9 research outputs found

    Conversational Analysis using Utterance-level Attention-based Bidirectional Recurrent Neural Networks

    Full text link
    Recent approaches for dialogue act recognition have shown that context from preceding utterances is important to classify the subsequent one. It was shown that the performance improves rapidly when the context is taken into account. We propose an utterance-level attention-based bidirectional recurrent neural network (Utt-Att-BiRNN) model to analyze the importance of preceding utterances to classify the current one. In our setup, the BiRNN is given the input set of current and preceding utterances. Our model outperforms previous models that use only preceding utterances as context on the used corpus. Another contribution of the article is to discover the amount of information in each utterance to classify the subsequent one and to show that context-based learning not only improves the performance but also achieves higher confidence in the classification. We use character- and word-level features to represent the utterances. The results are presented for character and word feature representations and as an ensemble model of both representations. We found that when classifying short utterances, the closest preceding utterances contributes to a higher degree.Comment: Proceedings of INTERSPEECH 201

    Speaker-change Aware CRF for Dialogue Act Classification

    Full text link
    Recent work in Dialogue Act (DA) classification approaches the task as a sequence labeling problem, using neural network models coupled with a Conditional Random Field (CRF) as the last layer. CRF models the conditional probability of the target DA label sequence given the input utterance sequence. However, the task involves another important input sequence, that of speakers, which is ignored by previous work. To address this limitation, this paper proposes a simple modification of the CRF layer that takes speaker-change into account. Experiments on the SwDA corpus show that our modified CRF layer outperforms the original one, with very wide margins for some DA labels. Further, visualizations demonstrate that our CRF layer can learn meaningful, sophisticated transition patterns between DA label pairs conditioned on speaker-change in an end-to-end way. Code is publicly available

    Surface and Contextual Linguistic Cues in Dialog Act Classification: A Cognitive Science View

    Full text link
    What role do linguistic cues on a surface and contextual level have in identifying the intention behind an utterance? Drawing on the wealth of studies and corpora from the computational task of dialog act classification, we studied this question from a cognitive science perspective. We first reviewed the role of linguistic cues in dialog act classification studies that evaluated model performance on three of the most commonly used English dialog act corpora. Findings show that frequency‐based, machine learning, and deep learning methods all yield similar performance. Classification accuracies, moreover, generally do not explain which specific cues yield high performance. Using a cognitive science approach, in two analyses, we systematically investigated the role of cues in the surface structure of the utterance and cues of the surrounding context individually and combined. By comparing the explained variance, rather than the prediction accuracy of these cues in a logistic regression model, we found that (1) while surface and contextual linguistic cues can complement each other, surface linguistic cues form the backbone in human dialog act identification, (2) with word frequency statistics being particularly important for the dialog act, and (3) the similar trends across corpora, despite differences in the type of dialog, corpus setup, and dialog act tagset. The importance of surface linguistic cues in dialog act classification sheds light on how both computers and humans take advantage of these cues in speech act recognition
    corecore