257 research outputs found

    New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements

    Get PDF
    Compressive Sensing (CS) exploits the surprising fact that the information contained in a sparse signal can be preserved in a small number of compressive, often random linear measurements of that signal. Strong theoretical guarantees have been established concerning the embedding of a sparse signal family under a random measurement operator and on the accuracy to which sparse signals can be recovered from noisy compressive measurements. In this paper, we address similar questions in the context of a different modeling framework. Instead of sparse models, we focus on the broad class of manifold models, which can arise in both parametric and non-parametric signal families. Using tools from the theory of empirical processes, we improve upon previous results concerning the embedding of low-dimensional manifolds under random measurement operators. We also establish both deterministic and probabilistic instance-optimal bounds in â„“2\ell_2 for manifold-based signal recovery and parameter estimation from noisy compressive measurements. In line with analogous results for sparsity-based CS, we conclude that much stronger bounds are possible in the probabilistic setting. Our work supports the growing evidence that manifold-based models can be used with high accuracy in compressive signal processing.Comment: arXiv admin note: substantial text overlap with arXiv:1002.124

    On the Effective Measure of Dimension in the Analysis Cosparse Model

    Full text link
    Many applications have benefited remarkably from low-dimensional models in the recent decade. The fact that many signals, though high dimensional, are intrinsically low dimensional has given the possibility to recover them stably from a relatively small number of their measurements. For example, in compressed sensing with the standard (synthesis) sparsity prior and in matrix completion, the number of measurements needed is proportional (up to a logarithmic factor) to the signal's manifold dimension. Recently, a new natural low-dimensional signal model has been proposed: the cosparse analysis prior. In the noiseless case, it is possible to recover signals from this model, using a combinatorial search, from a number of measurements proportional to the signal's manifold dimension. However, if we ask for stability to noise or an efficient (polynomial complexity) solver, all the existing results demand a number of measurements which is far removed from the manifold dimension, sometimes far greater. Thus, it is natural to ask whether this gap is a deficiency of the theory and the solvers, or if there exists a real barrier in recovering the cosparse signals by relying only on their manifold dimension. Is there an algorithm which, in the presence of noise, can accurately recover a cosparse signal from a number of measurements proportional to the manifold dimension? In this work, we prove that there is no such algorithm. Further, we show through numerical simulations that even in the noiseless case convex relaxations fail when the number of measurements is comparable to the manifold dimension. This gives a practical counter-example to the growing literature on compressed acquisition of signals based on manifold dimension.Comment: 19 pages, 6 figure

    Dimensionality reduction with subgaussian matrices: a unified theory

    Full text link
    We present a theory for Euclidean dimensionality reduction with subgaussian matrices which unifies several restricted isometry property and Johnson-Lindenstrauss type results obtained earlier for specific data sets. In particular, we recover and, in several cases, improve results for sets of sparse and structured sparse vectors, low-rank matrices and tensors, and smooth manifolds. In addition, we establish a new Johnson-Lindenstrauss embedding for data sets taking the form of an infinite union of subspaces of a Hilbert space

    The generalized Lasso with non-linear observations

    Full text link
    We study the problem of signal estimation from non-linear observations when the signal belongs to a low-dimensional set buried in a high-dimensional space. A rough heuristic often used in practice postulates that non-linear observations may be treated as noisy linear observations, and thus the signal may be estimated using the generalized Lasso. This is appealing because of the abundance of efficient, specialized solvers for this program. Just as noise may be diminished by projecting onto the lower dimensional space, the error from modeling non-linear observations with linear observations will be greatly reduced when using the signal structure in the reconstruction. We allow general signal structure, only assuming that the signal belongs to some set K in R^n. We consider the single-index model of non-linearity. Our theory allows the non-linearity to be discontinuous, not one-to-one and even unknown. We assume a random Gaussian model for the measurement matrix, but allow the rows to have an unknown covariance matrix. As special cases of our results, we recover near-optimal theory for noisy linear observations, and also give the first theoretical accuracy guarantee for 1-bit compressed sensing with unknown covariance matrix of the measurement vectors.Comment: 21 page
    • …
    corecore