3 research outputs found

    Neural network fault diagnosis of a trolling motor based on feature reduction techniques for an unmanned surface vehicle

    Get PDF
    This article presents a novel approach to the diagnosis of unbalanced faults in a trolling motor under stationary operating conditions. The trolling motor being typically of that used as the propulsion system for an unmanned surface vehicle, the diagnosis approach is based on the use of discrete wavelet transforms as a feature extraction tool and a time-delayed neural network for fault classification. The time-delayed neural network classifies between healthy and faulty conditions of the trolling motor by analysing the stator current and vibration. To overcome feature redundancy, which affects diagnosis accuracy, several feature reduction methods have been tested, and the orthogonal fuzzy neighbourhood discriminant analysis approach is found to be the most effective method. Four faulty conditions were analysed under laboratory conditions, where one of the blades causing damage to the trolling motor is cut into 10%, 25%, half and then into full to simulate the effects of propeller blades being damaged partly or fully. The results obtained from the real-time simulation demonstrate the effectiveness and reliability of the proposed methodology in classifying the different faults faster and accurately

    ROBUST FAULT ANALYSIS FOR PERMANENT MAGNET DC MOTOR IN SAFETY CRITICAL APPLICATIONS

    Get PDF
    Robust fault analysis (FA) including the diagnosis of faults and predicting their level of severity is necessary to optimise maintenance and improve reliability of Aircraft. Early diagnosis of faults that might occur in the supervised process renders it possible to perform important preventative actions. The proposed diagnostic models were validated in two experimental tests. The first test concerned a single localised and generalised roller element bearing fault in a permanent magnet brushless DC (PMBLDC) motor. Rolling element bearing defect is one of the main reasons for breakdown in electrical machines. Vibration and current are analysed under stationary and non-stationary load and speed conditions, for a variety of bearing fault severities, and for both local and global bearing faults. The second test examined the case of an unbalance rotor due to blade faults in a thruster, motor based on a permanent magnet brushed DC (PMBDC) motor. A variety of blade fault conditions were investigated, over a wide range of rotation speeds. The test used both discrete wavelet transform (DWT) to extract the useful features, and then feature reduction techniques to avoid redundant features. This reduces computation requirements and the time taken for classification by the application of an orthogonal fuzzy neighbourhood discriminant analysis (OFNDA) approach. The real time monitoring of motor operating conditions is an advanced technique that presents the real performance of the motor, so that the dynamic recurrent neural network (DRNN) proposed predicts the conditions of components and classifies the different faults under different operating conditions. The results obtained from real time simulation demonstrate the effectiveness and reliability of the proposed methodology in accurately classifying faults and predicting levels of fault severity.the Iraqi Ministry of Higher Education and Scientific Researc
    corecore