1,749 research outputs found

    Learning to Infer Graphics Programs from Hand-Drawn Images

    Full text link
    We introduce a model that learns to convert simple hand drawings into graphics programs written in a subset of \LaTeX. The model combines techniques from deep learning and program synthesis. We learn a convolutional neural network that proposes plausible drawing primitives that explain an image. These drawing primitives are like a trace of the set of primitive commands issued by a graphics program. We learn a model that uses program synthesis techniques to recover a graphics program from that trace. These programs have constructs like variable bindings, iterative loops, or simple kinds of conditionals. With a graphics program in hand, we can correct errors made by the deep network, measure similarity between drawings by use of similar high-level geometric structures, and extrapolate drawings. Taken together these results are a step towards agents that induce useful, human-readable programs from perceptual input

    Improving Unsupervised Visual Program Inference with Code Rewriting Families

    Full text link
    Programs offer compactness and structure that makes them an attractive representation for visual data. We explore how code rewriting can be used to improve systems for inferring programs from visual data. We first propose Sparse Intermittent Rewrite Injection (SIRI), a framework for unsupervised bootstrapped learning. SIRI sparsely applies code rewrite operations over a dataset of training programs, injecting the improved programs back into the training set. We design a family of rewriters for visual programming domains: parameter optimization, code pruning, and code grafting. For three shape programming languages in 2D and 3D, we show that using SIRI with our family of rewriters improves performance: better reconstructions and faster convergence rates, compared with bootstrapped learning methods that do not use rewriters or use them naively. Finally, we demonstrate that our family of rewriters can be effectively used at test time to improve the output of SIRI predictions. For 2D and 3D CSG, we outperform or match the reconstruction performance of recent domain-specific neural architectures, while producing more parsimonious programs that use significantly fewer primitives.Comment: Accepted at ICCV 23 (oral). Website: https://bardofcodes.github.io/coref

    Interpretable and Explainable Logical Policies via Neurally Guided Symbolic Abstraction

    Full text link
    The limited priors required by neural networks make them the dominating choice to encode and learn policies using reinforcement learning (RL). However, they are also black-boxes, making it hard to understand the agent's behaviour, especially when working on the image level. Therefore, neuro-symbolic RL aims at creating policies that are interpretable in the first place. Unfortunately, interpretability is not explainability. To achieve both, we introduce Neurally gUided Differentiable loGic policiEs (NUDGE). NUDGE exploits trained neural network-based agents to guide the search of candidate-weighted logic rules, then uses differentiable logic to train the logic agents. Our experimental evaluation demonstrates that NUDGE agents can induce interpretable and explainable policies while outperforming purely neural ones and showing good flexibility to environments of different initial states and problem sizes.Comment: 9 main pages + appendix (19 in total

    A Connectionist Theory of Phenomenal Experience

    Get PDF
    When cognitive scientists apply computational theory to the problem of phenomenal consciousness, as many of them have been doing recently, there are two fundamentally distinct approaches available. Either consciousness is to be explained in terms of the nature of the representational vehicles the brain deploys; or it is to be explained in terms of the computational processes defined over these vehicles. We call versions of these two approaches vehicle and process theories of consciousness, respectively. However, while there may be space for vehicle theories of consciousness in cognitive science, they are relatively rare. This is because of the influence exerted, on the one hand, by a large body of research which purports to show that the explicit representation of information in the brain and conscious experience are dissociable, and on the other, by the classical computational theory of mind – the theory that takes human cognition to be a species of symbol manipulation. But two recent developments in cognitive science combine to suggest that a reappraisal of this situation is in order. First, a number of theorists have recently been highly critical of the experimental methodologies employed in the dissociation studies – so critical, in fact, it’s no longer reasonable to assume that the dissociability of conscious experience and explicit representation has been adequately demonstrated. Second, classicism, as a theory of human cognition, is no longer as dominant in cognitive science as it once was. It now has a lively competitor in the form of connectionism; and connectionism, unlike classicism, does have the computational resources to support a robust vehicle theory of consciousness. In this paper we develop and defend this connectionist vehicle theory of consciousness. It takes the form of the following simple empirical hypothesis: phenomenal experience consists in the explicit representation of information in neurally realized PDP networks. This hypothesis leads us to re-assess some common wisdom about consciousness, but, we will argue, in fruitful and ultimately plausible ways

    A Defence of Cartesian Materialism

    Get PDF
    One of the principal tasks Dennett sets himself in "Consciousness Explained" is to demolish the Cartesian theatre model of phenomenal consciousness, which in its contemporary garb takes the form of Cartesian materialism: the idea that conscious experience is a process of presentation realized in the physical materials of the brain. The now standard response to Dennett is that, in focusing on Cartesian materialism, he attacks an impossibly naive account of consciousness held by no one currently working in cognitive science or the philosophy of mind. Our response is quite different. We believe that, once properly formulated, Cartesian materialism is no straw man. Rather, it is an attractive hypothesis about the relationship between the computational architecture of the brain and phenomenal consciousness, and hence one that is worthy of further exploration. Consequently, our primary aim in this paper is to defend Cartesian materialism from Dennett's assault. We do this by showing that Dennett's argument against this position is founded on an implicit assumption (about the relationship between phenomenal experience and information coding in the brain), which while valid in the context of classical cognitive science, is not forced on connectionism

    Leveraging Language to Learn Program Abstractions and Search Heuristics

    Full text link
    Inductive program synthesis, or inferring programs from examples of desired behavior, offers a general paradigm for building interpretable, robust, and generalizable machine learning systems. Effective program synthesis depends on two key ingredients: a strong library of functions from which to build programs, and an efficient search strategy for finding programs that solve a given task. We introduce LAPS (Language for Abstraction and Program Search), a technique for using natural language annotations to guide joint learning of libraries and neurally-guided search models for synthesis. When integrated into a state-of-the-art library learning system (DreamCoder), LAPS produces higher-quality libraries and improves search efficiency and generalization on three domains -- string editing, image composition, and abstract reasoning about scenes -- even when no natural language hints are available at test time.Comment: appeared in Thirty-eighth International Conference on Machine Learning (ICML 2021

    Approaching human 3D shape perception with neurally mappable models

    Full text link
    Humans effortlessly infer the 3D shape of objects. What computations underlie this ability? Although various computational models have been proposed, none of them capture the human ability to match object shape across viewpoints. Here, we ask whether and how this gap might be closed. We begin with a relatively novel class of computational models, 3D neural fields, which encapsulate the basic principles of classic analysis-by-synthesis in a deep neural network (DNN). First, we find that a 3D Light Field Network (3D-LFN) supports 3D matching judgments well aligned to humans for within-category comparisons, adversarially-defined comparisons that accentuate the 3D failure cases of standard DNN models, and adversarially-defined comparisons for algorithmically generated shapes with no category structure. We then investigate the source of the 3D-LFN's ability to achieve human-aligned performance through a series of computational experiments. Exposure to multiple viewpoints of objects during training and a multi-view learning objective are the primary factors behind model-human alignment; even conventional DNN architectures come much closer to human behavior when trained with multi-view objectives. Finally, we find that while the models trained with multi-view learning objectives are able to partially generalize to new object categories, they fall short of human alignment. This work provides a foundation for understanding human shape inferences within neurally mappable computational architectures and highlights important questions for future work
    • …
    corecore