R), then x̂ is an approximate root of f with

associated true root ζ.

The main goal of Ye’s algorithm is to find this interval [(1− 1
8α
)x̂, x̂].

To begin, let β = 1
1− 1

8α

, and assume for now that c > 1. Note that f(1) < 0 and

f(c) > 0. Define a sequence as follows: For k ∈ {0, 1, 2 . . . , K}, define

b(k) := β2k ,

where K is the smallest integer such that b(K) = β2K ≥ c. Note that K =

O(log log c+ log d). Now we locate the desired interval by the following method:

Step 0: Let x̂ = 1 and k̂ = K.
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Step 1: Evaluate f(b(k̂ − 1)x̂).

Step 2: If f(b(k̂ − 1)x̂) < 0 then redefine x̂ := b(k̂ − 1)x̂ and k̂ := k̂ − 1 and return

to Step 1.

Step 3: Otherwise, if k̂ > 0 then set k̂ := k̂ − 1 and return to Step 1.

This terminates in K steps, and each evaluation of f costs log(d) field opera-

tions via recursive squaring. Note that this algorithm is correct since ζ ∈ [ 1
β
x̂, x̂].

Thus, the total cost of computing an approximate root (in the sense of Smale) is

O(log(d) log log c+ log2(d)) field operations.

However, this can be sped up: Consider instead computing K such that

(β2K )d ≥ c.

For this K, since β2K ≥ c1/d, f(β2K ) > 0, so this interval works, as well. Computing

βd requires log(d) field operations.

Now compute two sequences: (1) (βd)2
0
, (βd)2

1
, . . . , (βd)2

K
, and (2) b(k) = β2k

for k ∈ {0, 1, . . . , K}, where K is the smallest integer such that (β2K )d = (βd)2
K ≥ c.

Since βd has already been calculated, we no longer need to evaluate xd each time.

Also, note that

K = O(log log c− log log(βd)) = O(log log c),

since log log(βd) is bounded by a constant. This modified algorithm takes O(log(d)+

log log c) field operations to find x̂. Since x̂ is an approximate root of f , we can then

use Newton’s method to compute an ε-approximate root of f in time

O(log d(log log(c/ε))).

For c < 1, define g(x1) = xd1 − c−1. Let x̃ be the approximate root of g calculated
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by the algorithm above with associated true root ζ. In particular, ζ < x̃ and |x̃−ζ| ≤
|ζ|

4d−5
. Note that ζ−1 is a true root of xd1−c. Now we have, by the Mean Value Theorem,

that |x̃−1−ζ−1| ≤ |x̃−ζ|
z2

, where z > 0 with ζ ≤ z ≤ x̃. Note that this implies 1
|z| ≤ 1

|ζ| ,

so we have

|x̃−1 − ζ−1| ≤ |x̃− ζ|
z2

≤ |x̃− ζ|
ζ2

≤ |ζ|
4d− 5

· 1

|ζ|2

≤ |ζ−1|
4d− 5

,

Which shows that x̃−1 is an approximate root of f with associated true root ζ−1.

This takes O(log(d) + log log c−1) field operations to compute.

Lemma 4.12. Suppose d ∈ N, ϕ ∈ (0, 2π]. We can approximate eiϕ/d within accu-

racy ε using O(log log(1/ε)) arithmetic operations.

Proof. Note that eiϕ/d = cos(ϕ/d) + i sin(ϕ/d). If we approximate cos(ϕ/d) by x0

and sin(ϕ/d) by y0, each within accuracy ε/2, then we have

|eiϕ/d−(x0+iy0)| = | cos(ϕ/d)+i sin(ϕ/d)−(x0+iy0)| ≤ | cos(ϕ/d)−x0|+| sin(ϕ/d)−y0| ≤ ε.

Thus, if we approximate cos(ϕ/d) and sin(ϕ/d), we approximate eiϕ/d.

To approximate x = cos(ϕ/d), note that by Taylor’s Remainder Theorem, we

have
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∣

∣

∣

∣

cos(x)−
(

1− x2

2!
+
x4

4!
− · · ·+ (−1)k

x2k

(2k)!

)∣

∣

∣

∣

≤
∣

∣

∣

∣

dk+1

dxk+1
cos(x)

∣

∣

∣

∣

|xk+1|
(k + 1)!

≤ (2π/d)k+1

(k + 1)!

≤ (2π/d)k+1

2k+1
≤
(π

d

)k+1

.

For d > 3, if we choose k ≥ 9, then
(

π
d

)k+1 ≤ (3−
√
7)

d−1
. For d = 2, 3, we can

compute that if k ≥ 7, then (2π/d)k+1

(k+1)!
≤ (3−

√
7)|ζ|

d−1
. Thus, we need only use k = 9 steps

to compute x0 =
(

1− (ϕ/d)2

2!
+ (ϕ/d)4

4!
− · · ·+ (−1)k (ϕ/d)2k

(2k)!

)

in order to get the desired

approximate root.

The same holds for sin(x) with y0 =
(

ϕ/d− (ϕ/d)3

3!
+ (ϕ/d)5

5!
− · · ·+ (−1)k (ϕ/d)2k+1

(2k+1)!

)

.

Thus, z0 = x0+iy0 with give us an approximation for eiϕ/d that satisfies the γ bound,

which ensures that Newton’s method from z0 will converge to eiϕ/d quadratically.

Theorem 4.10 and Lemma 4.12 together give us a method to compute a dth root

of a complex number:

Proposition 4.13. Let f(x1) = xd1−c, c ∈ C∗. We can find an ε-approximation of a

root of f using O(log d(log logmax{|c|, |c|−1}+ log log(1/ε))) arithmetic operations.

Proof. Given c = |c|eiϕ for some ϕ ∈ [0, 2π), one root of f is |c|1/deiϕ/d. If we have

an approximation for |c|1/d, called c0, and an approximation for eiϕ/d, called arg0,
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then we can compute that

||c|1/deiϕ/d − c0 arg0 | = ||c|1/deiϕ/d − |c|1/d arg0 +|c|1/d arg0 −c0 arg0 |

≤ ||c|1/deiϕ/d − |c|1/d arg0 |+ ||c|1/d arg0 −c0 arg0 |

≤ |c|1/d|eiϕ/d − arg0 |+ | arg0 ||c|1/d − c0|

≤ max{1, |c|}|eiϕ/d − arg0 |+ ||c|1/d − c0| ≤ 2ε,

where if ε′ = ε/max{1, |c|}, then this takes time O(log d(log logmax{|c|, |c|−1} +

log log(1/ε))).

4.3 Binomial Systems

Proposition 4.14. Let F be a diagonal binomial system F = (xd11 −ψ1, . . . , x
dn
n −ψn)

with ψ ∈ C∗ for all i. Let d = maxi di and σ′ = maxi{| log |ψi||}. We can com-

pute an approximate zero of this system within error ε in time O(n log(d)(log(σ′) +

log log(
√
n/ε))).

Proof. Given an approximate zero x̃ = (x̃1, . . . , x̃n) of F with true root

ζ = (ζ1, . . . , ζn), we can compute each xi within error ε√
n
in time

O(log(di) log log(
√
n|ψi|/ε)) by Proposition 4.13. We then have

|x̃− ζ| ≤
√
nmax

i
{|x̃i − ζi|}

≤
√
n
ε√
n
= ε

Thus, this computation takes time O(n log(d)(log(σ′) + log log(
√
n/ε))).
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Given a general binomial system:

F =































xa1 − c1 = 0

...

xan − cn = 0,

where ai ∈ Zn, and ci ∈ C∗. Let A be the n×n matrix whose columns are the vectors

ai. Assume that A has nonzero determinant. We can write this system as F := xA =

c, where the notation xA was given in Subsection 1.6 and c = (c1, . . . , cn). We can

compute the Smith Normal Form of A, i.e., we can find matrices U, V ∈GLn(Z) and

D diagonal such that UAV = D. Then, via the change of variables yU = x, we can

instead solve the equivalent system G := yD = cV , which is a diagonal system. For

a solution y0 of G, we can find a solution x0 to F via the map yU0 = x0.

This approach to solving binomial systems is well-known, but it is believed to be

the first time utilizing the Smith Normal Form in an algorithm for approximating

roots in the sense of Smale. In particular, it is not immediately clear how close of an

approximation we would need for G in order to guarantee an approximate root for

F (in the sense of Smale), and how efficient such an algorithm would be.

We will need the following bounds to take into account the monomial change of

variables.

Lemma 4.15. Let F := xA = C with C = (c1, . . . , cn) ∈ (C∗)n, d := maxi,j aij,

σ := maxj{| log |cj||} and let U, V,D be the matrices for the Smith Factorization of

A: UAV = D. Let (ψ1, . . . , ψn) = CV . Then the following bounds hold:

a. maxj{| log |ψj||} ≤ n4n3n/2d3nσ.
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b. If ζ = (ζ1, . . . , ζn) is a true root for F , then

max
j

| log |ζj|| ≤ nO(n)dO(n)σ.

Proof. Proof of (a): For a given i, we have

| log |ψi|| =
∣

∣

∣

∣

∣

n
∑

j=1

vij log |cj|
∣

∣

∣

∣

∣

≤
n
∑

j=1

|vij| · | log |cj||

≤
n
∑

j=1

|vij|σ

≤ n(n3(
√
nd)3nσ = n4n3n/2d3nσ,

where the bound for vij is given in Theorem 1.21.

Proof of (b): Consider the diagonal system (yd11 −ψ1, . . . , y
dn
n −ψn) formed via the

change of variables yU = x. Consider a true root (η1, . . . , ηn) of this system. Then

we have that ηdii = ψi. In particular, we have

| log |ηi|| ≤ di| log |zi|| = | log |ψi|| ≤ n4n3n/2d3nσ.

From this, if we have a true root ζ = zU for the original system F , we have

max
j

| log |ζj|| = max
j

| log zUj|

≤ n · n2n+5(
√
nd)4nd · (n4n3n/2d3nσ)

≤ nO(n)dO(n)σ.
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An important part of our algorithm is ensuring a tight bound on γ for general

binomial systems.

Proposition 4.16. Suppose c=(c1, . . . , cn)∈(C∗)n, σ :=maxi{| log |ci||}, A=[ai,j]∈

Zn×n, d :=maxi,j |ai,j|, detA 6=0, and F (x) :=xA − c. Then for ζ a (true) root of F ,

γ(F, ζ) ≤ n4dn+1 max |ζi|
2(min |ζi|)2

.

Proof. We can write F as

F =































xa1 − c1 = 0

...

xan − cn = 0,

where ai ∈ Zn, and the matrix A whose columns are the vectors ai are has nonzero

determinant. We can compute the Jacobian J at a root ζ as

J =

































a11ζ
a1−e1 · · · a1nζ

a1−en

...
. . .

...

an1ζ
an−e1 · · · annζ

an−en ,

































where ei is the ith standard basis vector. We can decompose J as
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J =

































ζa1 0 · · · · · · 0

0 · · · . . . · · · 0

0 · · · · · · 0 ζan

































A

































ζ−e1 0 · · · · · · 0

0 · · · . . . · · · 0

0 · · · · · · 0 ζ−en

































So

J−1 =

































ζe1 0 · · · · · · 0

0 · · · . . . · · · 0

0 · · · · · · 0 ζen

































A−1

































ζ−a1 0 · · · · · · 0

0 · · · . . . · · · 0

0 · · · · · · 0 ζ−an

































Recall that A−1 = 1
detA

adj(A), so since A is an integer matrix, we have that

||A−1|| = 1

detA
||adj(A)|| ≤

√
nnmax

i,j
(adj(A)i,j) ≤

√
nndn−1.

Now note that a single coefficient in the polynomial Di for the monomial with

exponent α
(1)
1 , . . . , α

(1)
n , . . . , α

(k)
1 , . . . , α

(k)
n is of the form:

∂k

∂x
∑k

l=1 α
(l)
1

1 · · · ∂x
∑k

l=1 α
(l)
n

n

fi(z) =
∏

m:
∑

α
(l)
m 6=0

∑
l α

(l)
m −1
∏

t=0

(aim − t)zai−
∑

l α
(l)
1 e1−···∑l α

(l)
n en .
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If we apply the matrix diag(ζai) to f (k)(ζ), for each Di, a single coefficient will

be reduced to

∏

m:
∑

α
(l)
m 6=0

∑
l α

(l)
m −1
∏

t=0

(aim − t)z−
∑

l α
(l)
1 e1−···∑l α

(l)
n en .

Note that |ζ|−
∑

l α
(l)
1 e1−···∑l α

(l)
n en ≤ 1

(min |ζi|)k , so since Di has nk terms, we can

utilize the triangle inequality to find:

|Di| ≤
nkdk

(min |ζi|)k
.

Thus, the norm of the kth derivative is bounded by

√
nnkdk

(min |ζi|)k
.

Putting this together, we have, for ζ a root of f ,

γ(f, ζ) ≤ sup
k≥2

∣

∣

∣

∣

(

max |ζi| ·
√
nndn−1

k!

)( √
nnkdk

(min |ζi|)k
)∣

∣

∣

∣

1/(k−1)

≤ sup
k≥2

∣

∣

∣

∣

(

max |ζi| · n2dn−1nd

min |ζi|

)( √
nnk−1dk−1

2k−1(min |ζi|)k−1

)∣

∣

∣

∣

1/(k−1)

≤ sup
k≥2

∣

∣

∣

∣

max |ζi| · n2dn−1nd

min |ζi|

∣

∣

∣

∣

1/(k−1)

·
√
nnk−1dk−1

2k−1(min |ζi|)k−1

≤ n4dn+1max |ζi|
(2min |ζi|)2

.

since y1/(k−1) < y for y > 1.
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4.3.1 The proof of Theorem 4.2

Let F := xA = c, where x = (x1, . . . , xn), A ∈ Nn×n is a nonsingular matrix, and

c ∈ C∗n. We wish to find an approximate zero for this system.

We find the Smith Normal Form of A: S = UAV , and consider the system

yUAV = yS = cV = (ψ1, . . . , ψn), where yU = x. By [86], the time to compute

the Smith Factorization of A is O(n3.376 log2 nd) bit operations. Using the method

outlined in Proposition 4.14, we can find an approximate root ỹ with associated true

zero η for this system within error ε′ in time O(n log(d′)(log(σ′) + log log(
√
n/ε′)),

where σ′ = maxi{| log |ψi|}. Note that by Lemma 4.15, log(σ′) ≤ log(n4n3n/2d3nσ) =

O(n log(ndσ)) and d′ ≤ dnnn/2.

We want to show that x̃ = ỹU is an approximate zero for xA = c with associated

true zero ζ = ηU , so we look at the difference |x̃− ζ| = |ỹU − ηU |. Let fU(x) = xU .

By the Mean Value Theorem, we have the following bound:

|ỹU − ηU | ≤ |ỹ − η| sup
z∈l

||J(fU)(z)||

where || · || denotes the induced Euclidean norm on matrices, J(fU)(z) denotes the

Jacobian of fU evaluated at a point z, and l = l(t) = tỹ + (1− t)η, where t ∈ [0, 1].

Note that by the computation of each ỹi, the line segment joining ỹi and ηi does not

contain zero; in particular, |ỹi − ηi| ≤ |ηi|
4d−5

. This ensures that l(t) 6= 0 for t ∈ [0, 1].

We can compute that

J(fU)(z) = diag(zui)Udiag(z−ei),

where ui is a row of U , ei is the ith standard basis vector of Rn.
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So we have that

||J(fU)(z)|| ≤ ||diag(zui)|| · ||U || · ||diag(z−ei)||

≤ max
i

|zui | · ||U || ·min
i

|zi|

Note that mini |zi| ≤ min |ηi|. From [86], we have that ||U || ≤ n||U ||max ≤

n4n+7d4n+1. Let Z satisfy supz∈l maxi |zui | = |Zui |. Putting this all together, we

have

|ỹU − ηU | ≤ |ỹ − η| sup
z∈l

{max |zui | · ||U || ·min |zi|}

≤ ε′n4n+7d4n+1 · |Zui | ·min |ηi|}

Via a similar argument as in Lemma 4.15, we can compute that

| log |Zui || ≤ n4n+7d4n+1(max log |ηi| + log(d − 1)) ≤ (dn)O(n)(σ + log(d − 1)). Now,

for |ỹU − ηU | ≤ 3−
√
7

2γ(ζ)
, by our bound for γ in Proposition 4.16, We need

ε′ =
2(min |ζi|)2

(dn)O(n) mini |ηi|maxi |ζi| · |Zui | .

Via our previous bounds for | log |ζi||, | | logi |ηi||, and | log |Zui ||, we can compute

that

log(1/ε′) =(nd)O(n)σ + log(n4dn+1) + (nd)O(n)σ +O(n) log(nd)

+O(n) log(dn) log(σ + log(d)) + 2(nd)O(n)σ.
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So log log(1/ε′) = O(n(log(nd)+ log(σ)). Hence, computing an approximate root

for F (in the sense of Smale) requires O(n2 log(dn)(n log(dnσ)+n(log(dn)+log(σ)) =

O(n3 log(dn) log(dnσ)) arithmetic operations. Since Newton’s method is guaranteed

to converge quadratically, and each step of Newton’s method requires complexity

O(n log(d)), we can compute an ε-approximate root via Newton’s method using

O(n2 log(dn)(n log(ndσ) + log log(1/ε))) field operations.
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5. CONCLUSION

When considering polynomials from the point of view of sparsity, one can gain

new information about certain properties of polynomials and roots of polynomial

systems. In Section 2, we saw that n× n systems with a total of n+2 terms are the

first non-trivial case to consider when generalizing Descartes’ Rule, and these results

not only hold for complex systems but also for any local field. These results gave us

a lower bound for larger systems. In Section 3, we gave a complete classification for

when a positive polynomial with n variables and n+ 2 terms can be can written as

a sum of squares. A general result is still unknown for n-variate polynomials with

n + k terms with k > 2. It would also be interesting to determine the probability

of a positive n-variate polynomial n + 2-nomial being a sum of squares. Finally, in

Section 4, we gave an algorithm for computing approximate roots of binomial systems

quickly. Future work will generalize this to any n× n system with n+ 1 total terms

and will used as a building block for approximating roots of n×n systems with n+2

total terms.
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