101,881 research outputs found

    A Modern Take on the Bias-Variance Tradeoff in Neural Networks

    Full text link
    The bias-variance tradeoff tells us that as model complexity increases, bias falls and variances increases, leading to a U-shaped test error curve. However, recent empirical results with over-parameterized neural networks are marked by a striking absence of the classic U-shaped test error curve: test error keeps decreasing in wider networks. This suggests that there might not be a bias-variance tradeoff in neural networks with respect to network width, unlike was originally claimed by, e.g., Geman et al. (1992). Motivated by the shaky evidence used to support this claim in neural networks, we measure bias and variance in the modern setting. We find that both bias and variance can decrease as the number of parameters grows. To better understand this, we introduce a new decomposition of the variance to disentangle the effects of optimization and data sampling. We also provide theoretical analysis in a simplified setting that is consistent with our empirical findings

    On orthogonal projections for dimension reduction and applications in augmented target loss functions for learning problems

    Get PDF
    The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, preservation of variance and of pairwise relative distances. Investigations of their asymptotic correlation as well as numerical experiments show that a projection does usually not satisfy both objectives at once. In a standard classification problem we determine projections on the input data that balance the objectives and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning tasks and introduce a general framework of augmented target loss functions. These loss functions integrate additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of our proposed augmented target loss functions increase the accuracy
    corecore