2,025 research outputs found

    Analysis Of A Neuro-Fuzzy Approach Of Air Pollution: Building A Case Study

    Get PDF
    This work illustrates the necessity of an Artificial Intelligence (AI)-based approach of air quality in urban and industrial areas. Some related results of Artificial Neural Networks (ANNs) and Fuzzy Logic (FL) for environmental data are considered: ANNs are proposed to the problem of short-term predicting of air pollutant concentrations in urban/industrial areas, with a special focus in the south-eastern Romania. The problems of designing a database about air quality in an urban/industrial area are discussed. First results confirm ANNs as an improvement of classical models and show the utility of ANNs in a well built air monitoring center

    Urban Air Pollution Forecasting Using Artificial Intelligence-Based Tools

    Get PDF

    AN ANFIS – BASED AIR QUALITY MODEL FOR PREDICTION OF SO2 CONCENTRATION IN URBAN AREA

    Get PDF
    This paper presents the results of attempt to perform modeling of SO2concentration in urban area in vicinity of copper smelter in Bor (Serbia), using ANFIS methodological approach. The aim of obtained model was to develop a prediction tool that will be used to calculate potential SO2 concentration, above prescribed limitation, based on input parameters. As predictors, both technogenic and meteorological input parameters were considered. Accordingly, the dependence of SO2concentration was modeled as the function of wind speed, wind direction, air temperature, humidity and amount sulfur emitted from the pyrometallurgical process of sulfidic copper concentration treatment

    Multilayered feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India

    Full text link
    In the present research, possibility of predicting average summer-monsoon rainfall over India has been analyzed through Artificial Neural Network models. In formulating the Artificial Neural Network based predictive model, three layered networks have been constructed with sigmoid non-linearity. The models under study are different in the number of hidden neurons. After a thorough training and test procedure, neural net with three nodes in the hidden layer is found to be the best predictive model.Comment: 19 pages, 1 table, 3 figure

    Vertical wind profile characterization and identification of patterns based on a shape clustering algorithm

    Get PDF
    Wind power plants are becoming a generally accepted resource in the generation mix of many utilities. At the same time, the size and the power rating of individual wind turbines have increased considerably. Under these circumstances, the sector is increasingly demanding an accurate characterization of vertical wind speed profiles to estimate properly the incoming wind speed at the rotor swept area and, consequently, assess the potential for a wind power plant site. The present paper describes a shape-based clustering characterization and visualization of real vertical wind speed data. The proposed solution allows us to identify the most likely vertical wind speed patterns for a specific location based on real wind speed measurements. Moreover, this clustering approach also provides characterization and classification of such vertical wind profiles. This solution is highly suitable for a large amount of data collected by remote sensing equipment, where wind speed values at different heights within the rotor swept area are available for subsequent analysis. The methodology is based on z-normalization, shape-based distance metric solution and the Ward-hierarchical clustering method. Real vertical wind speed profile data corresponding to a Spanish wind power plant and collected by using a commercialWindcube equipment during several months are used to assess the proposed characterization and clustering process, involving more than 100000 wind speed data values. All analyses have been implemented using open-source R-software. From the results, at least four different vertical wind speed patterns are identified to characterize properly over 90% of the collected wind speed data along the day. Therefore, alternative analytical function criteria should be subsequently proposed for vertical wind speed characterization purposes.The authors are grateful for the financial support from the Spanish Ministry of the Economy and Competitiveness and the European Union —ENE2016-78214-C2-2-R—and the Spanish Education, Culture and Sport Ministry —FPU16/042

    HySenS data exploitation for urban land cover analysis

    Get PDF
    This paper addresses the use of HySenS airborne hyperspectral data for environmental urban monitoring. It is known that hyperspectral data can help to characterize some of the relations between soil composition, vegetation characteristics, and natural/artificial materials in urbanized areas. During the project we collected DAIS and ROSIS data over the urban test area of Pavia, Northern Italy, though due to a late delivery of ROSIS data only DAIS data was used in this work. Here we show results referring to an accurate characterization and classification of land cover/use, using different supervised approaches, exploiting spectral as well as spatial information. We demonstrate the possibility to extract from the hyperspectral data information which is very useful for environmental characterization of urban areas

    Adaptive neuro-fuzzy control of wet scrubbing process

    Get PDF
    The nonlinear characteristics of wet scrubbing process have led to the application of intelligent control technique to adequately deal with these complexities by manipulating the liquid droplet size for the effective control of particulate matter (PM) contaminants. This includes the use of adaptive neuro-fuzzy inference system (ANFIS) to design an intelligent controller based on direct inverse model control strategy using default input and output membership functions (gaussmf and linear) and different number of input membership functions. This is followed by training of the fuzzy inference system to obtain inverse model which was tested as the intelligent controller. The controller developed using two-input membership functions have successfully achieved the main target of setting the PM concentration (process output) below the set point which is the allowable World health organization (WHO) emission level for 20g/μm3 within a short settling time of 2s
    corecore