4,367 research outputs found

    Reach Control on Simplices by Piecewise Affine Feedback

    Full text link
    We study the reach control problem for affine systems on simplices, and the focus is on cases when it is known that the problem is not solvable by continuous state feedback. We examine from a geometric viewpoint the structural properties of the system which make continuous state feedbacks fail. This structure is encoded by so-called reach control indices, which are defined and developed in the paper. Based on these indices, we propose a subdivision algorithm and associated piecewise affine feedback. The method is shown to solve the reach control problem in all remaining cases, assuming it is solvable by open-loop controls

    An Extended Kalman Filter for Data-enabled Predictive Control

    Full text link
    The literature dealing with data-driven analysis and control problems has significantly grown in the recent years. Most of the recent literature deals with linear time-invariant systems in which the uncertainty (if any) is assumed to be deterministic and bounded; relatively little attention has been devoted to stochastic linear time-invariant systems. As a first step in this direction, we propose to equip the recently introduced Data-enabled Predictive Control algorithm with a data-based Extended Kalman Filter to make use of additional available input-output data for reducing the effect of noise, without increasing the computational load of the optimization procedure

    An hybrid system approach to nonlinear optimal control problems

    Full text link
    We consider a nonlinear ordinary differential equation and want to control its behavior so that it reaches a target by minimizing a cost function. Our approach is to use hybrid systems to solve this problem: the complex dynamic is replaced by piecewise affine approximations which allow an analytical resolution. The sequence of affine models then forms a sequence of states of a hybrid automaton. Given a sequence of states, we introduce an hybrid approximation of the nonlinear controllable domain and propose a new algorithm computing a controllable, piecewise convex approximation. The same way the nonlinear optimal control problem is replaced by an hybrid piecewise affine one. Stating a hybrid maximum principle suitable to our hybrid model, we deduce the global structure of the hybrid optimal control steering the system to the target

    A new solution approach to polynomial LPV system analysis and synthesis

    Get PDF
    Based on sum-of-squares (SOS) decomposition, we propose a new solution approach for polynomial LPV system analysis and control synthesis problems. Instead of solving matrix variables over a positive definite cone, the SOS approach tries to find a suitable decomposition to verify the positiveness of given polynomials. The complexity of the SOS-based numerical method is polynomial of the problem size. This approach also leads to more accurate solutions to LPV systems than most existing relaxation methods. Several examples have been used to demonstrate benefits of the SOS-based solution approach
    • …
    corecore