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Abstract 

Robust fault analysis (FA) including the diagnosis of faults and predicting their level of 

severity is necessary to optimise maintenance and improve reliability of Aircraft. Early 

diagnosis of faults that might occur in the supervised process renders it possible to 

perform important preventative actions.  

 

The proposed diagnostic models were validated in two experimental tests. The first test 

concerned a single localised and generalised roller element bearing fault in a permanent 

magnet brushless DC (PMBLDC) motor. Rolling element bearing defect is one of the 

main reasons for breakdown in electrical machines. Vibration and current are analysed 

under stationary and non-stationary load and speed conditions, for a variety of bearing 

fault severities, and for both local and global bearing faults. 

The second test examined the case of an unbalance rotor due to blade faults in a 

thruster, motor based on a permanent magnet brushed DC (PMBDC) motor. A variety 

of blade fault conditions were investigated, over a wide range of rotation speeds. The 

test used both  discrete wavelet transform (DWT) to extract the useful features, and then 

feature reduction techniques to avoid redundant features. This reduces computation 

requirements and the time taken for classification by the application of an orthogonal 

fuzzy neighbourhood discriminant analysis (OFNDA) approach.  

The real time monitoring of motor operating conditions is an advanced technique that 

presents the real performance of the motor, so that the dynamic recurrent neural network 

(DRNN) proposed predicts the conditions of components and classifies the different 

faults under different operating conditions. The results obtained from real time 

simulation demonstrate the effectiveness and reliability of the proposed methodology in 

accurately classifying faults and predicting levels of fault severity.  
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CHAPTER 1 

 

                       Introduction 

“The chapter presents the Problem Statement for this research project, outlines the 

aims and objectives, and presents the structure of the thesis” 

 

 

1.1 Problem Statement 

 

Condition monitoring and fault diagnosis of electrical machines are necessary to 

optimise maintenance and improve reliability levels, especially in critical application, as 

shown in Figure 1.1. Electrical machines are subjected to a wide variety of abnormal 

operating conditions, and early diagnosis of faults that might occur in the supervised 

process renders it possible to perform important preventative actions. Moreover, it 

allows one to avoid heavy economic losses involved in stopped production, and the 

replacement of elements and parts. This has led to the study and development of 

concepts of modern fault diagnostics and condition monitoring (Tavner 2008).   

 

Faults that occur in electrical machines can be divided into two categories: electrical 

and mechanical faults, as will be explained in Chapter 2. Although a variety of 

techniques have been proposed for electrical machinery fault condition monitoring and 

fault diagnosis, all these methods have limitations and more effective methods are 

needed to develop the reliability of diagnostics (see appendix A-1).  

 

file:///C:/Users/Mike/Dropbox/thesis%20chapters/CHAPTER%201.docx


2 
 

The high power density, high efficiency, long operating life, high torque to inertia and 

high efficiency of the permanent magnet DC (PMDC) motor have led to its use in 

applications for which the high reliability of the machine is a key-feature (Wenping et 

al. 2012). PMBLDC motors are essential components in electro-mechanical actuators 

(EMA) and cabin pressure control of aircraft, due to advantages (Villani et al. 2012 and  

Jose 2010). The proposed fault diagnosis approach will be implemented for permanent 

magnet brushless DC (PMBLDC) motor and for thrust motor blade faults, both in 

operations based on a PMBDC motor. 

 

 PMBLDC motors are essential components in electro-mechanical actuators (EMA) and 

cabin pressure control of aircraft, due to advantages such as high efficiency, long 

operating life and high torque to inertia ratio (Villani et al. 2012). Industrial systems are 

dynamic and non-linear in nature, and hence during their identification it seems 

desirable to employ the models which can represent the dynamic of the system. Non-

stationary operating conditions represent the most common PMBLDC motor 

applications and almost all of the available literatures in the field of electrical motor 

diagnostics assume that the motor is operating at a constant speed (Rajagopalan 2006).  

 

Thrust motors based on a permanent magnet brushed (PMDC) motor are typically used 

in the propulsion systems of small electric-powered boats, such as USVs. USVs are now 

being employed by the scientific, offshore and naval sectors to perform a multitude of 

different tasks. As a consequence of their success, these sectors are now demanding 

longer mission lengths coupled with increasing vehicle autonomy. Furthermore, PMDC 

motors are most commonly used in variable speed and torque applications such as 

antenna positioning, medical equipment agricultural equipment, door openers (Jacek 

2013) and nuclear power plants (Krishnan 2010). 

file:///C:/Users/Mike/Dropbox/thesis%20chapters/CHAPTER%201.docx
file:///C:/Users/Mike/Dropbox/thesis%20chapters/CHAPTER%201.docx
file:///C:/Users/Mike/Dropbox/thesis%20chapters/CHAPTER%201.docx
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There are essentially four main distinct fault diagnosis approaches soft computing, 

signal processing, physics-based models and hybrid methods (Sobhani and Khorasani 

2009) that one could investigate, as will be discussed in Chapter 2. The main purpose of 

this chapter is to present the motivations behind this project, to list the aims and 

objectives of the project, as given in Section 1.2, and the main contributions of the 

thesis to existing knowledge, see Section 1.3. Poster and paper presentations were given 

at relevant conferences and several papers have been published, as detailed in Section 

1.4. Finally, Section 1.5 provides a brief overview of the thesis structure. 

 

 

Figure 1.1 Electrical motor applications (Toliyat 2002). Permission to reproduce this 

figure has been granted by Hamid Toliyat 

1.2 Aim and Objectives of The Research 

The aim of this work is to develop a new fault analysis (FA) scheme for PMDC motor 

used in high performance applications that can accurately detect faults and provide 

useful information about the detected faults. For this purpose, a robust FA approach for 

rolling element bearing and blades faults, under a variety of operating conditions 

including speed and load, has been proposed. 

file:///C:/Users/Mike/Dropbox/thesis%20chapters/CHAPTER%201.docx
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The proposed diagnostic procedures used in this thesis include three main stages, as 

illustrated in Figure 1.2. In the first stage, the data (current and vibration) are collected 

and then discrete wavelet transform (DWT) is optimised then used to extract the useful 

features in time and frequency domains.  

In the second stage, the features are reduced to remove redundancy and to decrease the 

training time. An inaccurate reduction feature tool may remove useful information and 

will jeopardise the overall performance, and thus the feature reduction stage represents 

the critical stage in the diagnosis process. The final stage is fault classification using 

dynamic neural network (DRNN). 

 

Figure 1.2 The proposed fault diagnosis process  

 

 

To achieve this aim the following objectives are identified:- 

 

 To investigate experimentally the characteristic effects of rolling element bearing 

faults in the stator currents and raw vibration signals of a PMBLDC motor operating 
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under various speeds and loads conditions. To achieve this, the various PMBLDC 

motor rolling element bearing faults, such as single localised faults (inner race; outer 

race; ball faults) and generalised bearing faults (corrosion) are replicated in a 

laboratory and their effect on the spectrum of the motor current and vibration 

studied. This helps in better understanding the behaviour of bearing defects in 

PMBLDC motors (Chapter 4).  

 

 To validate the proposed approach, unbalanced rotors due to blades faults, and 

their effect on the motor current and vibration spectrums are presented, under 

different operation speeds (Chapter 4). 

 
 

 To increase fault diagnosis reliability, especially for critical applications, the 

current signal has been used together with the vibration signal as another fault 

indicator (Chapter 5). 

 

 To develop a features extraction tool suitable for machinery fault diagnosis. The 

most significant features are crucially important for pattern recognition problems. 

To extract the useful information, DWT a signal analysis method that provides the 

time and frequency information of the signal  was applied (chapter 6).  

 To reduce additional computational time for fault classification. An accurate 

dimensionality reduction tool is needed to select the most informative features from 

the general feature set. In this, orthogonal fuzzy neighbourhood discriminant 

analysis (OFNDA) is implemented as a new approach for feature reduction; it 

works to maximise the distance between features belonging to different classes, 

while minimise the distance between features in the same class, taking into account 

the contribution of the samples to the different classes (chapter 6).  
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 To develop a new and robust FA algorithm under stationary and non-stationary 

operating conditions. A DRNN have been implemented for fault detection and 

diagnosis, and fault severity prediction. With this kind of the network an approach 

based on the feedback from outputs has to be applied to the input (Chapter 7). 

 

1.3 Major Contributions to Knowledge 

As has been established in previous discussions, effective fault detection is very 

important for PMDC motor applications. The research performed in this work addresses 

rolling element bearings in PMBLDC motors, and unbalanced mechanical load in 

PMBDC motors (thrust motor), and proposes a robust FA system to detect and diagnose 

rolling element bearing faults and unbalanced mechanical loads for PMDC motors 

(brushed and brushless) working under different operating conditions. The main 

contributions of this research to the field of electrical machine condition monitoring are 

summarised as follows (see Figure 1.3): 

 

 

 Set up an experimental test for the PMBLDC motor, operating under healthy and 

different rolling element bearing fault conditions (localised and generalised ), and 

analyse the performances of the motor under stationary and variable loads and speed 

conditions. Set up an experiment to test PMBDC motors for blade faults.  

 

 Overcome the limitations of vibration signal especially in low speed conditions, 

because the energy generated from bearing defects might not show any important 

change in signature and thus become undetectable. Stator current was implemented 

together with vibration signal under stationary and non-stationary operating 

conditions, using current as fault indicator will not increasing cost because current 

sensor already included in electrical protection system. (Chapters 4 and 5). 
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 In designing a reliable and accurate diagnosis technique, it is critical to find a set of 

redundant features to reduce additional computation and time taken for classification. 

Therefore, an accurate dimensionality reduction tool is needed to remove redundant 

features. Additionally the total classification time can be reduced using dimension 

reduction techniques. OFNDA is suggested for feature reduction. There are no accounts 

in the literature of using the intelligent features of OFNDA for feature reduction in the 

fault diagnosis of an electrical motor (Chapter 6). 

 

 Algorithms for DRNN have been developed and proposed, allowing improved fault 

prediction accuracy of condition monitoring systems (see Chapter 7). Both the fault 

location and fault severity prediction can be identified with this intelligent diagnosis 

approach.  

        

 Figure 1.3 Contributions to knowledge in present fault analysis approach 
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1.4 List of Publications 

 

The results of the work have been presented in journals and conferences papers. 

Another journal and a conference paper are expected after the completion of the thesis. 

 

 Journal Papers 

1- Abed W, Sharma SK, Sutton R, and Amit Motwani (2015). ‘A robust bearing fault 

detection and diagnosis technique for brushless DC motors under non-stationary 

operating conditions’ Journal of Control, Automation and Electrical Systems, doi: 

10.1007/s40313-015-0173-7. 

2- Abed W, Sharma SK, Sutton R  (2015)‘Neural network fault diagnosis of a trolling 

motor based on feature reduction techniques for an unmanned surface vehicle’, 

Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems 

and Control Engineering doi: 10.1007/s40313-015-0173-7. 

3- Abed W, Sharma SK, Sutton R ‘Unmanned marine vehicle thruster fault diagnosis’, 

submitted for special issue of the International Journal of Adaptive Control and 

Signal Procession  

 

 Conferences Papers and Technical Report 

 
 

4- Abed W, Sharma SK, Sutton R. (2013) ‘Fault diagnosis of brushless DC motor for an 

aircraft actuator using a neural wavelet network’ Proceedings of the 1st IET Control 

and Automation Conference, Conference Aston Lakeside Centre, Birmingham, UK, 

4 - 5 June, pp.1-6, doi: org/10.1049/cp.2013.0020. 

5- Abed W Sharma SK, Sutton R. (2014) ‘Intelligent Fault Diagnosis of an Unmanned 

Underwater Vehicle Electric Thruster Motor’, the Global Event for Undersea 

Defence and Technology (UDT), Liverpool, UK, 10-12 June. 

 

6- Abed W, Sharma SK, Sutton R. (2104) ‘Diagnosis of bearing fault of brushless DC 

motor based on dynamic neural network and orthogonal fuzzy neighborhood 

discriminant analysis’, 10th International Conference of the United Kingdom, 

Automatic Control Council (UKACC), Loughborough University, UK, 9 - 11 July, 

pp. 378-382,doi: 10.1109/CONTROL.2014.6915170. 

7- Abed W, Sharma SK, Sutton R.(2015)‘Corrosion Fault Diagnosis on Rolling 

Element Bearing under variable load and speed conditions’ , 9th IFAC 

Symposium on Control of Power and Energy Systems (CPES), New Delhi, India, 9-

11 December. 

 

http://dx.doi.org/10.1109/CONTROL.2014.6915170
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8- Abed W. (2012). ‘Hardware Interface for Trolling Motor’, Technical Notes, 

Autonomous Marine Systems (AMS), Plymouth University. 

 Invited Talks and Poster Presentations 
 

    In addition to the peer reviewed publications, the work described in this thesis has also 

been presented on the following occasions. 

 

9- Abed W, Sharma SK, Sutton R. (2013). ‘Fault diagnosis of trolling motor based on 

unmanned surface vehicle using neural network’, Plymouth Marine Laboratory 

Conference, 28th November, Plymouth, UK. 
 

 

 

10- Abed W. (2014)‘Robust Fault analysis Technique for Permanent Magnet DC Motor 

In safety Critical Applications’, United Kingdom Automatic Control Council 

(UKACC) day. London. 23rd October, available online at: http://ukacc. group. shef. 

ac.uk/?page_id=570. 
 

11- Abed W, (2012).’Fault Diagnosis of Aircraft Actuator Drives using Wavelet Neural 

Networks’, The Postgraduate Society Annual Conference, Plymouth University, 

UK, 26th June. 

 

12- Abed W, (2012). ‘Inter turn Fault Diagnosis of Brushless DC motor For Aircraft 

Actuator Using Intelligent Techniques’, The Postgraduate Society Conference 

Series, Plymouth University, 21st Nov.  

13- Abed W,(2014)‘A new approach to intelligent fault diagnosis of bearing in 

brushless DC motor under non-stationary operating conditions’, Iraqi Cultural 

Attaché, Plymouth University, 13 March. 

14- Abed W, (2014) ‘Application of Dynamic Neural Network for Bearing Fault 

Diagnosis of BLDC Motor in Aircraft’, Postgraduate Society Conference, 

Plymouth University, 19th March. 

 

  Training Courses  
 

 

1- PhD student workshop. United Kingdom Automatic Control Council (UKACC), 

Loughborough University, UK, 8th July 2014.  

 

2- Learning and Teaching for General Teaching Associates Course (GTA), Plymouth, 

University, UK, 2012. 
 
 

3- Learning and Teaching for General Teaching Associates Course; Learning and 

Teaching for Postgraduate Certificate in Academic Practice (PGCAP), Plymouth 

University, UK, 2013. 
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1.5 Thesis Structure 
 

The content of this thesis is organised into nine chapters (see Figure 1.4).  

Chapter 1 provides a brief introduction to fault diagnosis. This chapter also summarises 

the thesis aim and objectives, its main of contributions to current knowledge and a list 

of related publications.  

 

Chapter 2 presents the literature review of previous research into fault detection and 

diagnosis techniques, as well as data processing, feature subset selection and fault 

classification.  

 

Chapter 3 introduces the both types of PMDC motor. Firstly, the symptoms and 

mechanisms of electrical and mechanical faults in the PMDC motor are presented. 

Secondly, the main fault diagnosis techniques of electrical machines are described. 

 

Chapter 4 describes the experimental setup design for validating the proposed schemas. 

The experiments include building a test rig for rolling element bearings with both types 

of bearing fault (single local and generalised). The motor was tested under stationary 

and non-stationary operating conditions, and with different levels of fault severity. To 

validate the fault diagnosis approach, a second experiment was setup, to diagnosis 

unbalanced mechanical loads (thruster motor blades faults) under a wide range of 

rotation speeds.  

 

 Chapter 5 introduces raw vibration and current measurements as indicator for 

detection and diagnosis in roller bearings and unbalance mechanical load faults. The 

acquired data is presented in time and frequency domains, to exam the effects of faults 

on motor performance.  

 

Chapter 6 discusses different signal processing techniques in time, frequency and time-

frequency domain. A DWT as feature extraction approach is presented, to extract the 
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useful features from the motor vibration and current signals. Before application, the 

DWT wavelet function and level are optimised. A new feature reduction approach in 

terms of electrical motor fault diagnosis has been proposed for dimensionality 

reduction, to eliminate irrelevant features that affect diagnosis accuracy.  

 

Chapter 7 develops a dynamic neural network (DNN) for PMDC motor fault 

classification and level of fault severity prediction. A DRNN is fed by OFNDA features 

for training, testing and validation purposes. A mean squared error cost function is 

computed and desired outputs. The training of the network consists of finding a set of 

weights that minimise this cost function. 

 

Chapter 8 presents the results of the proposed features extraction, dimensionality 

reduction and fault classification approaches, with accompanying discussion. 

Comparisons are also made with popular methods of feature reduction and fault 

classification, to evaluate the capability and effectiveness of the proposed techniques in 

real situations. 

 

Chapter 9 presents the general conclusions drawn from this research, and proposes 

ideas for potential future work. 
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                   Figure 1.4 Structure of the thesis 
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CHAPTER 2 

 

Literature Review 
 
 

“This chapter presents a general review of the literature on electrical machine fault 

detection and isolation especially in critical applications. It emphasises the artificial 

intelligent techniques that are most commonly used for rolling element bearings and 

unbalanced mechanical load in PMDC motor” 

 

 

2.1 Introduction 

The manufacturers and users of electrical machines initially relied on simple protections 

such as over-current, over-voltage, and earth fault. Over time the tasks performed by 

these machines have grown more and more complex. It has now become very important 

to diagnose faults at their very inception, as unscheduled machine downtime can upset 

deadlines and cause heavy financial losses. 

 

In general a failure, as opposed to a fault, is defined as ‘a permanent interruption of a 

system’s ability to perform a required function under specified operating conditions’ 

and it is a much more severe concept than a fault (Isermann 2006). The concept of fault 

diagnosis consists of the following three essential task models (Patan 2008): 

 

 Fault detection (FD): detection of the occurrence of faults in the system that lead to 

undesired or intolerable behaviour of the whole system. 

 Fault Detection and Diagnosis (FDD): detection and localisation of faults.  

 Fault analysis (FA): determination of the type, cause and severity of faults, and 

prediction of possible future faults and the time frames in which these could develop, 
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using available data and knowledge about the behaviour of the diagnosed process, either 

mathematical, quantitative or qualitative.  

 

FA of PMBDC motor is a challenging problem and has not been fully explored. The 

literature shows there is still a gap between FA theory and its application. Thus this 

thesis attempts to fill the gap by developing FA algorithms for PMDC motor. In 

researching pathways towards safe and reliable operations, a number of literature 

reviews on electrical machine fault diagnosis have been published, for example 

(Subhasis. et al. (2005), Yao and Toliyat (2012), Lee et al. (2014) and Henao et al. 

(2014). 

 

In this research both types of rolling element bearing fault in the PMBLDC motor are 

presented, under a variety of operating conditions ranging from constant loads and 

speeds to continuous transient operation. This involves recognising the bearing and fault 

signatures produced in a PMBLDC motor, and estimating the severity of the fault both 

under stationary and non-stationary operating conditions, as well as validating the 

diagnosis approach with other types of fault and machines; unbalanced mechanical 

loads of PMBDC motor are considered. 

 

Many fault diagnosis techniques are implemented to diagnose motor faults and each 

technique has its advantages and disadvantages. The proper selection of fault indicators, 

feature extraction techniques and dimensionality reduction tools, together with the fault 

classification algorithm, will overcome the challenges of accurate FA. 

 

This chapter is divided into four further sections. Section 2.2 will give an overview of 

the common faults in electrical motors. Section 2.3 will present a summary of previous 

work that is related to recent developments in electrical motor FA. Section 2.4 will 

discuss the main condition monitoring indicators. Finally, section 2.5 presents 

conclusions drawn from this literature review. 
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2.2 The Basic Concepts of Fault Diagnosis Techniques  
 

There are many reasons for fault occurrence. Some are due to errors in manufacturing, 

changes in environment and control action errors by humans, any of which may bring 

the system out of its operating point. (Schröder 2006). It is important to be able to detect  

faults while they are still developing and this is called incipient failure detection. A 

timely warning that can be followed by maintenance can avoid catastrophic failures and 

costly long down times. Undetected, these faults will have an effect on the system 

performance and lead to failure. 

 

A typical fault diagnosis process consists of two stages: the residual generation and the 

residual evaluation. In the residual generation stage, a residual generator is designed to 

make its output robust against unknown inputs and system disturbances, while at the 

same time being sensitive to the fault. In the residual evaluation stage, the residual is 

processed to alert the operator to the fault and, further, to isolate it (Zhou et al. 2012). 

 

For robust fault diagnosis purposes, the following conditions are needed (Dunn 2002): 

 

 The need to improve accuracy in failure prediction. 

 The need for an overall view of equipment condition. 

 The need to reduce the cost of condition monitoring. 

 The need to improve system reliability. 

 

Many techniques have been implemented for electrical motor fault detection and 

diagnosis, such as artificial intelligence (AI), signal processing, model based and hybrid 

techniques, as shown in Figure 2.1. The strengths and drawbacks of each technique are 

discussed, based on literature reviews.  

 

 

 



16 
 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.1 The main condition monitoring and fault diagnosis techniques 

 

2.2.1 Artificial intelligence techniques  

 

 

 

Recently, AI has been introduced as an accurate approach for condition monitoring and 

fault diagnosis purposes, where accurate mathematical models are difficult to develop. 

AI aims to generate classifying expressions simple enough to be understood easily by 

humans (Sun et al. 2014). 

 

In this section a brief description of various AI techniques such as expert systems, on 

fuzzy logic system (FLS) (Lemos et al. 2013), neural network (NN), genetic algorithm 

(GA), adaptive neuro fuzzy inference systems (ANFIS) (Yilmaz and Ayaz 2009) and 

support vector machines (SVM) are discussed and applications of AI for electric motor 

fault diagnostics are considered.   

 

 

Among the various pattern recognition approaches for condition monitoring and fault 

diagnosis of electrical machinery, NN have been commonly used, with the ability to 
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classify conditions based on training patterns from samples (Walker et al. 2014, Yang et 

al. 2013). Basically, a NN consists of a layer of input nodes, one or more layers of 

hidden nodes, one layer of output nodes, and connecting weights  

 

An NN is an effective motor fault detection method while avoiding the need for a 

mathematical model. In addition, an NN can recognise patterns even at high noise levels 

(Ding et al. 2013). Different NN architectures have been developed for fault diagnosis 

purposes, including the FFNN (Ziaja et al. 2014), the Kohonen network (Germen et al. 

2014), the radial basis function (RBF) network (Zarei et al. 2014) and Probabilistic 

neural network (PNN) (Li et al. 2014).  

 

Mahammed and Hiyama (2011) compared FFNN, RBF network, Elman network (EN) 

and ANFIS methods for induction motor bearing fault diagnosis in order to select the 

optimal fault diagnosis method for the most commonly found inner race faults. From 

the comparison they found FFNN gives fewer validation errors for outer race and ball 

defects, while EN gives a better performance in contrast to validation errors, and FFNN 

and EN are the best static NN structures for rolling element bearing fault classification. 

 

However, these techniques ignored the dynamic behaviour of electric motor, most 

industrial systems are dynamic and nonlinear in nature, and hence during their 

identification it seems desirable to employ the models which can represent the dynamics 

of the system. Recently great attention has been paid to the development of DNN due to 

their capabilities for modelling nonlinear dynamical systems. 

 

In real-life applications there are several circumstances where the motor is never 

operating at a constant speed or with a constant load, such as in automotive and aircraft 

applications (Sadough et al. 2014). Hyun et al. (2010) and Yusuf et al. (2009) have 

shown that DNNs are an attractive method for fault diagnosis in electrical machines. 

They allow improved fault prediction accuracy. In addition, to learn the dynamics of 

file:///C:/Users/Mike/Dropbox/thesis%20chapters/CHAPTER%207.docx
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complicated nonlinear systems, DNN are more provide the capability which 

conventional static NN cannot model (Xuhong and Yigang 2005). 

 

Unmanned surface vehicles (USVs) are now being employed by the scientific, offshore 

and naval sectors to perform a multitude of different tasks. As a consequence of their 

success, these sectors are now demanding longer mission lengths coupled with 

increasing vehicle autonomy. With an escalation in autonomy comes the need for higher 

reliability in such vehicles in order for them to better cope with unexpected events. 

Hence there is a growing interest in the use of fault detection and diagnostic techniques 

in unmanned underwater vehicle (UUV). The thruster of the UUV is one of the most 

common and important sources of faults, and it always has a direct effect on the control 

performance (Qian and Daqi  2009 ) 

Hai et al. (2014) designed a petri-based recurrent neural network (RNN) to improve 

robustness in response to nonlinear characteristics of an open frame underwater vehicle. 

A threshold was used to regulate training and learning, and an online training algorithm 

was developed based on a gradient descent method. The results showed that the 

computational efficiency was improved and a faster convergence speed was obtained. 

 

Ah Chung and Back (1994) reviewed a number of DNN that have been introduced by a 

number of researches. DNN can be represented as FFNN with layered dynamic neurons. 

It is done by introducing a linear dynamic system (Cho et al. 2010, Mohammadi et al. 

2011) composed of dynamic neurons. In dynamic neurons, there is a finite impulse 

response (FIR) filter after the activation function that generates a dynamic mapping 

between the input and output of the neuron. NN of the dynamic type are discussed in 

detail in Chapter 6.  

 

Similarly, Sina et al. (2014) used DNN but with infinite impulse response (IIR), as 

shown in Figure 2.2, to diagnose fault in a dual spool turbo fan engine in the aircraft. 
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The proposed fault diagnosis schemes consist of multiple DNN corresponding to 

various operating modes of the healthy and faulty engine conditions. Using the residuals 

that are generated by measuring the difference of each network output and measuring 

engine output, various criteria were established for accomplishing the fault diagnosis 

task that is, addressing the problem of fault detection and isolation of the system 

components. 

 

Embedded linguistic knowledge and approximate reasoning capability represent the 

advantages of FLS as a fault diagnosis technique. The FLS method is based on the 

theory of fuzzy sets, which are an extension of binary sets and able to take in partial 

memberships that range between 0 and 1.  

 

 

Figure 2.2 Dynamic neuron structures 

 

Unlike NN, FLS models tend to a rule explosion, for instance, the number of rules 

increases exponentially if the number of variables or fuzzy sets per variable increases, 

making it complicated to identify the whole model from the knowledge of an expert 

only. Different automated techniques have been used recently for optimising fuzzy 

models, including NN and GA (Abdusslam 2012). 

 

Lemos et al. (2013) suggested an adaptive fault diagnosis technique for dynamic 

systems and tested an FLS classifier offline and applied in real time. The FLS approach 
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allows quick detection of small faults, as the adaptive FLS threshold takes care of 

modelling errors.  

 

However, FLS rules should be optimally designed to obtain robust diagnostics 

techniques and sometimes it is difficult to properly establish the FLS forecasting 

inference rules (Qing et al. 2013). Wen (2011) compared FLS and NN based FDD 

approaches for electrical motors and found that an FLS approach is capable of 

modelling a complex problem, employing an if-then type of expert rules and linguistic 

variables to capture directly the qualitative aspects of the human reasoning process 

involved. However it is difficult to tune the membership functions and the fuzzy rule.  

 

 

 Figure 2.3 Support vectors machine classifier   

 

Meanwhile, a NN based technique allows an accurate solution to a particular fault 

problem, without the need for knowledge about the faulty system. However, the main 

NN drawback is related to the fact that the exact architecture of the NN to be used is not 

known in advance On the other hand, an SVM is an effective tool for motor fault 

classification based on statistical learning theory, due to its good generalization abilities 
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(Ahmadi et al. 2014). The standard SVM is based on binary classification problems to 

determine a linear boundary between the two different classes, by maximising the 

distance of the nearest data to the boundary in each class, as shown in Figure 2.3. The 

nearest data points are known as support vectors.  

 

Yizhuo et al. (2009) proposed an approach to diagnose rolling bearing faults based on 

nonlinear dimensionality reduction (NDR) and SVM for fault classification. In this 

approach time and frequency domain features were extracted from the original signal 

and then fed into a feature reduction tool to generate low dimension.  

 

The results proved that NRD provides better performance than linear dimensionality 

reduction. However, an SVM requires rigorous tuning of kernel parameters and the 

process of optimising generates a large amount of calculation. Furthermore, SVM has 

high complexity and needs a wide range of data, and the traditional SVM is unusable 

with dynamic data (Xiao et al. 2013).   

 

To deal with non-stationary vibration signals, Wavelet transform (WT) is presented as 

an effective feature extraction and denoising tool. Bin et al. (2011) and Kankar et al. 

(2011) used two criteria for selecting the best WT features. The first one uses maximum 

energy to shannon entropy ratio and the second one is based on maximum relative 

wavelet energy. These features are then used to feed machine learning approaches (NN, 

SVM) and a self-organising map.  

 

On this basis, Khan and Rahman (2009) have developed a novel fault diagnosis 

technique for permanent magnet synchronous motor (PMSM) using wavelet packet 

transform (WPT) to process the line current to obtain features in the time and frequency 

domain, and used these as inputs to a three layer FFNN. The results showed the ability 

of the proposed technique to diagnose faults for on line implementation.  
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In designing a reliable and accurate diagnosis system based on NN techniques, it is 

critical to eliminate redundant features to reduce additional computational time for 

classification. Different feature reduction methods, such as kernel principle component 

analysis (KPCA) (Zhang, Y et al. 2013) and linear discriminate analysis (LDA) 

Xiaohang et al. (2013) have been used to reduce feature redundancy. Further discussion 

of feature reduction approaches will be presented in Chapter 5. 

 

2.2.2 Model-based techniques 

 

Model-based fault diagnosis can be defined as the detection and isolation of faults in the 

system based on a comparison of the system’s available measurements with information 

represented by a model (Changning and Gang 2010). As illustrated in Figure 2.4, 

model-based techniques consist of the detection of faults in the technical process, 

including actuators, components and sensors, by measuring the available input and 

output variables 𝑥(𝑡) and 𝑦(𝑡). The detection methods generate residuals r, parameter 

estimates 𝜃, or state estimates 𝑥, which are called features. By comparison with the 

normal features, changes in features are detected. 

 

Model-based approaches have been implemented for fault diagnosis tasks, by 

attempting to match a mathematical model to a comprehensive model that would 

include effects due to abnormal conditions such as unbalance or misalignment, to 

produce the overall response of the system (Yan et al. 2014). Basic process model-based 

methods are: parity equations (Moseler et al. 1999), parameter estimation (Progovac et 

al. 2014) and output observers (Liu 2010). Owing to the simultaneous problem of fault 

detection and control of UUV, Davoodi et al. (2013) developed a dynamic observer. A 

single model was designed represent in both the control and a detector, where the 

detector is the dynamic observer and the controller is a state feedback controller based 

on the dynamic observer. 



23 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Scheme for the model-based fault detection (Isermann 2011),permission to 

reproduce this figure has been granted by springer science and business 

media 
 

 

The parity relation is sometimes called consistency relation, or analytical redundancy 

relation. It directly checks the consistency between the system model and measured 

system outputs, and is thus the most realistic fault detection method. The main idea of 

this method is illustrated in Figure 2.5. The residual is based on parity relations, with u 

denoting the control signal input. 

 

 

 

 

  

 

 

Figure 2.5 Parity relation based residual generation  
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The system can be modelled as follows (Shen et al. 2014): 

 

                              𝑦(𝑘 + 1) = 𝐴𝑋(𝑘) + 𝐵𝑢(𝑘) + 𝛾 (𝑘)     (2.2) 

 

𝑦(𝑘) = 𝐶𝑋(𝑘) + 𝐷𝑢(𝑘) + 𝑣 (𝑘)    (2.3) 

where:  

 𝐴𝑋 (𝑘), 𝑦(𝑘), 𝑋(𝑘) represent the process input, output and state variable respectively, 

while 𝛾 (𝑘) and 𝑣 (𝑘) represent the noise sequences that are assumed to be normally 

distributed and statistically independent of 𝑥(𝑘)  and  𝑢 (𝑘).                                                                                                                                                                                                                                                                                                                                                                

Parity relation is a reliable and fast diagnosis method. It has a simple structure, is robust 

to disturbances and is sensitive enough to anticipate faults (Isermann 2005). Fully 

decoupled parity equation for fault diagnosis was proposed by Chan et al. (2006) for 

dynamic systems with known linear and unknown nonlinear characteristics.  

The residuals generated from the fully decoupled parity equation can be used for fault 

estimation using the recursive least squares method, and the results show that the 

proposed method can be implemented to detect, isolate and identify faults in a simulated 

DC motor. 

 

Christophe et al. (2002) compared parity relation and observer based methods, and 

found that parity residual is generated by computing on-line the known part of this 

equation. The major drawback of this approach is that the residuals are computed using 

time derivatives for the measured variables. To make the residuals usable in a noisy 

environment, filtering procedures and post treatments must be used, while observers are 

dynamical systems that allow the outputs of the process to be estimated. An observer 

based residual is a combination of the estimation error on the outputs.  

 



25 
 

The closed-loop structure makes these residuals more robust with respect to noise and 

perturbations. The synthesis of an observer may be difficult to carry out for some 

nonlinear systems because the gain matrices must fulfil many constraints. Moreover, 

this method does not give an explicit formulation of the sensitivity of the residual to 

faults. 

 

For the parameter estimation approach, the extended Kalman filter (EKF) technique 

estimates and tunes the parameters of the model to detect faults; changes of the model 

parameters identify the abnormal operating condition of the actual system 

(Nakhaeinejad et al. 2011). In addition Alessandri et al. (1999) proposed to diagnose 

propeller faults in UUV. The method based on EKF was presented for residual filtering.  

 

 Olivier et al. (2012) presented a new practical implementation of the Kalman filter 

(KF) in association with pattern recognition to estimate and predict unknown states in 

order to detect failure appearance. Also, errors in fault detection and isolation in 

physical systems can be reduced if uncertainties can be considered. In a general way, 

this prediction allows prevention of possible system damage by evaluation of operating 

mode evolution toward a fault.  

 

 

In conclusion, model-based approaches are based on mathematical models of the 

system. The requirement of mathematical models of the plant can lead to several 

difficulties in the implementation of these approaches, for instance due to factors such 

as system complexity, high dimensionality, nonlinearities and parametric uncertainties 

(Angelo et al. 2014). In addition, model based techniques provide satisfactory results 

only when plants exhibit linear behaviour or when the modelling errors can be kept 

within acceptable limits; accurate mathematical models are needed with low 

behavioural complexity (Merzouki et al. 2013).  
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2.2.3 Signal Processing Techniques  

 

A key aspect of a robust FDD is proper signal conditioning and processing. Advanced 

signal processing capability based on vibration analysis, current analysis, etc. is now 

available for motor fault diagnosis and condition monitoring purposes. Signal 

processing techniques are applied to the measured sensor signals in order to generate 

features or parameters (e.g. amplitudes of frequency components associated with faults) 

which are sensitive to the presence or absence of specific faults, so that fault decision 

techniques can then be implemented (Gritli 2014).  

One of the most frequently used fault detection methods is the motor current signature 

analysis (MCSA) approach; it is a non-invasive and low cost effective approach and can 

be used for simultaneous multi-fault detection. It directly identifies changes in the 

harmonic content of the motor line current when a fault occurs (Immovilli et al. 2013) 

using the fast Fourier transform (FFT) and the short fast fourier transform (STFT).  

 

Lau and Ngan (2010) used MCSA with wavelet packet transform to diagnose outer race 

faults. The results showed that fault severity will increase the distortion of the current 

waveform. In the experiment, similar waveform distortions were obtained with different 

motors; the bearings being used were the same.  

  

Subsequently, WPT integrating FFT approaches have been tested and found to be 

effective for identification of the exact frequency content being distorted. Finally, the 

root mean square (RMS) value of the WPT coefficient has revealed that there were 

some correlations between the node number and the RMS value frequency content 

being distorted. But the frequencies associated with this type of fault depend on the 

particular conditions of the motor. Additionally the performance of the MCSA 

technique is degraded by the increment of the load directly modifying the amplitude of 

the fault indicator (Ovedo et al. 2011).  
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According to the literature review, MCSA does not always achieve good results, 

especially during non-stationary operating conditions when variation of the fault 

characteristics is not constant. A new approach has been implemented by Jun et al. 

(2013) to diagnose unbalanced mechanical loads in PMSM under non-stationary 

conditions, based on Park's vector approach and DWT.  

 

 Simulations were carried out in the PMSM drive system based on MATLAB/Simulink, 

and fault indicators are successfully extracted from the square of the stator current 

Park’s vector using DWT. The simulation results show that the proposed method can 

effectively detect mechanical unbalance faults under non-stationary operating 

conditions. However, the fundamental components caused by asymmetry of power 

supply, will be present in the stator current spectrum, and consequently Park's vector 

spectrum will be weak for detecting faults. 

 

Rajagopalan et al. (2005) proposed a new technique to diagnose rotor fault in PMBLDC 

motor using windowed Fourier ridges for feature extraction. The main limitation of the 

Windowed Fourier Ridges (WER) algorithm, however, is that it is dependent on the 

type and length of the window, as it has to be chosen as a trade-off between time and 

frequency resolution.   

 

Owing to the limitations of the FFT with non-stationary signals such as information 

losses and there can be difficulties in interpreting the signals when moving from time to 

frequency domain (Yahia et al. 2014 and Pandya et al. 2014). The STFT is an extension 

of the FFT that can be used to perform time frequency analyses, and is given by: 

 

STFT(t, f) = ∫ 𝑥(𝑡 + 𝜏)𝑤(𝜏)𝑒−2𝜋𝑓𝜏∞

−∞
𝑑𝜏                                     (2.4) 
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where x (t) is a signal and w (𝜏) is the window function. However, these tools do not 

provide a better resolution for identifying the faults. The FFT is not useful with non-

stationary signals and the amplitude of the fault harmonic component is quite small 

compared with the fundamental amplitude if the fault severity is small. Hence, fault 

characters are likely to be hidden. The STFT meanwhile has a fixed window and poor 

time resolution (Zanardelli et al. 2007, Cusido et al. 2008). 

 

 WT has been shown to be a powerful tool for dealing with non-stationary vibration 

signals. Kankar et al. (2011) presented two criteria to select the best wavelet features: 

the first of these is based on using maximum energy-to-Shannon entropy ratio, whereas 

the second one is based on maximum relative wavelet energy. Wavelet decomposition 

can be expressed as:  

 

 𝑊𝑇(t, 𝜏) =  
1

√𝑠
∫ 𝑥(𝑡)𝜑∗( 

𝑡−𝑢

𝑠
 )

∞

−∞
𝑑𝑡                                                    (2.5) 

 

where (𝑠, 𝑢) are dilation and translation respectively, and 𝜑∗is the Wavelet function 

scaled by 𝑠 and time shifted by  𝑢. 

 

An advantage of the WT over the STFT is that the wavelet function 𝜑∗( 
𝑡−𝑢

𝑠
 ) is 

scalable. This allows the WT to adapt to a wide range of frequency and temporal 

resolutions. The discrete wavelet transform, a signal analysis method that provides the 

time and frequency information of the signal, was applied, which has the ability to 

explore signal features with different time and frequency resolutions, was used to obtain 

the best features from the signals.  

 

 Qin et al. (2009) compares two popular rolling element bearing diagnostic techniques: 

Spectrum analysis in bearings characteristic frequency range and enveloping analysis in 

the high frequency range, using test data from an aircraft engine test rig. The objectives 
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were to compare the techniques in terms of the time of detection and data requirement, 

and provide guidance for technology adoption in further field deployment.  

 

 The results demonstrated that enveloping analysis is able to detect bearing defects 

much earlier than spectrum analysis, but it requires a higher data sampling rate. The 

bearing defect’s characteristic frequency eventually shows up in the low frequency 

spectrum at the late stage of the failure, and it is modulated by other harmonics such as 

those due to shaft imbalance.  

 

Cruz and Cardoso (2005) proposed a multiple reference frame method for voltage 

unbalances or non-stationary conditions. In this method, the positive sequence of the 

stator currents of a faulty IM is assumed to be the indicator of a healthy machine. 

Negative-sequence currents were first removed in order to obtain fault current 

components from the phase currents. The direct quadrature (dq) components of the fault 

current are obtained only after removing the estimated healthy current components.  

 

In real life applications there are several circumstances where the motor is never 

operating at a constant speed or with a constant load, such as in automotive and aircraft 

applications (Villa et al. 2012 , Sadough et al. 2014). Rajagopalan et al. (2008) proposed 

a new quadratic time-frequency representation for PMBLDC motor bearing faults 

diagnosis operating under variable speed and load conditions. One of the most 

important advantages of the quadratic distribution is that these distributions do not 

depend on any parameter similar to the size or type of the window, and provides much 

better frequency resolution and localisation of energy but these new distributions are too 

complicated to be implemented in a commercial system, owing to their perceived 

intense computational time.  

 



30 
 

Wigner ville distribution (WVD) and the relative crossing information methods were 

implemented to extract features from vibration signals and then these features were 

optimised using the ant colony optimisation (ACO) clustering algorithm. Finally, an 

FLS diagnosis method was proposed for machine fault decision (Li et al. 2013). The 

experimental results proved that the diagnostic sensitivity using fuzzy diagnosis method 

based on sequential inference for motor roller bearing diagnosis. 

 

The main challenge of signal processing approaches is that they do not take into account 

the dynamic behaviour of the system measured signals. To overcome this drawback, 

analytical redundancy was introduced by Tehrani and Khorasani (2009) where instead 

of using extra hardware the redundancy is supplied by a mathematical model of the 

component.  

 

Accordingly, fault diagnosis systems that are based on analytical redundancy are often 

called model-based fault diagnosis systems. Furthermore, signal processing techniques 

only use output signals of the motor; hence the influence of an input on an output is not 

considered. In turn, frequency analysis is time consuming, thus it is not appropriate for 

on-line fault diagnosis (Ece and Başaran 2011). 

 

 

2.2.4 Hybrid techniques 

 

Hybrid techniques are a combination of several technique, and have been proposed for 

FDD (Liu et al. 2009). It is a compromise between system performance and reliability, 

cost and size. Most recent applications of NN for FDD are presented with other 

methods, such as NN with PSO (Hui 2010) or with GA (Ziani et al. 2012). 

 

WPT and NN have been implemented by Wen (2011) to diagnose IM stator winding 

short faults; here, an NN was trained by an improved GA using the stator current as a 

fault indicator and WPT as the fault classifiers. The line currents under different 
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conditions are pre-processed using second level WPT. In addition, a model-based 

approach has been implemented by  Lu et al. (2006) in which an NN was trained by 

torque and speed data to diagnose inverter switch faults. The electric drive model was 

simulated using MATLAB® and Simulink® to generate representative training data to 

train the NN, which was used as a fault classifier.  

 

 Daqi and Bing (2013) proposed an approach to diagnose continuous, uncertain and 

unknown fault patterns of the thruster in a UUV using a credit assignment-based fuzzy 

cerebellar model articulation controller The proposed approach showed an efficient 

diagnostic accuracy compared with a self-organization map NN.  

 

 Mathew et al. (2012) developed fault diagnosis approaches based on estimating the 

physical parameters of the PMBLDC motor and then used FLS inference for fault 

diagnosis. Fuzzy rules were formulated to isolate different types of faults. SVM are 

data-based and are therefore robust to process knowledge; it is based on structural risk 

minimisation, which enhances generalisation even with a small training data set and it 

allows accounting for process non-linearity.  

Tiwari et al. (2014) present an approach to diagnose bearing point local defects based 

on statistical features extracted from time vibration signals. These features are used to 

train and test both neuro fuzzy and SVM based techniques implemented for fault 

classification. Similarly, Moosavian et al. (2014) developed a method to diagnose 

unbalanced loads in rotating machines based on signal processing, feature extraction 

and fault classification, using features extracted by FFT, SVM, and K-nearest neighbour 

algorithms, respectively for fault classification. An experimental set up was designed 

and vibration signals were collected with three operating conditions: no load, balanced 

load and unbalanced load. The results showed the capability of SVM for unbalanced 

load machine fault diagnosis  
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Yun et al. (2013) used the combination of spectral kurtosis and SVM to diagnose 

misalignment of rolling elements. In this approach, SVM parameters are optimised 

using GA. Furthermore, SVM can be used with NN to diagnose ball bearing faults, and 

statistical methods are used for dimension feature reduction ( Kankar et al. 2011, Patil  et 

al. 2010, and Sharma et al. 2014).  

 

Empirical mode decomposition (EMD) is a signal processing tool used for non-

stationary and nonlinear signals. It works based on decomposing a signal into 

orthogonal components called the intrinsic mode function (IMF). Camarena et al. 

(2014) combined EMD with an adaptive linear network based frequency estimator and 

an FFNN based classifier to provide an intelligent methodology for diagnosis: one and 

two broken rotor bars, bearing, and unbalance mechanical load faults. 

By comparing EMD with DWT, DWT is related to Multi resolution analysis, which 

provides an orthogonal set of multi resolution elements (different levels of 

approximations). Meanwhile, EMD is a decomposition procedure based on signal 

features and does not depend on a function basis, EMD provides a set of components 

called IMF and it shares some similarities with DWT multi resolution analysis, but they 

are only approximately orthogonal. However, the lack of theoretical framework, which 

leads to difficulties for the characterisation and evaluation, represents the main 

drawback of EMD (Niang et al. 2010). 

 

Liu et al. (2012) developed a mathematical model for PMSM under normal and 

abnormal conditions, and applied Particle swarm optimisation (PSO) for fault detection 

and identification. Due to its advantages such as simplicity, easy implementation and its 

fast convergence to the global optimum, PSO has been applied to different fields 

requiring parameter optimisation in a high dimensional space. However, during the later 
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stages of the optimisation the lack of diversity of the particles may lead to premature 

convergence to a local optimum (Wang et al. 2014). 

 

 In conclusion, each intelligent technique has its strengths and drawbacks. Hybrid 

intelligent techniques have been developed for motor condition monitoring and FDD 

schemes based on combinations of techniques. Previous research results show that 

combining multiple approaches can result in better performance for many applications. 

 

2.3 Fault Diagnosis Indicators 

 

According to the types of measurements taken, most methods to monitor the condition 

of electric machines can be categorised into the following groups: vibration 

(Seshadrinath et al. 2014), acoustic emission (He et al. 2011), electric monitoring such 

as current (Kim 2009), and rotating speed (Roy et al. 2014). In this section, the major 

advantages and disadvantages of these methods are reviewed.  

 

Rolling element bearings have a wide range of applications, ranging from rotating 

machines that permit shafts, to those rotating with the highest precision together with 

very low friction, provided the bearings have no faults. When a fault develops either in 

one or all of the raceways of a bearing, stability of the shaft deviates from the intended 

motion, resulting in the bearing vibration level increasing (Mao and Wu 2011).  

 

Several indicators have been applied for monitoring bearing defect signals, and can be 

classified into vibration, temperature (Patil et al. 2010) and acoustic measurement 

(Delgado  et al. 2011).Vibration measurement is the most widely used and effective way 

to detect rolling bearing faults at an early stage and the vibration signal can be measured 

using accelerometers or vibration velocity transducer sensors (Jiang et al. 2013, Tenconi 

et al. 2014).  
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However at low speed, the vibration signal fault is very weak and sometimes it is 

difficult to distinguish between detection and a diagnosis based on vibration signal as 

fault indicator, because it is directly related to the mechanical element (Bediaga et al. 

2013).  

 

 Current analysis is used to detect rolling bearing and unbalanced mechanical load faults 

in IM. The proposed diagnostics approach was supported in simulation and experiment 

tests. Furthermore, current analysis can offer significant economic savings and 

implementation advantages with respect to traditional vibration monitoring for bearing 

fault detection (Blodt et al. 2005, Faucher 2010).  

 

Gritli et al. (2013) presented a new technique to diagnose unbalanced mechanical loads. 

The technique is based on motor axial vibration signature analysis and motor radial 

vibration signature analysis. In order to investigate the drawbacks and advantages of 

vibration and current signals as rolling element bearing fault indicators, Immovilli et al. 

(2010) compared these two sensors and found the vibration signal is a robust indicator 

for rolling element bearing fault diagnosis, and the current signal  is useful for 

diagnosing faults under low speed operating conditions.  

 

Similarly, Frosini and Bassi (2010) proposed an approach for rolling element localised 

bearing faults (crack and hole in the outer race, deformation of the seal and corrosion) 

diagnosis using the stator current as an indicator and a NN for fault classification. By 

contrast, Trajin et al. (2009) compared stator current and mechanical speed as indicators 

for rolling element bearing fault diagnosis. Indicator efficiency was studied under 

different operating points. 

 

Barzegaran et al.(2013) used the frequency response of the rated magnetic field as 

indicator to detect unbalanced input conditions of the flowing current and the short-

circuit of stator windings. Both the simulation model and experimental results show that 
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the field can be utilised for failure identification in electric motors with high accuracy. 

In addition, the waveforms of the electromagnetic torque, summation of phase voltages 

and stator current harmonics are also monitored to identify and locate the fault.  

 

Kim et al. (2009) used the stator current, back-electromotive force, and resultant torque 

waveforms for both healthy and faulty machines for fault indication, and used a winding 

function theory for analysing the motor waveforms for stator inter-turn faults in a 

PMBLDC motor. Similarly, stator currents were used for mechanical load fault 

diagnosis (Rajagopalan et al. 2008).   

 

Owing to initial manufacture and ageing phenomena, an additional undesirable time 

varying torque is caused by unbalanced mechanical defects. The additional torque will 

affect the stator and rotor current amplitude and the sideband stator current harmonics 

that are characteristic of mechanical unbalance defects (Salah et al. 2013).  

Furthermore, the photogrammetric approach was implemented by Huang et al. (2014) 

for monitoring turbine blades damage (both damaged and undamaged blades). In order 

to control the rotation of the wind turbine blade, a motor was used to spin the blades at 

controlled angular velocities. Two high speed cameras were set in front of the turbine to 

tape the video images, to measure the displacement fields by image template matching. 

 

2.4 Chapter Summary  

 

The literature review has covered a variety of topics involving the main electrical and 

mechanical faults in electrical motors and faults that are related to the particular 

structure of PMBLDC motors. Previously proposed methods for fault diagnosis have 

been considered, including recently utilised AI based, signal processing, model-based 

and hybrid approaches, and feature extraction and feature reduction tools. The review 

also indicates that the usage of PMDC motor drives is widely increasing in a variety of 
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industrial and critical applications because their architecture is suitable for any safety 

critical applications. Thus, the demand for a diagnostics approach is increasing (Jose 

2010.  

 

The review in this chapter also indicates that previously proposed methods mainly 

consider rolling element bearing faults in PMBLDC, and indicates that rolling element 

bearing defects represent the main source of failure in electrical motors, while the 

research on bearing fault detection for these motor drives still remains an unexplored 

area. NNs for electrical motor FA have become prominent due to their ability to reduce 

dependence on human experts and accurate mathematical models. However, the 

response of a static network at any time point depends only on the value of the input 

sequence at that same time point. In real-life applications there are several 

circumstances where the motor is never operating at a constant speed or with a constant 

load such as in automotive and aircraft applications.  

DNN are more versatile and provide the capability to learn the dynamics of complicated 

nonlinear systems, which conventional static neural networks cannot model. Based on 

this review it has been concluded that the following topics need to be developed:  

 

 The high power density and high efficiency of the PMDC motor has led to the use of 

this machine in applications in which high reliability is a key feature, such as 

aerospace/aircraft actuators, automotive auxiliaries and traction. FA in this type of 

machine needs to be researched more. Rolling element bearing faults represent the 

main source of abnormal conditions in electrical machines. However, almost all of 

the previous research is focused on single localised faults and ignore generalised 

bearing faults. This work is discussed in Chapter 4. 
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 FA of electrical motors has been dependent on a single indicator of the motor 

situation. To increase diagnosis, the use of multiple fault indicators for FA has not 

been addressed well. This work is discussed in Chapter 5. 

 

  The development of an accurate feature extraction and dimensionality reduction 

technique, to extract the useful information for fault decision and to remove 

redundant features that affect diagnosis accuracy. DWT was proposed for feature 

extraction that provides the time and frequency information of the signal and 

orthogonal fuzzy discriminate analysis (OFNDA) was implemented for feature 

reduction This work is discussed in Chapter 6  

 

 Almost all the literature concerns FA stationary operating conditions, and this is not 

realistic in practical applications. FA under non-stationary operating conditions, 

especially in critical applications, has not been covered well and DNN has been 

presented to improve the reliability of the proposed fault diagnosis approach. It 

allows improving fault prediction accuracy of condition monitoring systems. This 

work is discussed in Chapter 7. 
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CHAPTER 3 

Permanent Magnet DC Motor 

Characteristics 

 

 “In this chapter, background about PMDC motor characteristics applied to high 

performance applications is provided, and then common electrical and mechanical 

faults are described.” 

 

3.1 Introduction  

The high power density and high efficiency of the PMDC motor have led to its use in 

applications where the high reliability of the machine is a key-feature (Villani et al. 

2012). Redundancy and conservative design techniques have been widely adopted for 

improving the reliability of PMDC motor against the variety of failures than can occur. 

However, these techniques are expensive to realise. As an alternative, considerable 

diagnostic strategies and control schemes can be devised to ensure high reliability.  

 

 In general, a fault can be defined as something that changes the behaviour of the system 

such that the system no longer satisfies its purpose. There are many reasons related to 

fault occurrence. Some of these are due to errors in manufacturing, changes in 

environment and control action errors by humans, any of which may bring the system 

out of its operating point (Schröder 2006). 

 

FA, as discussed in Chapter 2, is a sequential process involving three steps: feature 

extraction, reduction and decision-making. Feature extraction is performed by the use of 
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appropriate signal processing and the decision-making, and is a process to classify the 

obtained features into different categories. 

To facilitate a clearer understanding of the proposed FA schemes, the fundamentals of 

operation and construction of a PMDC motor are presented in more detail. The main 

types of PMDC motor and their faults, and the mechanisms by which they induce fault 

signatures into the machine performance, are also discussed.  

 

3.2 PMDC Motor Fundamentals  

In a PMDC motor, the excitation can be produced in an electromagnetic field by a PM 

such as ceramic, alnico and rare earth varieties instated of an external DC supply 

(Krishnan 2001). In the construction of electrical machines, PMDC motor bring the 

following benefits  (Ahmed et al. 2014) :  

 There are no excitation losses, which mean substantial increases in efficiency 

because no electrical energy is absorbed by the field excitation system.   

 Permanent magnet excitation has a higher torque and output power per volume than 

electromagnetic excitation.  

 The dynamic performance is better than motors with electromagnetic excitation. 

 PMDC motors are simple in construction and maintenance. 

 

Alternatively, PMDC motor are subjected to limitations, including demagnetization 

owing to excessive current in the motor winding or overheating Also, the magnets in 

PMDC motor are limited in air gap flux density. However, with development magnetic 

material these characteristics are becoming less restrictive for PMDC design (Fitzgerald 

et al. 2003). 

 

file:///E:/permanet
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The common types of permanent magnet motor used in industry can be classified as 

follows: 

 
   

 PMBDC motor, where a permanent magnet provide the excitation.  

 PMSM where a permanent magnet replace the DC rotor excitation winding. 

 Line-start PMSM, where synchronous machines are equipped with a squirrel-cage, 

induction-type rotor winding for line starting. A permanent magnet embedded in the 

cage synchronises the motor. 

 Doubly salient PM motors, where switched reluctance motor with permanent magnet 

is embedded in the stator or rotor side. 

 

3.2.1 PMBLDC motor principles 

 

A PMBLDC motor’s physical appearance is supplied by an inverter that converts a DC 

voltage to three-phase alternating-current voltages, with the frequency corresponding to 

rotor instant velocity. Owing to PMBLDC motor advantages, such as high efficiency, 

long operating life and high torque to inertia ratio, the PMBLDC motor is an essential 

component in aircraft electrical power systems, such as electro mechanical actuators 

(EMA) of its flight control surfaces and cabin pressure valves (Garcia et al. 2008,). 

        

The construction of a PMBLDC motor is very similar to the AC motor. The stator 

windings of a PMBLDC motor are similar to those in a poly phase AC motor, and the 

rotor is composed of one or more permanent magnet (see Figure 3.1). The major 

difference between the motors is in rotor construction and the addition of rotor position 

sensors such as encoders or Hall Effect devices.  
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Figure 3.1 PMBLDC motor structure (Maxon motor 2010). Permission to reproduce this 

figure has been granted by Maxon motor 

 

 

Table 3.1 Comparison between advantages and disadvantages of PMBLDC motor and 

conventional DC motor (Jian 2011) 

 

Characteristic Brushed DC motor Brushless DC motor 

Commutation 

control 

Mechanical contact between 

 brushed and commutator  

Electronic commutation using 

transistors  

Rotor position 

detection 
Automatic detection by brushed By hall sensor, optical encoding 

Maintenance Regular Maintenance needed   Usually no maintenance required  

Connection with 

external circuit 

By reverse of the terminal voltage  By rearranging logic sequencer  

Electric noise 

generation 

Arcs in the brushes will generate 

high noise. 

Low noise, generation 

 

Power losses 

and   efficiency 

Additional electrical and 

 mechanical brush losses  There is no brushes loss 

Speed Range 

Lower speed range due to 

Mechanical limitations by the 

brushes/commutator  

Higher speed range 

 

Control 

Requirements 

 

No controller is required for 

fixed speed 
A controller is always required 

to keep the motor running 

 

 

 

Ball bearings 

Housing 

Hall sensor  

Rotor 

(Permanent magnet) 

Control magnet  



42 
 

These sensors provide electrical signals the control uses to sequentially energize the 

three-phase windings to produce maximum rotor torque and desired rotation direction. 

The advantages and disadvantages of the PMBLDC motor and conventional brushed 

DC motor are illustrated in Table 3.1 (Yedamale 2003, Hill 2004).  

 

PMBLDC motor drives fall into two principal classes of sinusoidal excited and square 

wave (trapezoidal excited) motors. Figure 3.2 shows the equivalent circuit for three 

phase of a PMBLDC motor, the stator winding each with 𝑁𝑠 equivalent turns and 

resistance 𝑟𝑠. The main elements of a PMBLDC motor are the permanent magnet motor, 

inverter, rectifier, shaft position sensor (Hall sensor, encoder) current detector, and 

controller (Yan et al. 2014).               

 

 

 

 

Figure 3.2 Electrical circuit layout of the PMBLDC motor  
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Many different approaches such as physical, finite element (FE) and quadratic axis 

(DQ) mathematical models have been implemented for motor modelling. Mohammed et 

al. (2005) compared between these models and showed that DQ provides an inaccurate 

model for the PMBLDC motor as it ignores the harmonic effects caused by pole shape 

and gives a very smooth torque.  

 

The DQ model is based on the assumption that both the winding flux linkage and the 

working flux distribution are sinusoidal. Mohammed et al. (2006) applied an FE based 

physical phase variable model and the model was capable of providing information 

about the location and severity of the short circuit faults. On the other hand a physical 

phase variable model provides the same accuracy of as an FE model but with much 

faster simulation speed.  

 

This report undertakes a good compromise between computational complexity and 

model accuracy, and the model developed here is versatile for representing both the 

healthy and the faulty condition of the PMBLDC motor. The following assumptions 

were made while designing the model here (Krishnan 2001). 

 

 Voltage drop across the electronic control circuit (diodes, transistors and the 

connecting wires is negligible) 

 The cogging torque of the motor is ignored  

 The induced harmonic in the rotor due to stator harmonic fields is ignored 

 The iron and stray losses are also neglected  

 Saturation is neglected 

 Eddy current and hysteresis losses are neglected   

 

The PMBLDC motor system is defined by the following equations: 

 

 𝑉𝑎𝑏𝑐 = 𝐼𝑎𝑏𝑐 . 𝑅𝑎𝑏𝑐 + 𝐿𝑎𝑏𝑐
 𝑑𝐼𝑎𝑏𝑐

𝑑𝑡
+ 𝑒𝑎𝑏𝑐  (3.1) 
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ℎ𝑎𝑏𝑐 = 𝐿𝑎𝑏𝑐 . 𝐼𝑎𝑏𝑐  (3.2)  

𝐿𝑎  = 𝐿𝑎  = 𝐿𝑐 = 𝐿𝑠   (3.3) 

𝐿𝑎𝑏=   𝐿𝑏𝑐=   𝐿𝑐𝑎=   𝐿𝑚     (3.4)  

The stator phase voltage equation is given by: 

[
𝑉𝑎

𝑉𝑏

𝑉𝑐

] = [

𝑅𝑎 0 0
0 𝑅𝑎 0
0 0 𝑅𝑎

] [
𝐼𝑎
𝐼𝑏
𝐼𝑐

] + [
𝐿𝑠 𝐿𝑚 𝐿𝑚

𝐿𝑚 𝐿𝑠 𝐿𝑚

𝐿𝑚 𝐿𝑚 𝐿𝑠

] 𝑝 [
𝐼𝑎
𝐼𝑏
𝐼𝑐

] + [

𝑒𝑎

𝑒𝑏

𝑒𝑐

] (3.5)  

The electromechanical torque generated by the motor is expressed as: 

                          𝑇𝑒𝑚 = 𝐽
𝑑𝑤𝑟

𝑑𝑡
+ 𝛽𝑤𝑟 + 𝑇𝑙    (3.6) 

Speed of motor is proportional to the position of the rotor and given by: 

𝑑𝜃

𝑑𝑡
=  𝑤𝑟 

                                                    (3.7) 

   

where 𝑉𝑎𝑏𝑐 is three phase voltage, 𝑅𝑎𝑏𝑐  is stator resistance, 𝐼𝑎𝑏𝑐 is three phase stator 

current, ℎ𝑎𝑏𝑐 is flux linkage, 𝐿𝑠 is self-inductance, 𝐿𝑀 is a mutual inductance, 𝐿 is 

inductance, 𝑇𝑒𝑚 is an electro mechanical torque, 𝑤𝑟 is a rotor speed, 𝜃 is an electrical 

position of the rotor flux, 𝑇𝑙 is the load torque and 𝑒𝑎𝑏𝑐 is the back emf.  

 

 

 

Figure has been removed due to Copyright restrictions 

 

 

Figure 3.3 A trapezoidal Back-EMF (Yedamale 2003) 
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Square wave motors, meanwhile, are also fed with three-phase waveforms shifted by 

120°one from another, but these wave shapes are rectangular or trapezoidal. Such a 

shape is produced when the armature current is precisely synchronised with the rotor’s 

instantaneous position and frequency, as illustrated in Figure 3.3. Sinusoidal excited 

PMBLDC motor are fed with three-phase sinusoidal waveforms and operate on the 

principle of a rotating magnetic field, in which all phase windings conduct current at a 

time.   

 

3.2.2 PMBDC motor principles 

PMDC motor are widely used for low power applications and are often the preferred 

choice when considerations such as freedom from maintenance and operation under 

adverse conditions are factors (Gieras 2009). The structure of a PMDC motor is based 

on replacing field winding by a PM located in the stator to generate a magnetic field and 

armature windings, located in the rotor.  

 

The magnetic field of the PMDC motor is generated by PM so no power is used to 

create the magnetic field structure as shown in Figure 3.4. The stator magnetic flux 

remains essentially constant at all levels of armature current and, therefore, the speed 

with. torque curve of the PM motor is linear over an extended range.  

 

The brushes allow mechanical connection with a set of a commutator, which connects 

with the armature winding and the current follows to the armature windings through a 

set of slip rings and brushes that make mechanical connection with commutator. The 

ideal brush selection offers low voltage loss, no arcing, little commutator wear, and 

generates little noise. Changes in direction of rotation can be achieved by varying 

voltage polarity. Figure 3.5 shows the schematic circuit diagram for a PMDC motor.  
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Figure 3.4 PMBDC motor structure Maxon motor (2010). Permission to reproduce this 

figure has been granted by  Maxon motor 
 

 

 
 
 

 
 

Figure has been removed due to Copyright restrictions 
 
 
 

 
 

Figure 3.5 Equivalent circuits for a PMDC motor (Ivan 2013) 

 

A differential equation for the equivalent circuit can be derived by using Kirchhoff’s 

voltage law around the electrical loop (Joyce et al. 2014).  

 

𝑉 − 𝑉𝑅 − 𝑉𝐿 − 𝑉𝑏 = 0 (3.8) 

 

The voltage across the resistor can be represented as  

𝑉𝑅 = 𝑖𝑎𝑅        (3.9) 

𝑉𝐿 = 𝐿
𝑑𝑖𝑎

𝑑𝑡
                             (3.10) 

 

Housing  

Ball Bearing   

Ball bearing  

Commutator  

Brushes  

Press ring  

Press ring  

Permanent magnet  
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where 𝐿 is the inductance of the armature coil R is the resistance and 𝑖𝑎 is the armature 

current. The back electric motive force (back emf) can be written as:  

 

𝑉𝑏 = 𝐾𝑎 ∅𝑑 𝑊𝑚                 (3.11) 

 

where ∅𝑑 is the net flux, 𝐾𝑎  geometric constant and 𝑊𝑚 is the rotation speed.  

In a PMBDC motor ∅𝑑 is constant so that the Eq 3.11 can be reduced to: 

 

𝑉𝑏 = 𝐾𝑚  𝑊𝑚       (3.12) 

where    

(𝐾𝑚 = 𝐾𝑎 ∅𝑑)                                                                      (3.13) 

 

Substituting eqns gives the following differential equation 

                                       𝑉𝑎 = 𝐼𝑎𝑅 + 𝐿
𝑑𝐼𝑎

𝑑𝑡
+ 𝐾𝑚  𝑊𝑚                (3.14) 

Assuming of the energy balance on the system, the sum of the torques of the motor must 

equal zero. Therefore,    

 

𝑇𝑑 − 𝑇𝑤′ − 𝑇𝑤 − 𝑇𝑚 = 0                                                     (3.15) 

where 𝑇𝑒𝑑 is the electromagnetic torque, 𝑇𝑤′ is the torque due to rotational acceleration 

of the rotor, 𝑇𝑤 is the torque produced from the velocity of the rotor, and 𝑇𝑙 is the torque 

of the mechanical load. The electromagnetic torque is proportional to the current 

through the armature winding and can be written as 

𝑇𝑑 = 𝐾𝑡𝑖𝑎                                                                             (3.16) 

𝑇𝑤′ = 𝐽
𝑑𝑖𝑎

𝑑𝑡
                                                                            (3.17) 

𝑇𝑤 = 𝛿𝑊𝑎                                                                          (3.18) 

where 𝐾𝑡 is the torque constant 𝐽 is the inertia of the rotor and 𝛿 is the damping 

coefficient associated with the mechanical rotational system of the machine. 
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3.3 The Main Faults in PMDC Motor   

The major internal faults in electrical machines can be classified in two main categories: 

electrical and mechanical faults, as shown in Figure 3.6 (Spyropoulos and Mitronikas 

2013). The reasons why electric motors fail in industry have been commonly reported 

as follows (Utthiyuung et al. 2002, Bindu and Thomas 2014) : 

 Exceeding the standard lifetime  

 Abnormal power, voltage, and current 

 Overload or unbalanced load 

 Mechanical, dynamic and thermal stress 

 Electrical stress from fast switching inverters or unstable ground 

 Residual stress from manufacturing 

 Harsh application environment (dust, water leaks, environmental vibration, 

chemical contamination, high temperature) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 The main faults in electrical motors 

Electrical Motor Faults 

Mechanical Faults Electrical Faults 

Bearing Faults  

Broken Rotor Bar 

Eccentricity Faults 

Rotor Winding Faults 

Stator Winding Faults 
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3.3.1 Electrical faults  

 

Electrical faults are usually influenced by power quality, such as variations of frequency 

and unbalanced voltage, and can be categorised as stator and rotor winding, inverter, 

position of sensor faults, and bearing faults.   

 

3.3.1.1 Stator and rotor winding faults 

 

About 21 % of total electrical motor failures are related to stator winding faults (Ojaghi 

et al. 2013). Stator winding faults are usually related to insulation defects due to 

electrical voltage, large stresses of electrical voltage, electro-dynamic forces resulting 

from winding currents, thermal aging from multiple cooling and heating cycles, and 

mechanical vibrations of internal and external sources. There are different types of 

stator faults that may occur in a PMBLDC motor drive and the main faults can be 

classified as: winding short circuit (turn to turn), winding open phase (see Figure 3.7) 

and inverter switch open or short circuit (Kyung et al. 2014).  

 

As a consequence, the principle effects of a turn-to-turn winding insulation short are 

that it results in a three phase impedance imbalance in the stator windings. This leads to 

asymmetries in the phase currents and phase-to-neutral voltages, leading to increased 

harmonic generation and overall performance degradation (Xiangli et al. 2014). 

Furthermore, the resultant short circuit between the copper turns causes a significant 

circulating current to flow in the coil, leading to rapid deterioration and failures (Zouzou 

et al. 2010).  
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Figure 3.7 Stator winding faults 

 

 

3.3.1.2 Inverter switch open or short circuit in PMBLDC motor  

 

Three phase inverter systems consist of three H-bridge inverters connected to a common 

DC power, with capacitor used to drive a motor (Zhu 2008). Inverter power switch 

faults are subdivided into short circuit and open circuit. In short circuits, in most cases, 

switch fault occurs due to one of several reasons, such as extra thermal stresses, which 

could be due to high switching frequency or excessive loading.  

 

Each electronic switch is modelled by a non-linear transistor, which acquires an 

extremely high value when the switch is open and a very low value when it is closed, so 

that during faulty operation the resistors that represent the faulty switch are set to a high 

value. The effect of a power switch open-circuit fault will change the corresponding 

terminal voltage (Jung et al. 2013). 
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3.3.1.3  Position of sensor failure in a PMBLDC motor  

 

Electronic commutation of a PMBLDC motor depends on accurate detection of rotor 

position. There are two main control strategies to determine rotor position. In the first 

one, optical encoders are used for applications with high resolution requirements. In the 

second strategy, Hall effect sensors are used for applications at low speeds with low 

resolution requirements (Tashakori and Ektesabi 2013). 

 

Hall sensors lie stationary, 120 electrical degrees apart, to supply commutation signals 

to part of the motor. Any misalignment in the Hall sensor with respect to the rotor 

magnet will cause an error in determining rotor position (Jiancheng et al. 2014). Many 

factors may cause a breakdown of the Hall effect sensor in PMBLDC motor, including core 

defects such as corrosion, cracks, residual magnetic fields and core breakage, changes in the 

bias current, or changes in the orientation of the induced magnetic field in the sensor due to 

mechanical shocks (Balaban et al. 2009).  

 

3.3.2 Mechanical related faults 

 

Mechanical faults can be related to: rotor eccentricity, broken rotor bar, end ring faults, 

load faults (unbalance, gearbox fault or general failure in the load part of the drive), or 

bearing faults.  

 

 3.3.2.1 Eccentricity related faults  

Machines can fail due to an air gap eccentricity, caused by shaft deflection, inaccurate 

positioning of the rotor with respect to the stator, worn bearing stator core movement or 

a bent rotor shaft. There are two types of air gap eccentricity (the static air gap 

eccentricity and the dynamic air gap eccentricity) (Shakouhi et al. 2012). Furthermore, 

rotor bending that result in premature failure of blades and other internal components is 

one of the most serious problems experienced in power plant operations. The problems 
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often reduce plant availability by limiting generation and increase plant operation and 

maintenance cost. Extreme rotor bending defect often led to interaction between the 

turbine’s rotor and stationary parts (eccentricity) (Farshad, S et al 2013). In addition, the 

marine vehicle unbalanced load faults in an electric thruster motor occur when there is 

damage to marine vehicle propeller blades (Oyvind, 2006). 

 

Eccentricity faults come from unbalance, rotor misalignment, improper mounting, or a 

bent rotor shaft and producing of an output torque oscillation (unbalanced magnetic 

pull) and those reduce production efficiency. In addition there are many indication for 

eccentricity faults including mechanical vibration, temperature ununiformed air-gap, 

torque increase, and changes in voltage and line current (Torkaman et al. 2014) . 

 

 

 

3.3.2.2 Broken rotor bar and end-ring faults 

Rotor failures now account for around 5%–10% of total motor failures (Bellini et al. 

2008). Broken rotor bar faults as shown in Figure 3.8 can be caused by the thermal 

stresses due to overload, magnetic stresses caused by electromagnetic forces, inherent 

stresses due to manufacturing, and mechanical stresses due to the effects of lost 

laminations, fatigued parts and bearing failure; these are the main reasons of bars 

breakage occurrence.  

    

 

 

Figure has been removed due to Copyright restrictions 

 

 

 

 

Figure 3.8 Broken rotor bar fault (Wen 2011) 
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3.3.2.3 Unbalanced mechanical load  

Most rotating machinery problems can be solved by using the balancing operation, and 

unbalance is the most common cause of motor vibrations. It reduces the lifespan of 

various mechanical components of motors, such as bearings, shaft and gears  

(Moosavian et al. 2014). 

 

Unbalanced mechanical load, as part of the other electrical motor faults, represents 10% 

of other faults. Stator current time-frequency, torque oscillation and vibration can be 

used as fault indicators (Martin et al. 2006).   

 

3.3.2.4  Rolling element bearing faults  

The bearing rolling element is one of the most common parts in the PMDC motor and 

its defects one of the most common reasons for failure; it represents about 40 to 50% of 

all motor faults (see Figure 3.9) (Bianchini et al. 2011, Bediaga et al. 2013, Xiaohang et 

al. 2014). 

 
Figure 3.9 The main failure distribution of electrical motors 

 
 
 

The bearing structure consists of two rings, inner and outer, as shown in Figure 3.10. A 

set of balls or rolling elements is placed in raceways rotating inside these rings. Rolling 

element bearing characteristics are considered in more detail in Chapter 4.  

 

Bearing 
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40% 
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The vibration frequencies to detect these faults are given by: 

 

                      sf
PD

BDNB
BPFI *)cos1(

2
   (3.19)       

          

                          sf
PD

BDNB
BPFO *)cos1(

2
   (3.20) 

    

   sf
PD

BDPd
BSF *)cos)(1(

2

22    (3.21)  
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fs
n

    (3.22)

    

where: 
 

           fs   : Shaft frequency  

           NB :  The number of balls 

          BD  : The ball diameter 

          Pd  : The diameter of the bearing it measured from ball centre to opposite ball 

centre 

            :  The contact angle. 

         BPFI  : Ball pass frequency inner race 

         BPFO : Ball pass frequency outer race 

         BSF : Ball Spain frequency 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

                                                Figure 3.10 Main bearing design parameters 
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Most of the bearings in industrial applications run under non-ideal conditions, such as 

overloading, misalignment, current fluting and wrong lubrication. These start as 

marginal defects (Wu et al. 2013). Bearing faults can be classified into two main 

categories: a single localised defect on the bearing surface, and generalised  roughness, 

where a large area of a bearing’s surface has degraded and become irregular (Zhenyu et 

al. 2009).   

 

Single localised element bearing defects can be classified into three types, inner race, 

outer race and rolling element defects. The result of such defects is continuing loss of 

the geometric accuracy of the rolling contact surfaces, and gradual deterioration of 

bearing function, leading to increased deflection, friction, temperature and vibration.an 

accelerometer, which is used for vibration measurement, struggles to show the 

difference between detection and diagnosis using vibration signals, because it is directly 

related to the mechanical elements (Bediaga et al. 2013).  

 

When a fault occurs on the inner/outer raceway or the rolling element, the interaction 

between the raceway and rolling elements generates time varying and non-uniform 

discontinuous forces that drive vibrations. In a single local fault, the contact forces that 

generate a specific signature in the vibration signal will be discontinuous.  

 

Typical distributed bearing defects include surface roughness, waviness, misaligned 

races, and off-size rolling elements, which are usually caused by design and 

manufacturing errors, improper mounting, wear, and corrosion (Choudhury and Tandon 

1999). Localised bearing defects include cracks, pits, and spalls on the rolling surfaces, 

which are usually caused by plastic deformation, and material fatigue. Both distributed 

and localised bearing faults increase the noise and vibration levels in real-world 

applications, whereas many distributed faults originate from a localised spelling 



56 
 

(Choudhury 1999). Consequently, in this thesis both types of bearing defect are 

considered. 

 

 

Cracks are the most common localised bearing fault, the most common cause being 

rough treatment such as heavy hammer blows when the bearings are being mounted. 

The hammer blows can cause fine cracks which can grow and cause fragments of the 

ring to break-off when the bearing is put into operation. Another common cause of ring 

cracking is excessive tensile stresses in the rings of a tapered seating or sleeve due to 

excessive drive-up.  

 

The sources of rolling bearing vibration are the external time varying forces between the 

components and the transmission mechanism of the machine during the bearings’ 

operation. The contact force between bearing components is continuous under healthy 

bearing conditions. Therefore, the vibration and stator current signals show a regular 

signature under different operating conditions, as will be explained in detail in Chapter 

5. 

The second type of bearing fault is the generalised bearing fault; this work will focuses 

on the corrosion faults are the second category of bearing faults, denoted as distributed 

or extended defects. Distributed defects also generate individual signatures in vibration 

and current signals (Kurfess et al. 2006). Figure 3.11 illustrated the main causes of 

bearing failure; in the figure corrosion defects represent the most frequent cause of 

bearing failure, which is lubrication related (Lindh 2003). Dimensional discrepancies 

are the next most common cause discrepancies, which are a collective term for damage 

prior to, or during service, due to, e.g., manufacturing flaws, or improper handling 

during installation, such as forcing the bearing into position with hammer blows, these 

two mechanisms caused about 90% of all bearing failures. 

 

 

http://thesaurus.yourdictionary.com/individual
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Figure 3.11 The mean reasons for rolling bearing faults 

 

3.4 Chapter Summary  

This chapter has briefly reviewed the construction and operation of a PMDC motor.   

Basic concepts both of brushed and brushless PMDC motor have been introduced. A 

description of various kinds of mechanical and electrical faults that can occur in a 

PMDC motor has been presented. The experimental setup and data acquisition are 

presented in Chapter 4. 
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CHAPTER 4  

 

Experimental Setup and Data Acquisition 
     

“This chapter introduces the test rig construction and the parameters of measurement 

associated with incipient fault analysis and identification in a rolling element bearing in 

a PMBLDC motor and unbalanced mechanical load in PMPDC motors. The manner in 

which faults are introduced and data acquisitions are described in details”  

 

4.1 Introduction  

To validate the proposed fault diagnosis approach, two experiments are presented for 

the PMDC motor, The first is an experimental setup for rolling element bearing defects 

of a 1.2kW PMBLDC motor, both of single localised bearing defects and generalised 

roughness, as shown in Figure 4.1. Several sizes of fault severity were considered for 

testing purposes.  

 

The second experiment was on blade faults for a trolling motor based on a PMBDC 

motor. Propellers in the trolling motors are durable but not indestructible. Hard surfaces 

can damage blades partly or fully and can imbalance the operation of a trolling motor, 

causing significant damage to the internal parts.  

 

The propulsion system consists of two propellers powered by a set of 24V, 334N Minn 

Kota Riptide transom mounted saltwater thruster motors. Blade faults in the thruster 

motor were simulated with four severities, and the current and vibration signals were 

monitored to diagnose blade faults, which represent unbalanced mechanical load faults. 
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In this chapter, the framework for preparing the data from both the rolling bearing and 

blades faults is introduced, including test rigs and electronic components. Various 

severities of fault are presented 

.  

 

 

(a)  

 

(b) 

 

 Figure 4.1 Types of bearing faults (a) single localised defect, (b) generalised defect 

 

4.2 Experimental Arrangement for PMBLDC Motor Bearing 

Fault Diagnosis   
 
 

Rolling element bearings represent the main source of failures in rotation and are a 

fundamental part in a wide variety of rotating machines. Abnormalities in their 

operation will affect the whole machine’s performance (Prieto et al. 2011).  

 

The aim of this experiment includes three single localised bearing defects on a bearing 

surface, namely the inner race, the outer race and the ball defects. These faults were 

considered in the experiment test. In addition, a generalised roughness over a large area 

of defect (extended fault) was also considered also for experimental purposes. Most 

previous related work deals with fault diagnosis under stationary operating conditions.  

 

In this work rolling element bearing faults of a PMBLDC motor were tested under 

stationary and non-stationary running speeds and load conditions, and the radial 
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vibration and stator current of motor signals were recorded, and then features were 

selected from these signals for training a DRNN, which was implemented for fault 

classification.   

          

The whole experimental setup to acquire bearing normal and fault data is illustrated in 

Figure 4.2. The setup consisted of a test rig with bearings with normal and abnormal 

conditions, an accelerometer and current sensors, function generator, DC generator and 

a load that was changed using variable resistive load, Matlab interface software and data 

acquisition system (Arduino), which will be explained in detail in the following 

sections.   

 

A laboratory prototype motor driver has been built to collect bearing fault signals. The 

overall experimental setup is illustrated in Figure 4.2 (b) and the key specifications of 

the tested PMBLDC motor are summarised in Tables 4.1 and 4.2. It consists of a 

1.2kW, 4000rpm, 50 Hz three phase PMBLDC motor, connected through a flexible 

coupling (D30 L42 SY) to a DC motor operating as a DC generator and acting as a load. 

To apply variable loads to the tested motor, the armature circuit of the DC generator is 

connected to variable resistor banks.   

 

(a) 
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 (b) 

Figure 4.2 Experiment configurations PMBLDC motor bearing fault: (a) image, (b) 

schematic 
 
 

                                Table 4.1 Parameters of experiment for PMBLDC motor  

  

 

 

 

 
 

                                   Table 4.2 Experiment setup requirements  

 

 

 

 

 

Parameters Data 

Rated power         400 W 

  Rated voltage 60 VDC 

Rated speed    3000 RPM 

Rated torque 1.27 Nm 

     Torque constant       0.161 Nm/A 

  Rated current        8.4 A 

       Inductance 0.59 mH 

No                   Equipment 

1 PMBLDC motor  

2 Flexible coupling  

3 DC motor 

4 Motor driver  

5 DC power supply (Battery) 

6 Function Generator  

7 Variable Resistive Load  

8  Data acquisition  system (Arduino ) 

9 Current sensor 

10 Accelerometer 

Function generator  
PMBLDC 

motor  
DC motor with flexible 

coupling  

Variable resistive 

load  

DSD806 Digital 

Drive 

Data question 

system  

http://www.google.co.uk/url?sa=t&rct=j&q=data%20acquisition%20system&source=web&cd=1&cad=rja&ved=0CEUQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FData_acquisition&ei=FYosUtiOMsXI0AWe1oGoBw&usg=AFQjCNG1p7ZMfTfP1cSt-nloqWpnaFjIiA&bvm=bv.51773540,d.d2k
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4.2.1 Test rig construction and components for PMBLDC motor 

bearing fault diagnosis   
 

The load can be adjusted by changing the resistance rheostat connected to the motor. To 

emulate a load fluctuation condition, a torque reference is applied to the DC motor that 

allows increasing or decreasing of the load from 0% up to 100 % of the rated torque of 

the PMBLDC motor. 180 tests were performed to collect data at normal, abnormal, 

stationary, non-stationary operating conditions and under different of fault severities. 

 

The PMBLDC motor is driven by an inverter that features an integrated current control 

loop and provides the electronic commutation necessary to operate the PMBLDC 

motor. A 24V lead-acid battery was used to supply the PMBLDC motor, through a 

digital servo drive DSD806. Hall sensors mounted on the rotor shaft provide position 

control feedback information through a DSD806.    

 

A 3-axis accelerometer (MMA7361) was mounted on the motor bearing housing to 

collect vibration signals, and three axes of acceleration were measured. Since the 

accelerometers are usually mounted on the bearing frame, the collected vibration data 

also contains machinery components vibration. 

 

The contact force between bearing components is continuous under healthy bearing 

conditions. Therefore, the vibration signal shows a regular signature or characteristic. 

When a defect or fault occurs on the inner/outer raceway or the rolling element, the 

interaction between the raceway and rolling elements generate time-varying and non-

uniform discontinuous forces that drive vibrations. Additionally a current sensor 

(ACS714) was used to read the stator current and the load variance using variable 

resistive load. The experiments were conducted for various load conditions ranging 

from no load to full load and the rotating speed varied through 600, 900 and 1200 rpm.  

 

http://www.pololu.com/product/1185
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4.2.2 Drive user interface system 

The operation of the tested drive is controlled by the motor driver model (DSD806) as 

shown in Figure 4.3 and it is supplied by a DC power supply. DSD806 was developed 

with 32-bit DSP based on an advanced control algorithm. Their input commands are 

PUL/DIR signals or ±10V analogue input. A motor driver’s characteristics are 

illustrated in Table 4.3. The DSD806 driver can offer high precision, high speed and 

high reliability of performance. A DC machine was directly coupled to act as a 

dynamometer. Since the field circuit of the DC machine was separately excited, an 

independent DC voltage supply was used to provide the excitation current. 

 

 

           Figure 4.3 DSD806 motor driver (Motion control product LTD 2009)permission 

to reproduce this figure  has been granted by Motion control product LTD 

 

               Table 4.3 Features of DSD806 motor driver 

 

 

 

 

 

 

no Features 

1 Input voltage: 18VDC – 80VDC 

2 Peak current: 18A and continuous current 6A (max.) 

3 Self-test function with trapezoidal velocity profile 

4 Encoder output  

5 Support PUL/DIR and CW/CCW control signals 

6 Suitable for 50W-400W servo motors  

7 Support clock & direction or ±10V analogue input 
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4.2.3 Current sensor module ACS712 

The ACS712 is an analogue input that provides accurate measurement of AC and DC 

currents. The main features of the current sensor model ACS721 are 5A range, 5.0 V, 

single supply operation and low-noise analogy signal path. The device consists of a 

precise, low-offset, linear Hall circuit with a copper conduction path located near the 

surface of the die. Applied current flowing through this copper conduction path 

generates a magnetic field, which the Hall IC converts into a proportional voltage. 

Device accuracy is optimised through the close proximity of the magnetic signal to the 

Hall transducer. The output of the device has a positive slope when an increasing 

current flows through the primary copper conduction path (from pins 1 and 2, to pins 3 

and 4). The internal resistance of this conductive path is 1.2 mΩ typically, providing 

low power losses. Figure 4.4 (a and b) illustrate the board of ACS712 and its schematics 

respectively. 

 

(a) 

 
(b) 

Figure 4.4 Current Sensor: (a) board and (b) schematic (Allegro Micro Systems 2013), 

permission to reproduce this figure  has been granted by Allegro Micro Systems 
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4.2.4 Vibration sensor model MMA7361 
 

MMA7361 is a three-axis analogue accelerometer and the main features are Low 

current consumption: 400 μ A, low voltage operation: 2.2 V – 3.6 V with voltage 

regulator, signal conditioning with low pass filter, high sensitivity (800 mV/g at 1.5g) 

and low cost. The MMA7361L includes a sleep mode (3 μ A) that makes it ideal for 

handheld battery-powered electronics, Figure 4.5 (a and b) illustrate the board of 

MMA7361 and its schematics. 

 

 

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.5 Accelerometer sensor Freescale (2008), permission to reproduce this figure  

has been granted by Freescale  

 

 

 
 

 

                (a) 

 

                                                        (b) 
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4.2.5 Data acquisition system  

The data acquisition system was designed to acquire radial vibration and stator current 

signals used for bearing defects on a bearing surface, and a generalised roughness, over 

a large area of rolling element bearing faults. It consisted of an Arduino omega 2520 

model. It can receive input from a variety of sensors and can affect its surroundings by 

controlling lights, motors, and other actuators. The microcontroller on the board is 

programmed using the Arduino programming language (based on Wiring) and the 

Arduino development environment (based on processing), as shown in Figure 4.6 (a). 

 

The Arduino incorporates a 10 bit ADC (analogue-to-digital converter), converting the 

input voltage range, 0 to 5 volts, to a digital value. Figure 4.6 (b) is a schematic drawing 

of how the devices are connected to current and vibration sensors. Data acquired from 

both vibration and current sensors was logged to a Laptop (2.4GHz) at a sampling rate 

of 300 Hz for 60s periods, so that 18000 data points were logged under healthy 

operating conditions as well as with the motor running with each type of bearing defect 

(inner, outer, ball faults and corrosion).  

 

For each of these, the tests were carried out at three different constant speeds (600, 900 

and 1200rpm) while varying the load from no-load to 100% of the rated load, and then 

again at three different constant loads (no load, 50% rated load and 100% rated load) 

while varying the speed from 600 to 1200 rpm in order to study their possible effects on 

diagnosis performance. The test motor includes motor in a healthy case, motor with 

single localised bearing faults and with generalised bearing faults. 

 

Arduino projects can be stand alone or they can communicate with software running on 

a computer, using Visual Studio in this experiment test system. Visual Studio was 

implemented to build a data capture interface. Arduino code was implemented to record 

http://arduino.cc/en/Reference/HomePage
http://wiring.org.co/
http://www.processing.org/
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as shown in Figure 4.7 and Arduino specification is illustrated in Table 4.4, while the 

Matlab 2013a environment was used for analysis.          

 

 
                                                               (a) 

 
 

 
 

Figure 4.6 Arduino omega 2560 (a) Board image (b) Schematic drawing of Arduino-

sensors connection 
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Figure 4.7 Data capture interface  

 

                             Table 4.4 Arduino omegas 2560 specification 
 

Arduino Specification 

Microcontroller AT mega 2560 

Operating Voltage 5V 

Input Voltage 7-12V 

Analogue Input Pins 16 

Digital I/O Pins 54 

DC Current per I/O Pin 40 mA 

Dc current sensor for 3.3 v  50 mA 

Clock Speed 16 MHz 

 
 

 

 

4.3 Rolling Element Bearings of Single Localised fault  
 
 

 

4.3.1  Outer race localised fault 

The outer race is mounted in the machine housing and so will not usually rotate. A 

crack fault was introduced into the outer race with different severities were created 

using electric spark erosion as shown in Figure 4.8. Data was collected under stationary 

and non-stationary operating condition as illustrated in Tables 4.5 and 4.6 respectively 
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           (a) 

 
 

       (b) 

 
 

(c) 
 

Figure 4.8 Outer race rack fault with different severities: (a) 0.2x1x3 mm, (b) 0.5x1x6 

mm and (c) 3x1x9 mm 

 

4.3.2 Inner race localised fault  

The inner race is mounted on the shaft of the machine and so will usually be the rotating 

element. A localised inner race fault was introduced in the same manner to the outer 

race fault. A crack fault was simulated on the inner race with in three severities, as 

shown in Figure 4.9. 

                 Table 4.5 Single localised bearing faults under stationary operating conditions 
 

Fault Fault Severity 

Width x depth 

(mm) 

Operating condition 

Load 

conditions 

speed (rpm) 

Inner race        1x3x9  

No-load, 

Full load, 

Half rated load 

 

 

600 

900 

1200 

 

0.5x1x6 

0.2x1x3 

Outer race        1x3x9 

0.5x1x6 

0.2x1x3 

Ball Defects 
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               Table 4.6 Single local bearing faults under non-stationary operating conditions 

Fault Fault Severity 

Width x depth 

(mm) 

Operating condition 

Load 

conditions 

speed (rpm) 

Inner race        1x3x9  

 

Variable load  

 

 

600 

900 

1200 

0.5x1x6 

0.2x1x3 

Outer race        1x3x9 

0.5x1x6 

0.2x1x3 Full load 

Half load  

No load 

Variable speed  

Ball Defects 

 

 

 
Figure 4.9 Outer race crack fault with different severities: (a) 0.2x1x3 mm, 

(a) 0.5x1x6 mm, and (c ) 3x1x9 mm 

 

 

 

(a) 

 

(b) 

 

(c) 
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4.3.3 Ball defect  

 
The rolling elements used in rolling bearings are generally ball, roller bearings and 

tapered roller, as shown in Figure 4.10. The ball bearing transfers the load by point 

contact with the raceway, so its load-carrying capacity is lower than that of a roller 

bearing. Rolling bearings are so constructed as to allow the rolling elements to rotate 

orbitally while also rotating on their own axes at the same time. The rolling elements 

are usually made of “bearing steel” a type of carbon chromium steel (Emerson bearing 

1996). 

 

 

Figure has been removed due to Copyright restrictions 

 

 

 

 

Figure 4.10 Types of rolling elements bearings (Jens 2014) 

 

 

4.4 Rolling Element Bearing with Generalised Faults under 

Laboratory Conditions   
 

A corrosion fault was simulated in the Lab for experimental purposes, using an ultra-

sonic device to remove the graze, to study the effect of lubrication on bearing 

performance, and then using hydrochloric acid (HCL) to simulate faults of four 

severities, as shown in Figure 4.11.  
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                                 (c)  

 
(a)  

 
(b)  

 

Figure 4.11 Corrosion fault LAB simulator: (a) bearing cleaning, (b) corrosion fault   

simulator, (c) bearing under corrosion fault 

 

 

Figure 4.12 Rolling element faults under different severities of corrosion faults  
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Corrosion faults will form if corrosive material or moisture/water enters the bearing, so 

that the lubrication no longer provides adequate protection for the steel surfaces of the 

bearing (see Figure 4.12). It is usually accompanied by increases in the vibration and 

current signals (Abdusslam 2012). 

 

4.5 Experimental Setup for Thruster Motor Fault Diagnosis  
 

Although modern ship automatic systems are endowed with highly sophisticated 

subsystems (which are expensive) they also possess manual override facilities in case of 

emergencies and unforeseen occurrences. However, the luxury of such facilities does 

not exist on board relatively low cost USVs.  

USVs are now being employed by the scientific, offshore and naval sectors to perform a 

multitude of different tasks with great effect. As a consequence of their success, these 

sectors are now demanding longer mission lengths, coupled with increasingly more 

vehicle autonomy.  

With an escalation in autonomy comes the need for higher reliability in order for them 

to better cope with unexpected events. Hence there is a growing interest in the use of 

fault detection and diagnostic techniques in USVs. At Plymouth University the Springer 

USV has been built and continues to be developed by the Marine and Industrial 

Dynamic Analysis Research Group (MIDAS). 

 

4.5.1 Test rig construction and components for thruster motor blades 

fault diagnosis   
 
 

The propulsion system consists of two propellers powered by a set of 24V, 334N Minn 

Kota Riptide transom mounted saltwater trolling motors. In common with many USVs, 

PMBDC motor’s is used to provide the means of propulsion, owing to their high 

efficiency, size and weight.  
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Thus the timely isolation of faults in a motor will ensure the integrity and safety of a 

vehicle whilst not adversely affecting the overall system performance. In practice when 

undertaking a mission, if necessary, a fault detection and diagnosis can be instigated on 

board a USV whilst at the same time using telemetry to supply its mission control centre 

with a status report. The objective of this chapter is to devise the experimental setup for 

the calculation of a PMDC motor based trolling motor. Both motors parameters, 

including vibration and current under normal and abnormal operating conditions, are 

collected and used to diagnose blade faults (unbalanced mechanical load).  

 

Propellers in the thruster motors are durable but not indestructible. Hard surfaces can 

damage blades partly or fully and can imbalance the operation of a trolling motor, 

causing significant damage to the internal parts. The diagnoses of these faults are thus 

necessary for the healthy operation of the thruster motors and critical for USV 

operations. As shown in Figure 4.13, the proposed technique was used to show the 

behaviour of the motor under normal operating condition and four faulty conditions in 

10% (F1), 25% (F2), half (F3) and full cut (F4). 

 

  

  
 

 

Figure 4.13 Faults in the blades of the thruster motor (a) 10% f and (b) 25%, (c) 50% 

and (d) full cut 
 

a b 

c 
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 Figure 4.14 (a) shows the laboratory set up for the trolling motor and Figure 4.14 (b) 

represents its schematic diagram.. A pulse width modulation (PWM) switching 

technique was used for controlling the speed of the trolling motor by changing the duty 

cycle of the pulse, as shown in Figure 4.15.  

 

 

 (a) 

 

 

 

 

 

 

 

 

                  

 

 

            (b)  

 

Figure 4.14 Trolling motor: (a) experimental setup, (b) Schematic of experiment se 

6 

Motor driver  

 

Accelerometer and 

Current Sensors 

NI daq 6009 

Battery  

 

Current and 

Vibration signals  

 

Feature Extraction  Feature Reduction  Fault Diagnosis 
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A linear current sensor was used to measure the stator current and 3-axis accelerometer 

(ADXL325) with a full-scale range of ±5 g and bandwidth of 0.5 Hz to 1600 Hz was 

mounted on the flat surface of the propeller to record the vibration signal. Sensor 

outputs were logged into a PC via a data acquisition card (NI USB-6009 multifunction 

I/O device). Matlab was used to change the duty cycle of the PWM signals and the 

motor was powered by a 24V battery supply. 

Data was gathered for five cases: no fault (normal operating conditions), and faults F1–

F4, at a sampling rate of 10 kHz for duration of 30 sec,300,000 sample points were 

obtained for current and vibration at variable rotor speeds.  

 

Figure 4.15 PWM Waveforms  (Kuphaldt 2009) 

 

4.5.2 Motor driver circuit 

 

The motor drive circuit includes the following components: 

An operational amplifier (MCP604) has been used in the circuit driver. This microchip 

element is suitable for working with low power. MCP604 is implemented to produce a 

square wave. The high frequency PWM power control system can be realised using 

semiconductor switches. In this report a metal oxide semiconductor field effect 
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transistor (MOSFET) driver (TC429) has been used to drive high capacity power 

MOSFET gates, as shown in Figure 4.16. 

 

 

Figure 4.16 MOSFET circuit diagram, (Administrator 2005). Permission to reproduce 

this figure has been granted by Administrator 
 

 

 

When the MOSFET is turned off this causes a voltage spike, so a main capacitor is 

connected in parallel with the battery to absorb a spike voltage, and when MOSFET 

turns on again the main capacitor supplies current during the period when the battery 

current is being re-established.   

 

Diode (1N404) was used to absorb the recoil reverse voltage to protect the MOSFET 

from high voltage. It must be able to generate voltage signal (0-5) v trough NI 

DAQ6009. However, the typical voltage signal that a computer generates does not have 

sufficient current to power the motor, so an amplifier is used to send an amplified signal 

to the motor by switching MOSFET on and off. 

To protect MOSFET from power dissipation and high currents, a heat sink was used in 

the present circuit. It allows an increase in surface area in contact with air. A voltage 

regulator was used to supply the required voltage (12v) to the current sensor as shown 

in Figure 4.17 (a and b) and Figure 4.17 c illustrate the schematic diagram of the motor  

driver. 

http://blog.savel.org/author/administrator/
http://blog.savel.org/author/administrator/
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Figure 4.17 (a) and (b) motor driver boards and (c) circuit diagram of the motor driver  

 
(a) 

 

 
 

(b) 
 

 
 

(c) 
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4.5.3 Current sensor  

The Honeywell CS series linear current sensor is illustrated in Figure 4.18. The sensing 

element is assembled in a printed circuit board mountable housing. The combination of 

the sensor, flux collector, and housing comprises the holder assembly. The main 

features of CSLA are: linear output, AC or DC current sensing, fast response time, 

minimum energy dissipation, reliable operation, reliable low cost sensing, and an 

operating temperature range of -25 °C to 85 °C. 

 

 

 

Figure has been removed due to Copyright restrictions 

 

 

Figure 4.18 CSLA Series linear current sensor (Honeywell Inc 2014) 

 

4.5.4 Vibration sensor  

For the experimental study, a 3-axis accelerometer (ADXL325) was used, with a 

minimum full scale range of ±5 g, sensitivity 174 mv/g and bandwidth 0.5 Hz to 1600 

Hz. It was mounted on the motor bearing house to collect vibration signals, with a 

voltage supply operation between (1.8-3.6) v and supply current 350µA (Analog 

Devices 2009). Figure 4.19 (a & b) illustrate the accelerometer board and its schematics 

respectively. 
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(a) 

  

(b) 

 

Figure 4.19 ADXL325 Accelerometer: (a) board, (b) schematics (Analogy devices 

2014). Permission to reproduce this figure has been granted by Analogy devices 

 
 

4.6 Data acquisition system  

The Data Acquisition system (DAQ) used: NI-6009 from National Instruments provide 

the connection to eight single ended analogue input (AI) channels, two analogue output 

(AO) channels, 12 digital input/output (DIO) channels, and a 32-bit counter with a full-

speed USB interface, 0 or 5V, (8.5 mA for outputs) and 1 counter. The LabVIEW 

software driver was installed and properly configured.  
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The Data Acquisition Toolbox in MATLAB is needed in order to write and read data to 

and from a USB-NI 6009 DAQ. These software drivers will ensure and establish a 

communication link between the computer and the electronic equipment. The 32-bit 

version of the DAQ Toolbox supports National Instruments devices that can be used 

with this interface.  

The Lab View software driver must be installed and properly configured, as shown in 

Figure 4.20. In general, data acquisition programming with NI-DAQ involves the 

following steps:  

 

 Initialization needs to specify which ports are being used. 

 Acquiring data  Start AI, not a manual trigger, and extract all data from sensors 

 Perform read operation from DAQ 

 Perform write operation from DAQ 

   Stop and Clear the Task. 

 

To connect sensors to NI-DAQ, a current sensor is connected to an analogue input 

voltage with port (aio), the accelerometer is connected to the analogue input port with 

(ai1) and the digital input speed connected to the digital input (ctrl.0); NI-DAQ device 

is designed to handle maximum signals od 5.0Volt and there is common ground (GND) 

as detailed in Figure 4.21 (a and b). Moreover the Intel® core i5-2140M computer with 

central processing unit of 2.40 GHz and 6.0 GB was used in real time implementation. 

 

 

http://www.google.com/aclk?sa=l&ai=CTuPYV84WVKPADYLg7gaY6ICQB9WJ5eQH5ar9i6kB8aD3mFMIABABUM3Zq_kEYLvutIPQCqAB47fM4gPIAQGqBChP0AxzyC-_os0-JiinQmLkrRGDXfoeziDtqoTWYMbr8R_MoksEG4XRgAeFyLMdkAcDqAemvhs&sig=AOD64_2DQLDZAGWhOq-JAZnax8fJ2NEhpQ&rct=j&q=&ved=0CB0Q0Qw&adurl=http://506.xg4ken.com/media/redir.php%3Fprof%3D114%26camp%3D92730%26affcode%3Dkw136748%26cid%3D45372213453%26networkType%3Dsearch%26kdv%3Dc%26url%5B%5D%3Dhttp%253A%252F%252Fwww.intel.co.uk%252Fcontent%252Fwww%252Fuk%252Fen%252Fall-in-one%252Fall-in-one.html%253Fcid%253Dsem114p136748g-c
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Figure 4.20 DAQ connection: (a) analogue input, (b) digital output 

Assistant of Lab VIEW 8.0 version was used, and the programming steps are as 

follows: setting some parameters including the signal type, sampling rate, sampling 

number and sampling method in a new DAQ Assistant task; transforming the task into a 

sub VI to generate a graphical code.  

Lab VIEW has two main areas in which an application is created. The first area is called 

the front panel. This is where the architecture of the application is designed. Controls 

and indicators are placed on the front panel. They are the interactive input and output 

terminals of the application. Common controls of the front panel include knobs, push 2 

buttons, and dials. Common indicators include graphs, slide devices, and digital 

displays. Figure 4.21 shows the virtual instrument (VI) a block diagram where NI-DAQ 

card is used to collect and send data.VI allows the user to control the speed of the 

thruster motor by changing the frequency then collect line current and vibration signals  

 

(a)  

 

(b) 
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                Figure 4.21 Block diagram for interfacing built using LabVIEW and NI-DAQ 

 

4.7 Chapter Summary  

This chapter introduced the experiment design and the data acquisition system used to 

validate the proposed research schema for PMBDC motor rolling element bearing and 

PMDC motor blades fault diagnosis. The structure of the experiment prototype and 

details of instruments used have been described. Both single localised and generalised 

bearing faults were simulated under different degrees of severity to measure the 

performance of the bearings. Vibration and current signals were collected during the 

experiment under stationary and non-stationary operating conditions. Also in this 

chapter, blade faults of thruster motors based on a PMBDC motor were simulated for 

four levels of fault severity, under stationary operating conditions, and data acquisition 

for vibration and motor current signals was considered.   
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CHAPTER 5  

 

PMDC Motor Faults Analysis under 

Stationary and Non-Stationary Operating 

Conditions 
 
 

“This chapter introduces raw vibration and current measurements as indicators for 

fault detection and diagnosis in roller bearings and unbalance mechanical load faults 

under stationary and non-stationary operating conditions” 

 

 
 

5.1 Introduction  
 

After presenting the experimental set-up in Chapter 4, for both rolling element bearing 

and thruster motor blades faults, this chapter introduces both stator current and radial 

vibration signals at different speed and load conditions, to validate the proposed fault 

diagnosis approach. Localised and generalised roughness bearing faults of PMBLDC 

motors at different severities of defect are considered. In addition, fault diagnosis of 

generalised roughness bearing defects is common in industry, but there is a little 

research in the available literature about this type of faults. However, only a few studies 

in the available literature have used current and vibration for fault diagnosis 

 

The difficulty of research about generalised roughness or extended faults is that there 

are no characteristic fault frequencies reflected by the current or vibration signals 

associated with generalised roughness faults (Immovilli et al. 2009). 
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This chapter is organised as follows: after the introduction, the ability of stator current 

and vibration signals for fault indication is presented in section 5.2. The normal 

characteristics of rolling element bearing are discussed in section 5.3.  

 

Localised bearing faults phenomena under stationary and non-stationary operating 

conditions are presented in section 5.4; the discussion includes the measured data of 

cooperation between time waveform and spectrum under stationary operating 

conditions. Next, generalised roughness (extended) bearing defects under a multitude of 

fault severities with stationary and non-stationary operating conditions are presented in 

section 5.5.  

 

To validate the proposed fault diagnosis approach, unbalance mechanical load faults 

(blades fault) of thruster motors based on BMBDC motor are studied, under different 

rotation speed conditions. Thruster motor based PMDC motor blades fault analysis will 

be discussed in section 5.6. 

 

 

5.2 Vibration and Stator Current Signals Monitoring  

Many techniques have been used for rolling element bearing fault diagnosis, and can be 

classified depending on the type of measurement involved. These can be, for example, 

vibration, temperature (Patil et al. 2010) or acoustic measurements (Delgado  et al. 

2011).  

 

Vibration motoring test analysis is an effective tool to determine the level of bearing 

faults on an electrical machine by measuring the level of vibration of the machine 

casing (Chiementin et al. 2008, Amar et al. 2014). To determine the rolling bearing 

faults, an accelerometer vibration analysis is used to measure the vibration characteristic 

frequencies at a horizontal position to the motor housing.    
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When a rolling element hits a structural defect in the raceway, a series of vibration 

pulses will be produced, depending on the location of the defect (e.g. on the outer or 

inner raceway, or on the rolling element itself). The pulses will contain characteristic 

frequencies specific to the bearing geometry and operation condition (e.g. rotating speed 

and variable load) (Jin et al. 2014).  

 

However, vibration can be picked up from other mechanical parts, thus leading to false 

positives. Furthermore, because vibration signals are related to all the mechanical 

elements, they only allow for fault detection rather than fault diagnosis. In order to 

increase fault diagnosis reliability, especially for critical applications, in addition to 

vibration, the stator current signal can be used as another faults indicator (Trajin et al. 

2009). Further, a bearing defect will lead to eccentricity fault, and then electrical 

parameters magnetic flux and current will affected, so that the current signal can be 

considered as a bearing fault.  

 

Therefore, a bearing diagnostic technique needs to be designed that is robust enough to 

differentiate between various vibrations signals, in order to effectively classify faults to 

overcome false alarms. To increase diagnostics reliability, stator current can also be 

used to detect bearing faults, stator current sensor are already used as a part of control 

and protection systems in electric power systems so the use of a current sensor does not 

necessarily increase the cost of the system. (Bediaga et al. 2013). It has been shown that 

current signal can be an effective rolling element bearing fault indicator, especially at 

low motor speeds (Immovilli et al. 2010).  

 

The relation between vibration and current signals caused by bearing faults is presented 

in two approaches. In the first approach, the vibration at one of the mechanical 

frequencies characteristic of the defect impacts on the electric machine torque 

fluctuation, which produces a speed ripple (Immovilli et al. 2009). According to the 
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second approach, the mechanical vibrations in the air gap due to bearing faults can be 

considered as slight rotor displacements, which result in instant eccentricities.  

 

Thus, the combined use of both vibration and current signals will provide a more robust 

fault detection and diagnosis system (Esfahani et al. 2014), and this is the approach used 

in this work. The relationship of the bearing vibration to the stator current signature can 

be determined by recalling that any air gap eccentricity produces anomalies in the air 

gap flux density. Since ball bearings support the rotor, any bearing defect will produce a 

radial motion between the rotor and stator of the machine.  

 

5.3 Normal Characteristics of Bearing Working Under 

Stationary Operating Conditions 
 
 

Ball bearings were used for the study of transducer response to raceway and rolling 

element defects, respectively. Ratios of tested bearing frequencies to shaft speed were 

based on experimental data from good bearings. Note that these values may change due 

to defect effects and vary with operating conditions. In this study, a PMBLDC motor is 

tested under stationary and non-stationary operating conditions, as mentioned in 

Chapter 4. The data was calculated as illustrated in Table 5.1. 

 

   Table 5.1 Rolling element bearing experimental data description 

 

 
 

Bearing defects No of 

samples 

Dimension class Sample per class 

Localised 

bearing 

defects 

Inner race 54336 2 3 18112 

Outer race 54336 2 3 18112 

Ball defects 18112 2 1 18112 

Generalised  

bearing 

defects 

Corrosion 72448 2 4 18112 
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Figures (5.1 to 5.3) shows the original time wave form and FFT spectral of the stator 

current and bearing raw vibration signals of a motor operating under normal conditions. 

The figures represent a motor operating at stationary conditions under no-load, half load 

and full load, and with 1200 rpm rotational speed; the peaks in this spectrum show the 

energy distribution at different frequencies. 

 

 

This fluctuating load leads to a modulated current waveform, as shown in Figure. 5.2. 

Current waveforms exhibit certain amplitude modulations in line with the torque 

waveforms. The current flowing through the motor can then be calculated: 

 

𝐼 = (𝑉𝑠  − 𝑉𝑒𝑚𝑓)/𝑅 = (𝑉𝑠  − 𝐾𝑖 ∗ 𝜔)/𝑅 (5.1) 
 

where 𝑉𝑠 is the source voltage and 𝑅 is the motor electrical resistance; the torque 

generated by the motor is proportional to the amount of current flowing through the 

motor: 

𝜏 = 𝑘𝑡 ∗ 𝐼 (5.2) 
  

where 𝑘𝑡  is a constant and 𝜏 is the torque. At full load the motor has the maximum 

current flowing through it, thus producing the maximum torque. Whereas, at no load 

and low speed, motor torque and current will decrease according to the following 

equation:  

                     Mechanical Power 𝑃𝑚 = 𝜏 ∗ 𝜔 (5.3) 
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 (a) 
 

 
       (b) 

 

  

Figure 5.1 PMBLDC motor (a) raw vibration and (b) stator current at normal and 

stationary operating conditions (no load and 1200rpm) 
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           (a) 

               
 

              (b) 

Figure 5.2 PMBLDC motor (a) raw vibration and (b) stator current at normal and 

stationary operating condition (full load and 1200rpm) 
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(a) 

 
(b) 

Figure 5.3 PMBLDC motor (a) raw vibration (b) stator current at normal and  stationary 

operating conditions (half rated load and 1200rpm) 
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5.4 Bearing Characteristics under Faulty Conditions  

 
Bearing defects can be classified into two categories: single localised bearing defects 

(inner race, outer race and ball) and generalised roughness defects (extended). Faults in 

rolling element bearings give impulses as the elements contact the fault and the typical 

is vibration produced. In this section the behaviour of a PMBLDC motor under rolling 

element baring faults will be discussed and the effect of stationary and non-stationary 

speed and load conditions on vibration and current signals will be considered.  

 

 

5.4.1 Single localised bearing faults under stationary operating 

conditions 
 

For the single defect on the race, a set of experiments was performed at different speed 

and load conditions. Frequency calculation is based on the geometric parameters of the 

actual linear bearing, applied to the kinematic model presented earlier. The experiment 

used bearing model 6002 ZZ WM1 with number of balls (𝑧)=9; 𝑃𝑑=25mm, 𝐵𝐷=3mm, 

inner diameter 14mm, outer diameter 32mm, ball diameter 3mm, and contact angle 

assumed 𝛽=0, as shown in Figure 5.4. 

 

 

 

 

Figure 5.4 Rolling Element bearing component 
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      Table 5.2 Fault classification for all bearings  

Fault 

location 

Outer race Inner race Ball 

    Fault   

location  

A 

(mm) 

B 

(mm) 

C 

(mm) 

A 

(mm) 

B 

(mm) 

C 

(mm) 

Spot 

(mm) 

Fault size 

3 1 9 3 1 9 0.3 

0.5 1 6 0.5 1     6 

0.2 1 3 0.2 1     3 

 
    

 

       Table 5.3 Bearing defects Frequencies 

 

According to equations in Chapter 3 (3.19 - 3.23) the defects frequencies can be 

calculated as in Table 5.3. Figure 5.5 (a) illustrate the size of an inner race defect (A x B 

x C) and similarly for the outer race defect Figure 5.5 (b). As mentioned in Chapter 4, 

there are three severities of inner and outer race faults: 1x3x9 mm, 1x05x6mm and 

1x0.2x3mm, as illustrated in Table 5.2. Figures 5.6 and 5.7 show the performance of the 

PMBLDC motor under inner and outer race cracks, under no-load and 1200rpm rotation 

speed. The damaged bearing signal produces a series of pulses in time domain vibration 

signal. 

  

The severity of the outer race fault is much more than the inner race fault; the 

amplitudes of the performance frequencies are even larger compared to the inner race 

fault. Generally, the time waveform is very complicated showing the effect of the 

abnormal situation and the general vibration level of the signal is higher than that of the 

normal condition. 

 

𝐟𝐬 
(𝐇𝐳) 

𝐍 

( 𝐫𝐩𝐦) 

𝐁𝐏𝐅𝟎 

( 𝐇𝐳) 

𝐁𝐏𝐅𝐈 
(𝐇𝐳) 

𝐁𝐒𝐅 

( 𝐇𝐳) 

𝐰𝐬 

(rad/s) 

𝐰𝐜 

(𝐫𝐚𝐝/𝐬) 

5 300 19.8 25.2 20.5 31.4 13.8 

10 600 39.6 50.4 41.1 62.8 27.6 

15 900 59.4 75.6 61.6 94.2 41.5 

20 1200 79.2 100.8 82.13 125.6 55.3 
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It can be seen also in Figures 5.6 and 5.7, that the signal from a further distance relative 

to the position of the faulty bearing has lower vibration amplitudes than the signals from 

the position where the faulty bearing is placed, and the information contained in the 

signal can be used for fault detection. Furthermore, the duration of contact between the 

damage and the ball is very small in comparison to the full measurement time, so that 

the time waveform figures do not show significant differences between states.  

 

 
        (a) 

 
                 (b) 

     

Figure 5.5 Dimension of outer race defect 
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The amplitude responses have different pattern depending on the corrupted noise and 

position of the sensor, and generally the amplitude of the spectrum decreases when load 

decreases and the maximum coefficient is obtained at low frequency. As bearing fault 

and radial loads increase, the amplitude of the fault frequency component of vibration 

signals increase at rotating speeds 600, 900, and 1200 rpm respectively. 

 

 
Figure 5.6 Raw vibration time and frequency domain signals under stationary operating 

conditions: no load and 1200rpm speed with defect size inner 1x3x9 mm 
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The experiment test data were converted to the frequency domain in order to acquire 

more fault signs during the signal processing stage. Comparison of normal signals with 

the signals in Figures 5.6(b) and 5.7(b), when the bearing is operating in faulty cases 

(inner and outer race defect) indicates the differences in time and frequency domain 

signals between these two cases. In the frequency domain, the presence of peaks in the 

vibration spectrum can be used to identify the type of bearing fault; the characteristic 

frequencies associated with specific faults need to be known and specimen calculations 

of these are presented in Table 5.2. The initial dominant peak in the spectrum can be 

easily identified by the difference between the different fault severities spectra.  

 

 
 

 
 

Figure 5.7 Raw vibration time and frequency domain signals under stationary operating 

conditions: no load and 1200rpm speed with defect size outer 1x3x9 mm 
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Figures 5.8 and 5.9 shows the comparison between raw vibration signal of the outer 

race defect spectrum and time waveform under three different severities and no-load, 

1200 rpm speed operating conditions. It is unlikely that simply viewing the time-domain 

signal will detect a fault because the collected data are masked with background noise 

coming from other components.  

 

 

  
    (a) 

     

             (b)  

 

Figure 5.8 Comparisons between raw vibration signal of the outer race defect  

(a) spectrum (b) time waveform under three different severities and 

no-load, 1200 rpm speed operating condition 
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It can be seen from the vibration and current signals that the amplitude of the spectrum 

under fault defect is much more than in the fault free case, and generally the amplitude 

of the spectrum decreases when load decreases. On the other hand, a notch fault was 

introduced into one of the rolling elements (balls) in a similar way to those introduced 

earlier to both inner and outer races. A typical vibration waveform and spectrum is 

shown in Figure 5.10 for a single localised ball defect bearing. 

 

        

                                                                           (a) 
 

 

          (b) 
 

Figure 5.9 Comparisons between raw vibration signal of the inner race defect 

(a) spectrum (b) time waveform under three different severities and  

                   no-load, 1200 rpm speed operating condition 
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(b) 

 

   Figure 5.10 Time domain waveform and spectrum of the raw vibration signal for   

bearing with localised ball defect under stationary operating conditions 

1200 rpm speed and (a) no load and (b) half rated load 

 

 

 

 

 

 

(a) 
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5.4.2 Single localised bearing faults under non-stationary operating 

conditions  

Due to progress made in engineering, rotating machines are becoming faster and 

lightweight. They are also required to run at different speeds and loading operating 

conditions. Diagnosis of faults in such machines will improving the machine’s 

reliability, and is the major focus of industry, which means to gain the maximum 

working life out of machinery and also minimise maintenance and operating costs. 

 

There are several applications where the motor is never operating at a constant speed or 

load, such as transient and non-stationary applications. The motor operating in such a 

non-stationary environment has a non-stationary voltage, current and vibration signal. 

Current and vibration signals were collected for rolling element bearings with four 

defects: normal, inner race, outer race and ball defects, under variable load and speed 

operating conditions. Analysis of non-stationary signals is inherently complicated and 

sophisticated signal processing techniques are often needed. In the area of fault 

diagnosis under non-stationary conditions, there has been little work. 

 

In the present work the proposed fault diagnosis approach is tested under non-stationary 

load and motor speed conditions. The speed varies from 600 rpm to 1200 rpm and the 

load is varied from full load to 75% and 50% of the rated load, and to no-load. A typical 

segment of the stator current of a PMBLDC motor operating in such a non-stationary 

state is shown in Figures (5.11 and 5.12) in which the amplitude of vibration and stator 

current signals are changing continuously. The figures represent a motor working under 

full load and variable speed under inner race defects, size (1x0.5x9) mm.  
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              (a) 

 
           (b) 

 

  Figure 5.11 (a) vibration and (b) stator current signal of inner race defect under full 

load and variable speed conditions 
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                  (a) 

 

         

 
                           (b) 

 

Figure 5.12 (a) vibration and (b) stator current signal of outer race defect size under full 

load and variable speed conditions 

 
 

 

5.5 Generalised Roughness Bearing Fault Signals under 

Stationary and Non-stationary Operating Conditions 

  
A corrosion defect is one of generalised roughness in the rolling bearing; the common 

causes of corrosion include temperature changes, moisture or water. Whenever bearings 

are put into storage, they should be coated with oil or another preservative, as shown in 
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Figure 5.13 (a). The consequent vibrations are directly linked to the position of the 

debris, and therefore they are unlikely to repeat at the same frequency. Thus, it is 

impossible to analytically define some predictable frequencies to detect in the vibration 

or current spectra (Sawalhi and Randall 2011).  

 

Image 5.14 (a) shows the bearing surface under different of corrosion defect severities 

(see also in appendix A). Meanwhile, Figure 5.14 (b) shows the effects of corrosion 

defects on the different bearing layers). Figure 5.14 shows the vibration waveform and 

spectrum of corrosion faults with different sizes of severity. It is difficult to isolate a 

single signature related to the generalised roughness fault, but only a generalised 

roughness increase of amplitude. A bearing with corrosion defects will produce a 

vibration signal, due to the products of corrosion that interfere with the balls during the 

rotation of the shaft.  

 

 

 

 

 

 

 

 

 

 

  

 
(a) 

    
(b) 

 

Figure 5.13 Bearing layer with corrosion defect 
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(a) 

 

(b) 
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  (c) 

 
               (d)                      

 

 

             Figure 5.14 Corrosion bearing fault with  four severities (a) severity 1, (b) 

severity 2, (c) severity 3 and (d) severity 4 
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5.6 Thruster Motor Blades Fault Analysis 
 

There has been growing interest in the use of fault detection and diagnostic techniques 

in USVs owing to their significant impact on marine operations. As a consequence of 

their success, these sectors are now demanding longer mission lengths coupled with 

increasing vehicle autonomy. With an escalation in autonomy comes the need for higher 

reliability in such vehicles, in order for them to better cope with unexpected events.  

In a large number of cases, the present generation of USVs use electric thruster motors 

as their means of propulsion owing to their high efficiency, size and weight. Thus, the 

timely isolation of faults in a motor will ensure the integrity and safety of a vehicle 

while not adversely affecting the overall system performance. This study presents a 

novel approach to the diagnosis of unbalanced load (blades damage) faults in an electric 

thruster motor such as is typically found in USV propulsion. The faults were simulated 

with one of the blades of the trolling motor cut by 10% (F1), by 25% (F2), in half (F3) 

and fully cut (F4). The proposed technique was used to show the behaviour of the 

thruster motor under normal operating condition and the four faulty conditions (F1–F4). 

 

 Figure 5.15 shows the time domain of the data collected for the raw vibration and line 

current under four severities of blade fault, and clearly shows the changes in the 

amplitude based on severity of fault. The change in amplitude in vibration for fault F (4) 

is nearly 4 times more than fault F1, indicating a more severe fault in the case where the 

blade of the motor is fully removed. Also, Figure 5.15 also shows the effect on line 

current amplitude, where variations in the amplitudes are less noticeable compared to 

the vibration. The data was collected under different rotating speed conditions. 

MATLAB code was used to change the duty cycle of the PWM signals via the motor 

driver, to change motor speed. Six data sets were collected, representing motor 

performance under different speed conditions. 
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(a) 

 

(b) 
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                                                                               (d) 

 

 

Figure 5.15 Time domain of the raw vibration (left) and current (right) signal under   

different operating conditions (a) F1, (b) F2, (C) F3 and (d) F4 

 

 

 

 

 

 

(c) 
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5.7 Chapter Summary  
 

In this chapter, vibration and current signal have been acquired and plotted in time and 

frequency domains that represent the following conditions: normal bearing, localised 

bearing fault: fault on inner race, outer race under different severities, fault in rolling 

element (ball) , generalised roughness of bearing (corrosion) and blades defects of a 

thruster motor under different speed conditions. Monitoring based on stator current 

analysis only needs current sensors. These sensors are often already used for control and 

protection purposes. Moreover, as for the vibration spectral detector, the stator current 

indicator needs a low sampling frequency, especially for low supply frequencies. 

 

 It can be observed that the experimental data in time and frequency domain cannot 

produce a reliable fault analysis, especially with a wide range of fault severities and 

operating conditions. In addition, irrelevant features that affect accuracy and time need 

to be accounted for in the diagnosis of abnormal conditions.  

 

Owing to the nonlinear operating conditions such as loads, clearance, friction and 

speeds, which have a distinct influence on the vibration and current signals, it is very 

difficult to make an accurate evaluation of the working condition of faults through 

analysis in time or frequency domains only. Furthermore, the bearing fault signature is 

embedded in the resonance signals, commonly in high frequency bands. The fault-

induced signal is often too weak to be detected directly from the resonance signal in its 

measurement form. Thus, analysing resonance signals allows us to find the key to 

bearing fault diagnosis. 

Chapter six introduces feature extraction and a dimensionality reduction approach to 

overcome the limitations of the time and frequency analysis of the faults signals 

proposed in this chapter.       
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CHAPTER 6 

 
Features Extraction and Dimensionality 

Reduction 
 

“This chapter discuss tools used for feature extraction and the dimensionality reduction 

of those features related to specific PMDC motor faults. Vibration and current signals 

are used to verify the proposed feature extraction and dimensionality reduction tools” 

 

 

 
 

6.1 Introduction 

After data collection of the essential sensor signals, features are often extracted and 

selected to analyse the signals from all these embedded sensors, and to assess the 

condition of the system by the indirect method. Feature extraction is usually the first 

step in any pattern recognition system.  

 

Various signal processing techniques have been proposed to extract useful features and 

to classify fault signals. Existing literature has focused on the steady-state behaviour of 

faulty drives. In this work both steady and transient operating conditions are 

investigated in detecting fault phenomena.  

 

Irrelevant features will affect the learning process by increasing the computational cost 

and sample size, and may lead to over-fitting. In order to increase the robustness of the 

classifier and to reduce the data processing load, dimensionality reduction is necessary. 

As such, it is obvious that the main goal of feature subset reduction is to reduce the 

number of features used in classification, without compromising on accuracy. 
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This chapter starts first with an introduction to feature extraction techniques (time, 

frequency and time-frequency), which are presented in section 6.2. Then section 6.3 

introduces a general description of WT as a feature extraction tool, the basic 

mathematical introduction necessary to understand the wavelet transform having been 

presented. In addition the selection of the optimal mother wavelet and the optimal 

number of levels of resolution is carried out, using the minimum description length 

(MDL) data criteria and data independent selection (DIS).  

 

Extraction features for both single localised and generalised bearing faults are reported 

on in section 6.4, while section 6.5 will introduce DWT to extract features for thruster 

motor blades faults under different rotating speed conditions. Section 6.6 will introduce 

the concept of feature projection and dimensionality reduction and section 6.7 presents 

the proposed dimensionality feature reduction technique OFNDA. Finally, section 6.8 

summarises the chapter.  

 

6.2 Features Extraction for PMDC Motor Fault Diagnosis 
 

With the development of modern multi-sensor technology and adaptive signal 

processing techniques, more features are being extracted for machinery fault diagnosis, 

applying mutable features that can improve fault diagnosis accuracy. A feature 

extraction technique is needed for signal processing of recorded time-series signals over 

a long period of time to obtain suitable feature parameters for fault diagnosis (Olsson 

2009). 

 

The process of extracting a suitable feature set is considered as the most important part 

in a pattern recognition, so that the success of any pattern classification system is based 

almost entirely on the choice of features used to represent the continuous time 

waveforms (Jiang et al. 2013). On the other hand, an excessive number of features 
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Signal Processing technique 

(Features extraction) 

Frequency domain 

 

Fast Fourier 

transform  

Discrete Fourier 

transform  
 

Time domain 

 

Statistical features 

Time synchronous averaging  

Autoregressive model 
  

Time-frequency domain 
      

  Wavelet transform 

Short time Fourier 

transform  

Winger distribution 

 

increases both of the complexity of data analysis and the time associated with the 

analysis process (McBain and Timusk 2011). 

 

Corresponding to different signals, the signal analysis method should be properly 

selected, such that the feature value of signals can be enhanced to improve diagnostic 

sensitivity. Inaccurate and improper features reduce the overall reliability of fault 

diagnosis techniques and make them unable to predict actual bearing conditions. Many 

extraction techniques have been proposed in several domains as shown in Figure 6.1 , 

including time-domain methods, frequency-domain methods, and time-frequency methods 

(Mitoma et al. 2008). 

 

 

 

 

     

 

Figure 6.1 Feature extraction techniques 

 

6.2.1 Time domain analysis 

 

Time-domain analysis (TDA) is a useful feature extraction tool for condition monitoring 

and fault diagnosis of electrical motors. TDA describes the behaviour of the signal as a 

function of time and can be used to distinguish between good and defective bearings in 

the time domain signals.  
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Many TDA techniques have been use TDA for rotating machine fault diagnosis based 

on signal statistics. A statistical feature such as root mean square (𝑅𝑀𝑆), standard 

deviation (𝑠𝑡𝑑), skewness, shape factors and kurtosis represents the traditional TDA 

features (Doguer and Strackeljan 2009) and these can be defined mathematically as 

follows (Pandya et al. 2013, Kharche and Kshirsagar 2014): 

 

𝑋𝑟𝑚𝑠 Value represents the mean energy of the signal but it does not characterise the 

shape of the signal. 

 

𝑋𝑟𝑚𝑠 = √
1

𝑁
∑𝑥(𝑖)2

𝑁

𝑖=1

 

 

                                                    (6.2) 

 

where N is the number of discrete points and represents the signal from each sampled 

point. 

Peak is the greatest measured amplitude in a signal. Peak is one of the important 

parameters in acoustic emission analysis. It is represented by the following calculations:  

 

𝑋𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒 =
1

2
(max (𝑥(𝑡) − min (𝑥(𝑡)) (6.1) 

 

   𝑋𝑠𝑡𝑑 = (
1

𝑁−1
∑ (𝑋(𝑖) − 𝑋 ̅)2𝑁

𝑖=1 )
1

2⁄

   (6.2) 

 

The crest factor or peak-to-average ratio is a measurement of a waveform, calculated 

from the peak amplitude of the waveform divided by the RMS value of the waveform:  

 

𝐶𝑟𝑒𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑋𝑃𝑒𝑎𝑘

𝑋𝑟𝑚𝑠
                                                                             (6.3) 

  

However, Crest Factor and 𝑆𝐹 are less sensitive to localised bearing faults (Jiang et al. 

2014, Pandya et al. 2013). 

 

The waveform factors(SF) =
𝑋𝑟𝑚𝑠

�̅�
 

                                 (6.4)                                                    
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Kurtosis is a statistical moment of probability density function. It is also represented as 

a square of variance: 

 

Where 𝑥 ̅signal is the mean value of the discrete signal 𝑥(𝑡)   

Skewness represents the measure of the asymmetry of the probability distribution of 

a real value about its mean, and can be positive or negative. 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
√1

𝑁
∑ (𝑋(𝑖) − �̅�)3𝑁

𝑖=1

𝑋𝑟𝑚𝑠
3  

 

  (6.6) 

 

Bhavaraju et al. (2010) compared the performance of kurtosis, skewness and standard 

deviation in bearing faults diagnosis, and the results indicate that kurtosis can give a 

good indication about the motor situation. TDA is a low cost solution to measuring 

signals over a wide frequency range.  However, it is less sensitive for recognising 

defects and provides low diagnosing capability (Harris 2013). One main drawback of 

TDA in detecting defects in bearings is the distortion of the signal from the amount of 

noise and the interactions from other components. Furthermore, using TDA it is 

difficult to diagnose specific rotating  machine defects at an early stage (Sawalhi 2007).   

 

 

 

 

In addition, the rotational speed varies randomly under non-stationary operating 

conditions, where both frequency and magnitude of fault components are changed with 

time in an unpredictable way (Henao et al. 2014). Frequency analysis attempts to 

overcome TDA disadvantages by detecting faulty signals even at low signal-to-noise 

ratio conditions by monitoring fault frequencies.   

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
√1

𝑁
∑ (𝑋(𝑖) − �̅�)3𝑁

𝑖=1

𝑋𝑟𝑚𝑠
4

 

  

                                    (6.5) 

http://en.wikipedia.org/wiki/Probability_distribution
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6.2.2 Frequency domain analysis 

 

Frequency domain analysis (FDA) is widely used for rotating machine fault diagnosis. 

The advantage of frequency-domain compared with TDA is that it has the ability to 

easily identify and isolate certain frequency components of interest. In addition, for 

bearing fault diagnosis, the signal from a small fault developing in a roller bearing will 

be hidden in general bearing noise when applying TDA, but in the FDA there will be a 

peak in the spectrum at the characteristic fault frequency. The FFT and discrete Fourier 

transform (DFT) are the most common techniques for transforming a varying time-

domain signal into its frequency-domain representation. FFT is used in conventional 

FDA signature-analysis techniques for conversion of time domain signals into 

frequency domain signals.  

 

It breaks down a signal into its constitutive sinusoids of different frequencies. In other 

words, the view of the signal changes from time-based to frequency-based. This 

technique decomposes a signal into orthogonal basis functions. DFT, meanwhile 

converts a signal with finite length to the frequency domain (Gritli et al. 2014). The 

resolution of FFT and DFT can be represented as 
𝑓𝑠

𝑁⁄  where 𝑓𝑠 is the sampling 

frequency, N is the number of samples, and 𝑓𝑠 is the sampling frequency.  

Mathematically FFT and DFT are given as (Antoni and Randall 2002): 

 

 

    𝐹𝐹𝑇[𝑓] = 𝑋(𝑓) =
1

𝑇
∫ 𝑋(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

∞

−∞
 (6.7) 

 

 

                     𝐷𝐹𝑇[𝑓] =
1

√𝑁
∑ 𝑋(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑁

𝑖=0                                 (6.8) 

  

where 𝑋(𝑡) is a given signal that occurs as a periodic function with period T, and the 

Fourier series expansion 𝑋(𝑓) of 𝑋(𝑡) discrete 𝑓 represents equal spaced frequencies as 

multiples of the reciprocal of the period T 
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However, FFT provides information as represented by a component at a certain 

frequency, and ignores the component in the time domain by applying a windowing 

function on the signal. Only a portion of the signal is contained in an interval moving 

window over time, so that the main drawback of FFT is that is the windowing function 

may distort information from the original signal FFT, when the signal is not suitable 

under  non-stationary conditions (Jayaswal et al. 2010). 

 

On the other hand, Envelope analysis (EA) has the effectiveness of a band-pass analysis 

method that relies on a suitable choice of narrow band frequencies around the selected 

resonance (Harmouche et al. 2014) . EA signals are filtered through a band-pass filter 

and the filtered signal is demodulated with the help of the full wave rectification of 

Hilbert transform, and then spectrum analysed (Li et al. 2014).  

 

Feng et al. (2015) compared EA with the FFT approach to a vibration signal analysis, 

and concluded that the FFT is capable of finding distinct faults; it also provides higher 

performance in damage onset prediction. However, FDA only provides spectral 

information and there is no information about when this spectral information appears 

(Gohshi 2012). However, when a single localised bearing fault occurs, the contact 

between the local defect and its mating surface produces an impulse with a short 

duration and an approximately exponential damping rate. If the rotational speed is 

constant, the impulse will repeat at a constant interval (Wang et al. 2014).   

 

Bearings often work in non-stationary conditions (variable speed, variable load). In such 

operating condition, the impulses do not appear periodically and hence the envelope 

analysis methods as well as any other techniques based on the assumption of constant 

rotating speed are no longer applicable. Therefore an alternative time-frequency domain 
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technique is needed to avoid the drawback of frequency domain features extraction 

techniques. 

 

 6.2.3 Time frequency domain features extraction  

 

Time-frequency analysis (T-FA) is the three-dimensional time, frequency and amplitude 

representation of a signal, which is suitable to indicate transient events in the signal. T-

FA distributions are commonly implemented for rotating machine fault diagnosis and 

they accurately extract the useful features from a non-stationary signal (Rajagopalan et 

al. 2006).  

 

To overcome the limitation of FFT methods with non-stationary signals, STFT is a 

supplementary method. STFT is a basic T-FA that comes from the FFT. It uses a 

window function to slide on the non‐stationary signal and then divide it into several 

equal-length segments. The inside signal of the segments is supposed to be stationary 

(Obuchowski et al. 2014). The STFT can be represented as follows: 

 

𝑆𝑇𝐹𝑇𝑤,𝑓(𝑡, 𝑓) = ∫ 𝑓(𝑡)𝑤(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
∞

−∞
 (6.9) 

 

For signal 𝑓(𝑡) suppose  𝑤(𝑡 − 𝜏) is a window function centred at time 𝑡 and 𝜏 is a time 

variable. A spectral decomposition is obtained by applying the FFT to the portion of 

signal viewed through the window  𝑤(𝑡 − 𝜏) and all the signal parts outside the window 

are neglected (Feng et al. 2013) . However, the STFT technique does not provide good 

energy resolution for a specific point of the data signal, as the length of the window is 

fixed in each of the data segments of the discrete signal (Peng and Chu 2004). 

Therefore, STFT is suitable for quasi-stationary signal analysis rather than real non-

stationary signal analysis. In order to process non-stationary signals, WVD and EMD  

have been used for rotating machine fault diagnosis, and provide information about the 

spectral component and when it occurs (Zhang et al. 2013). WVD has overcome the 
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limitations of STFT and provided a high resolution in both time and frequency for non-

stationary signals. WVD can be defined mathematically as (Climente et al. 2014): 

𝑋(𝑡, 𝑤) = ∫ 𝑋(𝑡 +
𝜏

2

∞

−∞

)𝑒−𝑗𝑤𝜏𝑑 

                  (6.10) 

where 𝑋(𝑡) is a time signal and 𝑤 is the frequency  

 

The WVD has certain drawbacks, especially those related to its inherent nature, which 

causes the interference of the cross term, which may have significant amplitude, and 

therefore can corrupt the transform space. In practice the vibration signal has multiple 

components, and may contain the mesh frequency and their harmonic, and occasionally 

some components called ghost components. The interference among these components 

may cause complicated results that are difficult to interpret.  

 

Many studies have been done to compare the various signal processing techniques 

discussed in this section. Choy et al. (2003) made a comparison between WVD and 

WT; the results showed that WT can provide a more direct quantification, and that 

combining WVD with other techniques such as WT or EMD will increase its 

effectiveness for rotating machine fault diagnosis.  

 

To overcome the limitations of STFT and WVD as features extraction techniques, WT 

has been proposed as one of the powerful T-FA methods. WT has the ability to explore 

signal features with partial characteristics, and to analyse signals with different time and 

frequency resolutions. WT has the important and useful ability to detect and recognise 

stationary, non-stationary, or transitory characteristics of signals, as will be discussed in 

the next section.  

 

Hocine et al. (2012) and Yan et al. (2014), carried out a review of WT application in 

electrical machines fault diagnosis. CWT was implemented with vibration signal to 



119 
 

diagnosis bearing fault (Sharma et al. 2014), WPT for stator winding faults (Ping et al. 

2013) and DWT for broken rotor bar fault diagnosis (Taher et al. 2014). 

 

6. 3 Wavelet Transform Functions and Approximations 

  

WT is an advanced time and frequency signal processing technique with a growing 

number of applications in rotating machine fault diagnosis (Bouzida et al. 2011). The 

windowing of WT is adjusted automatically for low and high frequencies, i.e. it uses 

short time intervals for high frequency components and long-time intervals for low 

frequency components.  

 

Thereby, each frequency components gets treated in the same manner without requiring 

any reinterpretation of the results. This gives much greater compact support when 

processing non-stationary, transient signals, with higher frequency resolution at low 

frequency and higher time resolution at high frequency. Compared to the FFT, WT 

contains a great deal of non-stationary and nonlinear diagnostic information. The 

theoretical basis for wavelet frequency bandwidth analysis is Parseval's theorem (Chen 

and Gao 2013). Furthermore, WT has the ability to overcome STFT resolution 

problems.  

 

In addition, WT uses multi-resolution analysis, and the signals can be decomposed into 

different frequency bands so that they can be further subject to statistical analyses to 

obtain feature vectors that represent signal characteristics. WT are inner products of the 

signal and a family of the wavelets. Let 𝜗(𝑡) be the mother wavelet. The corresponding 

family of wavelets consists of a series of wavelets, which are generated by dilation and 

translation from the mother wavelet 𝜗(𝑡) shown as follows: 

 

𝜗(𝑎,𝑏)(𝑡) =
1

𝑎
𝑋(

𝑡 − 𝑎

𝑏
) 

 

                                                         

                                                         (6.11) 
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where a is scale factor and b is time location: the factor 
1

𝑎
 is used to ensure energy 

preservation.  

 

The WT of signal 𝑋(𝑡) and 𝑤(𝑎, 𝑏) (the convolution between 𝑋(𝑡) and wavelet 

function) can be represented as the follows: 

  𝑤(𝑎, 𝑏) = ∫𝑋(𝑡)𝜗𝑎,𝑏
∗ 𝑑𝑡 

                                                         (6.12) 

𝑤(𝑎, 𝑏) gives the information of 𝑋(𝑡)at different levels of resolution,  𝜗𝑎,𝑏
∗  is the 

conjugate function of the mother wavelet (Lin and Qu 2000)  

The mother wavelet must be compactly supported and satisfied with the admissibility 

condition. 

 

∫
|𝜗^(𝑤)|

2

|𝑊|
⁄

∞

−∞

𝑑𝑤 < ∞ 
  (6.13) 

where 

𝜗^ = ∫ 𝜗(𝑡)𝑒(−𝑗𝑤𝑡)𝑑𝑡 
   (6.14) 

 

Traditionally, the WT can be classified into two main types: continuous and discrete 

wavelets transform (CWT, DWT). The transaction from continuous to discrete wavelet 

can be made using  𝑎 = 𝑎0
𝑚 , 𝑏 = 𝑛𝑎0

𝑛𝑏0, where n, m are integers and 𝑎0, 𝑏0 ≠ 0  the 

limitation of these parameter when  𝑎0 = 2, 𝑏0 = 1  leads to the dyadic WT. The time 

frequency localisation means that more energetic wavelet coefficients are localised. 

This is useful for feature extraction, denoising and singularity detection and is mostly 

implemented for transient and non-stationary signals analysis; therefore, it is well suited 

for the fault location problem in electrical machines. 
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6.3.1 Discrete wavelet transform for features extraction 

 

To extract the useful information, DWT, a signal analysis method that provides the time 

and frequency information of the signal was applied. The information that cannot be 

readily seen in the time domain can be observed in the frequency domain. It has the 

ability to explore signal features with partial characteristics and analyse signals with 

different time and frequency resolutions. 

 

In addition, the DWT approach is successfully applied to detect and locate faults, 

together with identification of the severity of the faults. In DWT the signal is passed 

through a series of high pass filters (ℎ𝑛) to analyse the high frequencies, and it is also 

passed through a series of low pass filters (𝑔𝑛) to analyse the low frequency 

components of the signal, as shown in Figure 6.2.  

 

At each decomposition level, the half band filters produce signals spanning only half the 

frequency band. This doubles the frequency resolution as the uncertainty in frequency is 

reduced by half with this approach. The time resolution becomes arbitrarily good at 

high frequencies, while the frequency resolution becomes arbitrarily good at low 

frequencies.  

 

The correlation between the signal and the wavelet at each level of scaling and shifting 

is termed the wavelet coefficient. The resolution of the signal, which is a measure of the 

amount of detail of information in the signal, is changed by the filtering operations, and 

the scale is changed by changing the size window of signals (Antonino et al. 2013). 
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Figure 6.2 A schematic diagram discrete wavelet transforms 

 
 

Mathematically, the wavelet and scaling functions for a discrete signal 𝑥(𝑡) can be 

represented as the following expressions (Seshadrinath et al. 2014) : 

 

𝑥[n] = ∑𝑎𝑗𝑜,𝑚

𝑚

∅𝑗𝑜,𝑚 [𝑛] + ∑ ∑𝑑𝑗,𝑚𝜑𝑗,𝑚[𝑛]

𝑚

𝑗−2

𝑗=𝑗𝑜

 (6.15) 

 

 

Where ∅[𝑛] is the scaling function, ∅𝑗𝑜,𝑚 [𝑛] = 22𝑗𝑜/2∅(2𝑗𝑜𝑛 − 𝑚) is the scaling 

function at scale 22𝑗𝑜 shifted by 𝑚. 𝑎𝑗𝑜,𝑚 Are the coefficients of approximation at scale 

2𝑗𝑜. 𝜑[𝑛]  is the mother wavelet, 𝜑𝑗,𝑘[𝑛] = 2
𝑗

2𝜑(2𝑗𝑛 − 𝑚) is the mother wavelet at a 

scale of 𝑥 = 2𝑗𝑜 and 𝑁 = 2𝑗  where n is the Number of 𝑋[𝑛] sample. The scaling and 

coefficient level can be given as (Seshadrinath et al. 2014) : 

∅[𝑛] = ∫ x(t)
∞

−∞

∅(t − n)dt 

 

 

(6.16) 

 
 

     𝑑(𝑗, 𝑛) = 2
𝑗

2⁄ ∫ 𝑥(𝑡)
∞

−∞

∅(𝑡 − 𝑛)𝑑𝑡 

   (6.17) 
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The energy of signals (see Figure 6.2) that go through DWT decomposition can be 

described by: 

 

1

𝑁
∑ |𝑥[𝑡]|2𝑡 =

1

𝑁𝑗
∑ |𝑐𝐴𝑗,ℎ|

2
ℎ + ∑ ∑ |𝑐𝐷𝑗,ℎ|

2
𝑗ℎ

𝐽
𝑗=1                                    (6.18) 

Some recent studies have successfully applied DWT for different rotating machine 

faults diagnoses, including localised rolling element bearing faults (Abed et al. 2014), 

stator winding of a PMBLDC motor, broken rotor bar (Keskes et al. 2013) and rotor 

eccentricity faults (Yahia et al. 2014). Owing to the ability of the DWT to perform 

multi-scale analysis of a signal through dilation and translation, it can extract time–

frequency features of a signal effectively. Ir can be process a great deal of non-

stationary and nonlinear diagnostic information compared with conventional T-FA tools 

such as STFFT and WVD (Chen and Gao 2013). 

 

6.3.2 Optimal mother wavelet selection  
 
 

The WT includes a large number of wavelets that one can use for both CWT and DWT 

analysis. For DWT analysis, examples include orthogonal wavelets, Daubechie (db) and 

least asymmetric wavelets (sym), and B-spline Biorthogonal (bior) wavelets. For 

continuous analysis, the CWT includes Morlet (morl), Meyer (meyer) and derivatives of 

Gaussian (gaus), as shown in Figure 6.3 (Misiti et al. 2014).  

 

Wavelets provide sharper frequency because resolution iterative algorithms for wavelet 

construction converge faster and the selected mother wavelet should be orthonormal 

(Weilin et al. 2014). Before the application of the DWT, first we have to select the type 

of mother wavelet and the number of decomposition levels. Wavelet families (see 

appendix B) vary in terms of several important properties. The choice of wavelet is 

dictated by the signal characteristics and the nature of the application. 
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Various approaches have been developed to optimise mother wavelet selection. Jha et 

al. (2013) compared between several mother wavelet functions and found that a 

Daubechie is the optimal mother wavelet for rolling element bearings. Ngui et al. (2013) 

and Rafiee et al. (2009) have attempted to classify optimisation approaches into 

qualitative and quantitative approaches.  

 

In qualitative approaches, the selection of a suitable mother wavelet is based on the 

similarity between the mother wavelet and the signal. However, previous studies also 

showed that the most similar mother wavelet across the signals is not the proper 

function for all wavelet-based processing. According to Perrier et al. (1995) mother 

wavelet are selected based on the following conditions:  

 

 To represent the salient features of the disturbances the wavelet function should 

have a sufficient number of vanishing moments. 

 To reduce the amount of leakage energy to the adjacent resolution levels the 

selected wavelet function should have sharp cut off frequencies.  

 For the same feature of the same signal, the wavelet should provide higher total 

wavelet energy. 

 The selected wavelet basis should be orthonormal. 
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                                        Figure 6.3 Examples of mother wavelet 

 

 

MDL as a quantitative approach was proposed byHamid and Kawasaki (2002) and 

Saleh and Rahman (2005) to select an appropriate mother wavelet for remote power 

protection and power quality monitoring. The MDL criterion aims to achieve a 

compromise between the number of retained wavelet coefficients and the error of signal 

reconstruction. In this work, for optimal wavelet analysis selection, the stander 

deviation (STD) and MDL data criteria are used. The MDL function of index 𝑘 (number 

of coefficients to be retained) and 𝑛 is the (number of wavelet filters).  

 

MDL(m, n) = {
3

4
mlogN +

N

2
log‖ân − ân

(m)
‖

2

} (6.19) 
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where 0 < 𝑚 < 𝑁, 1 < 𝑚 < 𝑁, �̂�𝑛 = 𝑊𝑛𝑓 defined as the vector of the decomposition 

coefficients of the signal 𝑓 via the wavelet filter𝑛, and �̂�𝑛
(𝑚)

= 𝜃(𝑚) �̂�𝑛, =  𝜃(𝑚) (𝑊𝑛𝑓) 

represents the vector that contains 𝑚 nonzero elements, and �̂�𝑛 is a hard-threshold 

operation, that keeps the 𝑚Th largest elements of �̂�𝑛 in absolute value.  

 

6.3.3. Selection of mother wavelet order and decomposition level  

 

From the previous section, it can be seen that the wavelet transform is constituted by 

different levels. The maximum level at which to apply the wavelet transform depends 

on how many data points are contained in a data set, since there is a down-sampling by 

two operations from one level to the next. The suitable number of levels of 

decomposition (n) depends on the sampling frequency of the signal being analysed (𝑓𝑠). 

For each one of the proposed approaches, it has to be chosen in order to allow the high-

level signals (approximation and details) to cover all the range of frequencies along 

which the sideband component varies during the start up.  

 

 

The minimum number of decomposition levels necessary for obtaining an 

approximation signal (a) so that the upper limit of its associated frequency band is under 

the fundamental frequency (𝑓) (J Antonino et al. 2006). The DIS approach is considered 

to be optimal for determining wavelet levels. The DIS approach is based on the following 

steps (Weilin et al. 2014 and Riera et al. 2008): 

 

 The number of decomposition levels (𝑛𝐿𝑠) to be adopted depends on the sampling 

frequency 𝑓𝑠 of the signal being analysed. It has to be chosen to allow the high level 

signals (approximation and details) to cover all the range of frequencies along which 

the sideband is localised. The sideband components are known as the harmonic 

components that appear around (left and right) the fundamental frequency 

components. 
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 The minimum number of decomposition levels necessary for obtaining an 

approximation signal so that the upper limit of its associated frequency band is under 

the fundamental frequency 𝑓 is described by the following condition: 

 

2−(𝑛𝐿𝑠+1)𝑓𝑠 < 𝑓  (6.20) 

 

From this condition, the decomposition level of the approximation signal is the 

integer 𝑛𝐿𝑠: 

 

𝑛𝐿𝑠 = integer(
log (

𝑓𝑠
𝑓)⁄

𝑙𝑜𝑔2
) + 2 (6.21) 

 
 

 

6.4 Feature Extraction of Bearings under Stationary and non-

Stationary Operating Conditions  
 

 

There are several applications where the motor is operating under non-stationary 

operating conditions (variable speed and load). Actuators and servo motors in the 

aircraft and transportation industries are examples of non-stationary operations. 

Detection of faults in such applications is challenging because of the need for complex 

signal processing techniques. 

 

6.4.1 Features extraction for single localised bearing faults 
 

As mentioned in the previous section, the minimum value of the MDL optimal mother 

wavelet and STD are used to choose the suitable filter, as illustrated in Table 6.1. Db14 

function is selected as the optimal mother wavelet (see Figure 6.4). In this sense, it was 

observed that, when using a high-order Deubechies wavelet for signal decomposition, 

the overlapping was smaller than when using a low-order one. 

 

 Debauchees are widely used in solving a broad range of problems. They are non-

symmetric in waveform, which makes them suitable for approximating the non-

symmetric impulse response (Antonino et al. 2006). Different orders of db provide a 
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library for a user to try out and compare the different results in individual applications 

(see in appendix C, Table C.1). 

 

    Table 6.1 Mother wavelet optimisation based on details of coefficients using DWT 

Filter MDL STD Filter MDL STD Filter MDL STD 
 

Hear 9.44 265.30 db10 7.354 63.11 Sym5 17.33 62.48 

db2 61.88 105.20 db11 5.144 61.98 coif1 33.17 105.90 

db3 28.08 67.82 db12 4.664 63.89 coif2 17.84 64.22 

db4 15.14 63.30 db13 3.740 63.15 coif3 9.44 63.89 

db5 16.18 62.23 db14 2.932 61.85 coif4 3.546 67.81 

db6 12.0 63.58 db15 4.093 62.77 demy 2.113 62.64 

db7 13.64 63.74 sym2 61.88 105.20 bior1.1 11.17 285.30 

db8 13.10 62.36 sym3 28.08 68.04 bior1.3 38.24 70.29 

db9 8.668 64.27 Sym4 25.54 64.0 bior1.5 22.75 68.09 

 

In other words, high-order wavelets behave as more ideal filters, a fact that helps to 

avoid partially the overlapping between frequency bands (Antonino et al. 2006). 

According to (6.5), 𝑓𝑠 =300 sample/s,  𝑓=50 Hz, further decomposition of this signal has 

to be done so that the frequency band [0,] will be decomposed into more bands. 

Usually, two additional decomposition levels, (i.e., 𝑛𝐿𝑠+2) would be adequate for the 

analysis. In this work 𝑛𝐿𝑠 = 5 is selected as the decomposition level and the frequency 

bands of different decomposition levels for fault analysis are provided in Table 6.2. 

 

The energy distributions of the bearing under outer race faults with three severities of 

defects (0.2x1x3, 0.5x1x6 and 3x1x9) mm, and local bearing defect under stationary 

operating conditions are summarised in Table 6.3. In the same manner wavelet energy is 

calculated for inner race and ball defects (see Appendix C, Table C.2) 

                    Table 6.2 frequency bands obtained by decomposition in multilevel 

level Frequency band with sampling 

frequency 𝒇𝒔 = 𝟑𝟎𝟎 𝒔𝒂𝒎𝒑𝒍𝒆/ 𝒔 

Centre frequency 

(Hz) 

𝐽1 𝑑1 75-150 225 

𝐽2 𝑑2 37.5-75 112.5 

𝐽3 𝑑3 18.75-375 56.25 

𝐽4 𝑑4 9.37-18.75 28.12 

𝐽5 𝑑5 4.68- 9.37 14.062 

𝑎5 0- 4.68 7.03 
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Figure 6.4 db14 filters impulse responses 

 

 

Mathematically The energy distribution of approximated energy (𝐸𝑎) and detailed (𝐸𝑑) 

can be computed as follows (Wu and Liu 2008): 

𝐸𝑎 =
1

𝑁𝑗
∑|𝑐𝐴|2

ℎ

=
‖𝑐𝐴‖2

𝑁𝑗
 

 (6.22) 

 

𝐸𝑑 =
1

𝑁𝑗
∑|𝑐𝐷|2

ℎ

=
‖𝑐𝐷‖2

𝑁𝑗
 

 (6.23) 

where 𝑐𝐴  and 𝑐𝐷 are the approxmate and detailed coefficients respectively 

 

Table 6.3 (a to c) showed that the wavelet energy of the details coefficients, D2 and D3 

give a good indication about fault severity for no-load and speed 1200 rpm conditions. 

Wavelet energy (D2, D3) is an increment of 25% and 51% respectively after the fault 

and is selected to estimate fault severity. 
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       Table 6.3 Energy (J) for different DWT decomposition details and distribution  

(a) Outer race with defect size 0.2x1x3mm at different loads (KW) and speeds 

(rpm) conditions  

 

Load – speed  A D1 D2 D3 D4 D5 

 No load-600(rpm) 55.054 0.644    14.243    29.797     0.214    0.048 

No load -  900 51.281 3.773    42.182     2.461         0.265         0.040 

No load -  1200 49.204 16.261    34.302     0.141     0.057     0.035 

Half load -600 58.378 0.691    12.951    27.770     0.169    0.041 

Half load -900 50.488 3.895    42.724     2.566     0.279     0.048 

Half load -1200 47.137 17.268    35.361     0.139     0.060     0.035 

Full load-  600 24.129  0.545    25.390    49.490     0.418     0.028 

Full load-  900 5.145  6.818    83.024     4.537     0.453     0.023 

Full load- 1200 9.793 31.108    59.053     0.028         0.012        0.006 

 

(b) Outer  race with defect size 0.5x1x6mm at different loads (KW) and speeds     

(rpm) conditions  

 

Load – speed  A D1 D2 D3 D4 D5 

 No load-600(rpm) 9.308 1.188 29.392 59.624 0.430 0.058 

  No load - 900 7.738 6.917 79.841 4.979 0.459 0.073 

No load - 1200 6.896 30.602 62.181 0.189 0.088 0.045 

  Half load -600 28.860 1.011 17.948 51.770 0.341 0.071 

  Half load -900 23.208 5.860 66.521 3.933 0.412 0.066 

Half load -1200 18.966 26.057 54.672 0.177 0.080 0.048 

  Full load- 600 2.639 0.586 33.837 62.857 0.056 0.025 

  Full load- 900 8.101 6.508 80.597 4.353 0.423 0.017 

Full load- 1200 1.243 34.147 64.555 0.041 0.010 0.004 
 

 

 

(c) Outer race with defect size 3x1x9mm at different loads (KW) and speeds (rpm)   

conditions  

 

  Load – speed  A D1 D2 D3 D4 D5 

 No load-600(rpm) 11.411 1.198 28.066 58.836 0.427 0.063 

No load -  900 9.282 6.798 78.115 5.233 0.074 0.074 

No load -  1200 7.844 30.186 61.550 0.276 0.098 0.046 

Half load - 600 13.437 1.3189 27.905 56.785 0.484 0.070 

Half load- 900 10.364 6.794 77.184 5.121 0.461 0.077 

Half load -1200 8.642 28.194 62.768 0.235 0.106 0.055 

Full load - 600 2.634 0.571 32.782 63.780 0.161 0.075 

Full load - 900 9.26 6.420 79.574 4.316 0.420 0.015 

Full load- 1200 2.046 0.582 31.380 65.621 0.346 0.025 
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          Figure 6.5 DWT decompositions of the vibration signal under normal operation 
 

 

         Figure 6.6 DWT decompositions of the current signal under normal operation 



132 
 

 
            Figure 6.7 DWT decompositions of the vibration signal under fault 

 
Figure 6.8 DWT decompositions of the current signal under fault 
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Figures 6.5 and 6.6 show the sampled healthy and faulty stator current and raw 

vibration signals, The original signal of raw vibration and stator current are plotted at 

the top of each figure, the signals resulting from the DWT i.e. approximation signal (a) 

and detail signals (d) with five levels. Figures 6.5 and 6.6 also show the ability of the 

DWT to discriminate between healthy and faulty cases.  

 

The generated wavelet signal for outer race defects (see Figure 6.5-6.8) after application 

of DWT can be subjected to qualitative and a quantitative analysis. Qualitative analysis 

help to obtain information about the determination of the frequency bands through 

which the fault-related component happens, and from the oscillations in the wavelet 

signals can determine the type of fault, depending on the characteristic pattern arising.  

 

The wavelet energy decomposition is illustrated in Tables 6.4 and 6.5 showing the 

comparison of energy distribution for the local bearing faults. It can be seen that level 2 

provides an indication about wavelet energy differences between inner outer and ball 

defects under stationary load and speed conditions.  

 

 On the other hand, once preliminary quantitative analysis of the condition of the 

machine has been carried out, it is advisable to compute the quantification parameters 

defined for the corresponding fault, in order to measure the degree of fault in the 

machine. Similarly for inner race defects, the wavelet energy as listed in appendix C- 

can be used to predict faults developing under constant and variable speeds and loads 

conditions, as shown in Figures (6.9 and 6.12). 
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            Figure 6.9 Outer fault severities prediction under stationary operating conditions 

 
          

Figure 6.10 Inner fault severities prediction under stationary operating conditions 
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      Table 6.4 Energy (J) for different DWT decomposition details and approximation 

under variable loads conditions for outer race defect 

 

 

 

 

 

Speed (rpm) A D1 D2 D3 D4 D5 

Outer race with defect size 0.2x1x3 mm at variable load conditions 

600 46.902 0.630 17.372 34.902 0.162 0.032 

900 38.903 4.471 53.067 3.246 0.283 0.032 

1200 31.098 22.977 45.766 0.097 0.040 0.021 

Outer race with defect size 0.5x1x6 mm at variable load conditions 

600 10.406 0.805 30.527 57.956 0.275 0.031 

900 4.211 6.971 83.895 4.442 0.457 0.024 

1200 2.958 34.287 62.673 0.056 0.018 0.009 

Outer race with defect size 1x3x9 mm at variable load conditions 

600 6.542 0.924 31.731 60.526 0.241 0.037 

900 5.066 7.043 82.724 4.679 0.456 0.035 

1200 1.678 33.108 65.135 0.0516 0.017 0.009 

 

 

Table 6.5 Energy (J) for different DWT decomposition details and approximation 

under variable speeds conditions for outer race defect  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Load A D1 D2 D3 D4 D5 

   Outer race with defect size 0.2x1x3mm at variable speeds conditions 

No load 55.057 5.750 31.156 7.819 0.175 0.043 

Half load 7.206 14.789 68.587 9.169 0.232 0.016 

Full load 12.975 14.215 62.883 9.646 0.264 0.017 

       Outer race with defect size 0.5x1x6 mm at variable speeds conditions 

No load 24.354 10.801 52.510 11.939 0.331 0.066 

Half load 14.966 11.538 58.813 14.248 0.378 0.057 

Full load 1.243 34.147 64.555 0.041 0.010 0.004 

Outer race with defect size 1x3x9 mm at variable speeds conditions 

No load 9.463 12.766 62.177 15.129 0.392 0.073 

Half load 9.666 12.435 60.939 16.573 0.314 0.074 

Full load 1.026 17.327 72.148 9.202 0.284 0.012 
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                     Figure 6.11 Outer fault severities prediction under non-stationary operating  

                             conditions 
 

 

                 Figure 6.12 Inner fault severities prediction under non-stationary operating 

condition 
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6.4.2 Feature extraction for generalised bearing fault  

With global (corrosion) bearing faults, a discrete wavelet, Deubechies wavelet db14 is 

chosen as mother wavelet, with level 5 vibration and current signals, associated with 

various constant and variable speed and load conditions, with 4 degrees of fault 

severities.  

 

 

     Table 6.6 Energy (J) for different DWT decomposition details and approximation 

for corrosion defect severity 1 under stationary loads (KW) and speeds (rpm) 

conditions 
 

 

Load – 

speed(rpm) 

A D1 D2 D3 D4 D5 

No load – 600  60.6856 0.3610  6.91921 31.7917 0.2144 0.0352 

No load -  900 55.3187  0.4502  43.6514 0.4022 0.0579 0.0259 

No load -  1200 52.7298  9.1868 37.8785 0.1269 0.0512 0.0267 

Half load -600  1.7344 1.0350  18.5201 76.8586 1.6951 0.1568 

Half load -900 78.9946  0.2323  20.5469 0.1803 0.0295 0.0164 

Half load -1200 76.5705  4.5070  18.8063 0.0697 0.0277 0.0188 

Full load-  600 18.4676  0.0793  17.1227 64.1558 0.1151 0.0596 

Full load-  900  0.4713  1.5190  92.7957   5.0405 0.1322 0.0412 

Full load- 1200  0.6150 21.704 76.8473 0.6666 0.0963 0.0714 

 

 

 

       Table 6.7 Wavelet energy for corrosion fault at variable load 
 

Speed A D1 D2 D3 D4 D5 

Corrosion with defect severity 1 at variable load (KW) conditions 

600   0.8328 1.4615 34.3426 61.8344 1.3838 0.1449 

900 13.8217 6.5363 72.5857 6.5147 0.4730 0.0686 

1200 0.5688 32.4512 65.9538 0.8414 0.1401 0.0447 

Corrosion with defect  severity 2 at variable load (KW) conditions 

600 15.8962 1.0811 24.7630 57.6153 0.5097 0.1347 

900 13.8217 6.5363 72.5857 6.5147 0.4730 0.0686 

1200 13.2113 27.3220 58.5891 0.6559 0.1827 0.0389 

Corrosion with defect  severity 3 at variable load (KW) condition 

600 0.2338 1.1142 30.8388 66.4733 1.1392 0.2009 

900 0.1047 7.3567 85.4630 6.0698 0.9063 0.0995 

1200 0.1424 32.0514 66.2188 1.3522 0.1950 0.0403 

Corrosion with defect  severity 4 at variable load (KW) conditions 

600 2.1932 1.3265 24.8809 70.6931 0.7062 0.2000 

900 1.9670 7.3584 83.0121 6.9991 0.5771 0.0863 

1200 1.8165 30.1955 67.0309 0.7189 0.1941 0.0441 
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             Table 6.8 Wavelet energy for corrosion fault at variable speed 

 

 

 

 

 

 

 

 

Similarly to local bearing faults features extraction, the approximated and detailed 

coefficients are decomposed into 5 levels, as listed in Tables 6.6- 6.8. Figure 6.13 shows 

the ability of wavelet energy to predict the fault severity. 

 

 

Figure 6.13 Probability of corrosion fault severity 

 

Load A D1 D2 D3 D4 D5 

 Corrosion with defect severity 1 at variable speeds  conditions 

No load 0.9670 14.0017 64.3205 19.8666 0.7350 0.1093 

Half load 14.2718 12.6453 66.8833 18.9101 0.4474 0.1141 

Full load 1.0113 11.7985 63.8111 22.8135 0.4878 0.0779 

Corrosion with defect severity 2 at variable speeds conditions 

No load 0.1542 12.4079 70.0063 16.8279 0.5178 0.0858 

Half load 14.2718 12.4261 58.5844 14.3016 0.3535 0.0626 

Full load 10.8823 12.2500 56.6147 19.6572 0.5205 0.0753 

        Corrosion with defect severity 3at variable speeds conditions 

No load 14.4810 10.3872 59.1052 15.5869 0.3696 0.0700 

Half load 0.2666 12.2748 68.5494 18.2808 0.5347 0.0937 

Full load 0.1065 12.3219 64.4784 22.2255 0.7909 0.0768 

Corrosion with defect severity 4 at variable speeds conditions 

No load 2.2477 10.9085 60.9296 25.2633 0.5367 0.1142 

Half load 0.7909 11.4275 62.8330 24.4318 0.4280 0.0887 

Full load 0.9313 11.2615 57.0982 29.8793 0.6267 0.2029 



139 
 

6.5 Feature extraction for Thruster Motor Faults  
 

The same feature extraction procedure can be implemented for unbalanced mechanical 

load of the thruster motor, as mentioned in Chapter 4. During the experimental setup the 

data acquisition time is T=30s, with a sampling frequency 𝑓𝑠=3 kHz for all the 

experiment’s tests, and a fundamental frequency of 𝑓=50Hz. The measurements are 

taken at different speed levels, from very low to very high speeds. Wavelet frequency 

bands are summarised in Table 6.9. 

                          Table 6.9.Wavelet frequency bands 

 

level Frequency band with sampling 

frequency 𝒇𝒔 = 𝟑𝟎𝟎𝟎 𝒔𝒂𝒎𝒑𝒍𝒆/ 𝒔 

Centre 

frequency (Hz) 

𝐽1 𝑑1           750-1500 1125 

𝐽2 𝑑2           375-750  562.5 

𝐽3 𝑑3           187.5-375     281.25 

𝐽4 𝑑4 93.75-187.5     140.62 

𝐽5 𝑑5 46.87-93.75   70.31 

𝐽6 𝑑6 23.43-46.87    35.15 

𝐽7 𝑑7 11.71-23.43    17.57 

𝐽8 𝑑8 5.85-11.71   8.78 

𝑎8             0- 5.85   2.92 
 

To optimise the mother wavelet function level of decomposition and function order Eqn 

6.18 are implemented and db 12 is selected as the mother wavelet, as illustrated in Table 

6.10 and on the basis of Eqn 6.19 𝑛𝑙𝑠=8 is chosen as a suitable wavelet level 

decomposition. Table 6.11 reports DWT decomposition energy at normal and faulty 

case under different rotation speed conditions. 

 

 

          Table 6.10 Mother wavelet optimisation based on details coefficients using DWT 

Filter MDL STD Filter MDL STD Filter MDL STD 

haar 14.78 1.13 db10 7.13 0.70 sym6 13.10 0.83 

db2 15.63 1.11 db11 5.13 0.70 coif1 9.65 1.11 

db3 15.67 1.03 db12 5.04 0.67 coif2 13.07 0.93 

db4 10.07 0.94 db13 5.89 0.87 coif3 10.27 0.81 

db5 9.62 0.87 db14 6.96 0.96 coif4 8.28 0.73 

db6 9.88 0.82 sym2 15.63 1.11 demy 9.89 0.97 

db7 8.17 0.79 sym3 15.67 1.03 bior1.1 14.7 1.13 

db8 7.43 0.75 sym4 11.04 0.95 bior1.3 7.13 1.01 

db9 7.23 0.71 sym5 12.58 0.88 bior1.5 11.96 0.89 
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       Table 6.11 DWT decomposition and energy distribution (Joule) 

(a)  Normal at different speeds 
 

    Speed D1 D2 D3 D4 D5 D6 D7 D8 

   Max speed 0.0011 0.0012 0.0026 0.0094 0.0045 0.0089 0.0082 0.0066 

Speed2 0.0004 0.0004 0.0008 0.0026 0.0019 0.0036 0.0053 0.0058 

Speed3 0.0014 0.0011 0.0011 0.0016 0.0013 0.0023 0.0058 0.0058 

Speed4 0.0012 0.0015 0.0013 0.0041 0.0012 0.0023 0.0044 0.0057 

Speed5 0.0011 0.0016 0.0009 0.0013 0.0012 0.0021 0.0037 0.0058 

   Low speed  0.0011 0.0015 0.0008 0.0013 0.0013 0.0019 0.0039 0.0056 
 

(b) Faults  at speed 1(max speed) 
 

 

Fault 

Severity 

D1 D2 D3 D4 D5 D6 D7 D8 

10% 0.0013 0.0023 0.0090 0.0164 0.0311 0.2132 0.1777 0.0154 

25% 0.0019 0.0072 0.0116 0.0137 0.0320 0.1598 0.0865 0.0690 

50% 0.0022 0.0087 0.0321 0.0820 0.7618 5.4039 3.7546 0.0066 

 Full defect 0.0026 0.0130 0.0609 0.1787 1.4362 11.5768 10.8262 0.0192 

       

      (c) Faults at speed 2 
 

Fault 

Severity 

D1 D2 D3 D4 D5 D6 D7 D8 

10% 0.0013 0.0023 0.0092 0.0156 0.0305 0.2083 0.1819   0.0059 
25% 0.0020 0.0074 0.0098 0.0130 0.0316 0.1607 0.0979   0.0272 
50% 0.0019 0.0073 0.0273 0.0803 0.7797 5.4388 3.7184   0.0112 

    Full defect 0.0023 0.0114  0.0534  0.1663 1.3747 11.2753 10.4622    8.0188 

 

(d)  Faults at speed 3 
 

Fault 

Severity 

D1 D2 D3 D4 D5 D6 D7 D8 

10% 0.0070 0.0053 0.0054 0.0080 0.0121 0.0780 0.1487  0.0177 

25% 0.0059 0.0082 0.0139 0.0119 0.0186 0.0961 0.1362  0.0406 

50% 0.0054 0.0061 0.0137 0.0386 0.1673 1.5679 3.0805  0.0203 

 Full defect 0.0058 0.0059 0.0130 0.0459 0.4301 4.2362 9.1805   0.0287 
 

 

 

     (e) Faults at speed 4 
 

Fault 

Severity 

D1 D2 D3 D4 D5 D6 D7 D8 

10% 0.0062  0.0071 0.0058 0.0058 0.0059 0.0237 0.0934 0.0313 

25% 0.0055 0.0045 0.0052 0.0056 0.0036 0.0162 0.0518 0.0441 

50% 0.0047   0.0055 0.0061 0.0104 0.0441 0.4710 1.8634  0.1833 

   Full defect  0.0050 0.0060 0.0059 0.0138 0.0889 1.0046 4.7329 0.7504 
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(f)  Faults at Speed 5 
 

Fault 

severity 

D1 D2 D3 D4 D5 D6 D7 D8 

10%  0.0058      0.0070      0.0053 0.0026 0.0018      0.0069     0.0268 0.0405 

25%  0.0035      0.0034      0.0060     0.0094 0.0072      0.0092     0.0189 0.0530 

50%  0.0047      0.0051      0.0047     0.0056 0.0105      0.0857     0.5889 0.4659 

Full defect   0.0050 0.0060 0.0059 0.0138 0.0889 1.0046 4.7329 0.7504 

 

(g)  Faults at Speed 6 (low speed) 
 

Fault 

Severity 

D1 D2 D3 D4 D5 D6 D7 D8 

10% 0.0061 0.0063 0.0046 0.0024 0.0028 0.0029 0.0055 0.0139 

25% 0.0043 0.0030 0.0033 0.0051 0.0022 0.0038 0.0116 0.0462 

50% 0.0047 0.0054 0.0043 0.0036 0.0035 0.0072 0.0564 0.2077 

   Full defect  0.0049 0.0057 0.0060 0.0086 0.0064 0.0175 0.1427 0.5667 

 
Figure 6.14 DWT decompositions of the thruster motor vibration signal under normal 

operation 
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Figures 6.14 and 6.15 show the original signal, details coefficient (d1-d8) approximate 

coefficient (a8) under normal and corrosion fault conditions, respectively. The DWT 

representation gives a clear idea about how the original signal is reconstructed using the 

approximations and details at various levels. As is clear from Figure 6.16, details at 

level 6 give a good indication about the progress of fault severity, so that it can be used 

to predict the severity of blade faults, as shown in Figures 6.16 and 6.17. 

DWT has been successful in analysing non-stationary signals. However, DWT yields a 

high dimensional feature vector (Phinyomark et al. 2012) and in some cases the number 

of features (see Figure 6.18) is relatively larger than the number of training samples. 

This is usually referred as the ‘curse of dimensionality’, adversely affecting training and 

testing speed (Alok et al. 2006). An accurate dimensionality reduction tool is thus 

needed to remove redundant features information (Prieto et al. 2013).  

 

Figure 6.15 DWT decompositions of the thruster motor vibration signal under 

fault operation 
 



143 
 

 

Figure 6.16 Blades F1 faults under high speed  

  
 

Figure 6.17 Thruster motor blades fault severity prediction under high speed  
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Figure 6.18 Scatter plot of the DWT features  

 

6.6 Feature Projection and Dimensionality Reduction Techniques  

Feature projection is an important task in machine learning, for it facilitates 

classification, compression, and visualization of high-dimensional data by mitigating 

undesired properties of high-dimensional spaces by removing redundant features 

information that may lead to over fitting (Biet 2013). 

Dimensionality reduction methods can be implemented as methods of feature projection 

and feature selection. As such, it is obvious that the main goal of feature dimensionality 

reduction is to reduce the number of features without compromising the quality of 

classification. Generally, dimension reduction approaches can be classified into linear, 

and nonlinear as will be discussed in the next two subsections (Cevikalp 2005).  

The choice of linear and nonlinear techniques will be determined by the nature of the 

classification problem. The linear case is the simplest classification problem in which 

both linear and nonlinear techniques are expected to classify all the data correctly. For 
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nonlinear cases, classes of data can be separated using nonlinear separating planes, 

where using linear techniques in this case would misclassify a large portion of the data 

(Chiang et al. 2004).  

 

6.6.1 Linear dimensionality reduction techniques 

PCA and LDA are the classic and popular dimensionality reduction methods. PCA is a 

linear feature reduction techniques used to transfer data to a new orthogonal basis, 

whose axes are oriented in the directions of the maximum variance of an input data set.  

 

To reduce dimensionality from d to m, the basic working of a PCA is presented below 

(Sakthivel et al. 2014):  

Step 1: calculate the mean and subtract the sampling mean from each row, as 

represented in  

  C =  
1

𝑛−1
𝑥𝑗𝑥𝑗

𝑇 (6.24) 

    𝐶𝑗𝑘 =
1

𝑛−1
∑ (𝑥𝑗𝑖 – 𝑥𝑖

∗)𝑛
𝑗=1 (𝑥𝑗𝑘 – 𝑥𝑘

∗)  (6.25) 

  𝑗, 𝑘 = 1,…… . 𝑝   (6.26) 

where  xj denotes data matrix and n is the matrix dimension. 

            Step 2: calculate a covariance matrix C as follows: 

 𝐶 =
1

𝑀
∑   𝐶𝑗𝑘   𝐶𝑗𝑘 

𝑇𝑛
𝑖=1    (6.27) 

Step 3 calculates the eigenvectors and eigenvalues of the matrix C by solving (5): 

    |𝐶 − 𝑙𝐼| = 0  (6.28) 

Finally, project the new dataset by multiplying the original data by the covariance 

matrix. The main drawbacks of PCA is that it works to reduce feature redundancy only, 

without taking into account the relation of features or variables within the specific class 
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labels, and this will affect the classification accuracy (Delgado et al. 2011). 

Furthermore, PCA has the drawback of its limited ability to deal with non-linear 

behaviour of the data.  

 

LDA is another feature reduction technique that deals with the projection axes on which 

the distance between data points of the same classes is decreased, and the distance 

between data points belonging to different classes is increased (Eleyan and Demirel 

2007). LDA can produce an optimally discriminant projection by considering the labels 

of the input data. However, there still exist some drawbacks in LDA.  

 

When the dimension of data is too high and training data is inadequate, LDA cannot 

find the best projection directions for classification. Moreover, the discriminating power 

of LDA is also limited in that the dimension of its reduced space cannot be larger than 

the class number minus one (Jieping et al. 2004). The main difference between LDA 

and PCA is that the former does data classification whereas PCA does feature 

classification. In PCA, the shape and location of the original data sets changes when 

transformed to a different space whilst LDA does not change the location, but only tries 

to provide more class separation, and draws a decision region between the given classes 

(Haixian et al. 2014). 

6.6.2 Nonlinear dimensionality reduction techniques 
 

Since PCA and LDA are linear, their performances degenerate for nonlinear data where 

the underlying low-dimensional structure has nonlinear manifolds rather than linear. 

Over the last decade, a large number of new (nonlinear) techniques for dimensionality 

reduction have been proposed. Most of these techniques are based on the intuition that 

data lies on or near a complex low-dimensional manifold that is embedded in the high-
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dimensional space. Nonlinear techniques for dimensionality reduction can be classified 

into three main types (vander et al. 2009). 

 Techniques that attempt to preserve the global properties of the original data in the 

low-dimensional representation, such as Kernel PCA. 

  Techniques that attempt to preserve local properties of the original data in the low-

dimensional representation, such as locally linear embedding. 

 Techniques that perform global alignment of a mixture of linear models, such as 

locally linear coordination  
 

A new feature reduction approach is proposed in this chapter that has not previously 

been used for electrical machines fault diagnosis; this will be discussed in next section.  

 

 

6.7 Orthogonal Fuzzy Discriminate Analysis for Feature  

Reduction  
 
 

The feature projection method attempts to determine the best combination of original 

wavelet coefficients, and additionally, the features reduced are different from the 

original features. OFNDA is a better technique compared to other feature reduction 

techniques such as LDA where singularity problems are predominant.  

 

OFNDA has been recently proposed and used in analysis of medical data. Khushaba et 

al. (2010) present OFNDA for feature reduction as it works to maximise the distance 

between features belong to different classes (𝑆𝑏) whilst minimise the distance between 

features in the same class (𝑆𝑤) and also taking into account the contribution of the 

samples to the different classes, as shown in Figure 6.19. OFNDA has been successfully 

applied here to classify four classes of rolling element bearing defects under constant 

and variable speed and load conditions. It can be observed from the graph that 

boundaries between different operating conditions are more distinct in the case of the  
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Figure 6.19 The feature space mapping (Farag, 2008) permission to reproduce this 

figure has been granted by Farag.A  
 

The diagram in Figure 6.20 illustrates the OFNDA process. The first step is to apply 

principle component analysis to remove any redundancy that may cause singularity, 

before starting discriminant analysis and keeping all principle components, to prevent 

the loss of any useful information. The computation of the proposed fuzzy 

neighbourhood discriminant analysis (FNDA) proceeds by calculating the 

 𝑆𝑤 𝑎𝑛𝑑 𝑆𝑏  as given by:  

Xx is the mean of the training samples; this is in turn given as follows: 
 

Xx =
∑ ∑ 𝜇𝑖𝑘𝑋𝑘

𝑙𝑖
𝑘=1

𝑐
𝑖=1

∑ ∑ 𝜇𝑖𝑘
𝑙𝑖
𝑘=1

𝑐
𝑖=1

 

 

 

                                                             (6.29) 

 

                             𝑆𝑊  = ∑ ∑   𝜇𝑖𝑘(Kk − Ui)(Xk − Ui)
T𝑙𝑖

k=1
𝑐
𝑖=1   (6.30) 

. where 𝜇𝑖𝑘 is the membership of pattern k in class 𝑖, 𝑋𝑘 is the 𝐾𝑡ℎ sample, and 𝑈𝑖 is the 

mean of the patterns that belong to class 𝑖, given the universal set 𝑋 =  {𝑥1, 𝑥2, . . . , 𝑥𝑙}, 

where x is feature vector, 𝑘 = 1, 2, . . . , 𝑙 is the number of samples 

 

𝑈𝑖 =
∑ 𝜇𝑖𝑘𝑋𝑘

𝑙𝑖
𝑘=1

∑ 𝜇𝑖𝑘
𝑙𝑖
𝑘=1

 (6.31) 
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                        𝑆𝑊  = ∑ ∑   𝜇𝑖𝑘(KkXk
𝑇 − UiXk

𝑇 − KkU
𝑇 − UiUi

𝑇)
𝑙𝑖

k=1
𝑐
𝑖=1  

                        𝑆𝑊  = ∑
1

∑ 𝜇𝑖𝑗
𝑙𝑖
𝑗=1

𝑐
𝑖=1 ∑ 𝜇𝑖𝑗

𝑙𝑖
𝑗=1 [∑   𝜇𝑖𝑘KkXk

𝑇  
𝑙𝑖

k=1
− ∑ 𝜇𝑖𝑘Kk

𝑙𝑖
𝑘=1 ∑ 𝜇𝑖𝑘Kj

𝑇
𝑙𝑖
𝑗=1 ] 

      

          This finally simplifies to: 

 

 

 

𝑆𝐵  = ∑ 𝜇𝑖𝑘(Ui − Xx)(Ui − Xx)
Tc

i=1
 (6.35) 

                             𝑆𝐵  = ∑ ∑   𝜇𝑖𝑘(KkXk
𝑇 − UiXk

𝑇 − KkU
𝑇 − UiUi

𝑇)
𝑙𝑖

k=1
𝑐
𝑖=1  (6.36) 

                   𝐵 = ∑  𝜇𝑖𝑘
𝑙𝑖
𝑘=1  

𝑆𝐵  =
1

2𝑛
∑ ∑  𝐵𝑖𝐵𝑗 ( 

1

2
𝑈𝑘𝑈𝑘 − 𝑈𝑗𝑈𝑘 −

1

2
𝑈𝑗𝑈𝑗)

c

j=1

𝑐
𝑖=1  

and finally we reach to the last term for SB that is given as 
 

 

 

𝐺 = 𝐺𝐹𝑁𝐷𝐴. 𝐺𝑃𝐶𝐴  (6.39) 

 

GFNDA = argmat trac (
GTSBG

GT SWG
)  (6.40) 

Then a QR-decomposition is applied on the resultant matrix to acquire a new 

transformation matrix 𝑄, that is 𝐺 =  𝑄𝑅. In such an equation, Ris an upper triangular 

matrix and 𝑄 is an orthogonal matrix, i.e., one satisfying 𝑄𝑇is the transpose of 𝑄 and I 

is the identity matrix. 
 

𝐺 = 𝑄𝑅              (6.41) 

𝑄 = 𝐺𝑂𝐹𝑁𝐷𝐴    (6.42) 

 
 

 𝐺𝐹𝑁𝐷𝐴 is the Transformation matrix related to PCA and OFNDA respectively. 

   
 

𝑋(m. n)∗ = 𝑋(m. n). 𝐺𝑂𝐹𝑁𝐷𝐴                                                                  (6.43) 

                    𝑆𝑊  = ∑
1

2∑ 𝜇𝑖𝑗
𝑙𝑖
𝑗=1

𝑐

𝑖=1

∑∑ 𝜇𝑖𝑗𝜇𝑖𝑘( 𝑥𝑘 − 𝑥𝑗)( 𝑥𝑘 − 𝑥𝑗)
𝑇
 

𝑙𝑖

k=1

𝑙𝑖

𝑗=1

 

 

 

 

           𝑆𝐵  =
1

2𝑛
∑∑ 𝐵𝑖𝐵𝑗( 𝑈𝑘 − 𝑈𝑗)( 𝑈𝑘 − 𝑈)𝑇 

𝑙𝑖

k=1

𝑙𝑖

𝑗=1

 

 

 

 

(6.32) 

(6.33) 

(6.37) 

(6.38) 

(6.34) 
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The feature reduction techniques mentioned above were able to reduce drastically the 

number of wavelet features, originally from 12 to 4, enabling faster computation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  Figure 6.20 The steps of OFNDA performance 

 

6.7.1 Features dimensionality reduction for bearing faults 
 

OFNDA decreases the features extracted using DWT (12 features for bearing fault) to 4 

features, which will used in training, validation and testing the DNN in Chapter 7. That 

represents bearing local and corrosion faults under different severities. OFNDA works 

to decrease DWT features (18 features in this work) to 4 effective features and ignores 

the irrelevant features that affect diagnostic accuracy. To evaluate the fault classification 

performance, the original data was divided into 5 data sets, representing three of the 

local bearing faults (normal, inner race, outer race, and ball) and the generalised fault 

(corrosion).  

 

Calculate the orthogonal matrix 𝑄 (see Eq 6.41) 

  Wavelet features =𝑋(m. n)   

Select number of reduced features 

Pre-processing the selected data to obtain 𝐺𝑃𝐶𝐴 

        Project the data with transformation (see Eq 6.43) 

Calculate the distance within the class ( 𝑆𝑊) 

Calculate the distance between two classes (𝑆𝐵) 

Based on (𝑆𝑊) and (𝑆𝐵),the transformation                          

Matrix (𝐺𝐹𝑁𝐷𝐴) is calculated (see Eq 6.40) 

Calculate the transformation matrix  𝐺 
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Then, to diagnose fault severity, inner and outer race data sets were divided into three 

data sets, representing bearing crack fault severities (1x0.2x3, 1x0.5x1x6 and 

3x1x9mm); for corrosion faults the data set was divided into four data sets, representing 

bearing corrosion fault severities. The distribution of OFNDA features is illustrated in 

Figures (6.21 - 6.24), which used this fault classification. 

  

 
    

 

Figure 6.21 Bearing faults OFNDA features for fault classification  
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Figure 6.22 OFNDA features under inner fault severities at no load and 1200rpm speed  

 

 

 
 

Figure 6.23 OFNDA features under different outer fault severities at no load and 

1200rpm speed  
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Figure 6.24 OFNDA features under corrosion fault severities at no load and 1200rpm 

speed 

 
 

6.7.2 Features dimensionality reduction for thruster motor faults 
 
 

A mentioned in section 6.5, (18) feature were extracted using DWT. Then OFNDA was 

applied to optimise features and remove irrelevant features that could affect fault 

diagnosis performance. OFNDA decreases DWT features to 8 features, as shown in 

Figure 6.26. This can be used for fault classification purposes, as will be explained in 

the next chapter. 
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Figure 6.25 OFNDA features under different severities of blades fault 
 
 

6.8 Chapter Summary  
 

In this chapter, the DWT technique is applied to locate rolling bearing and thruster 

blade faults based on a permanent magnet dc motor. This technique is based on the 

analysis of raw vibration and current signals under stationary and non-stationary 

operating conditions. The approximation and details signals of the fault patterns of the 

machine are generated, which can be used to predict fault severity. Among different 

mother wavelet functions and level of decomposition levels, a wavelet filter needs to be 

optimised. MDL and STD were implemented and DSL was used to optimise the 

suitable of level of decomposition. DWT was used as an efficient feature extraction 

method. However, these features alone are not capable of a good fault classification 

performance. New feature reduction in terms of electrical machine fault diagnosis 

OFNDA was applied to obtain the best features for fault classification. In the next 

chapter, OFNDA features will be used for training and testing a dynamic neural 

network for fault classification.  
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CHAPTER 7 

Fault Classification Based on Dynamic 

Neural Network 

 

“This chapter introduces dynamic neural network as a method for fault classification 

and fault severity prediction, based on OFNDA features used for training, validation 

and testing.” 

 

 

7.1 Introduction  

In Chapter 6, different techniques were applied and implemented to extract and 

optimised useful features from the raw vibration and current signals. In this chapter, NN 

can be used for fault isolation due to its stability and parallel processing. The solution 

time for calculating machine circuit parameters using NN models has been dramatically 

reduced, while sufficient accuracy has been maintained. Furthermore, NNs provide an 

excellent mathematical tool for dealing with non-linear problems. In addition, NN 

behaviour in fault diagnosis is directly related to the quality and the nature of NN inputs 

(fault indicators) and it can learn the motor-incipient fault detection process to give 

accurate solutions to a particular fault (Liying et al. 2013). However, the response of a 

static NN at any instant in time depends only on the value of the input sequence at that 

same time instant, so that DNN suggested in this work. DNNs have a wide range of 

applications, such as system identification and control, time series prediction and 

classification. 

 

This chapter is organised as follows: section 7.2 presents the DNN structures for fault 

classification and fault severities prediction; Section 7.3 describes the proposed DNN 

structure, while in section 7.4, the performance of the proposed structure in diagnosing 
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localised and generalised rolling element bearing faults under stationary and non-

stationary operating conditions will be discussed. To validate the prosed structure, the 

severity of thruster blade faults will be introduced in Section 7.5, and a summary of the 

chapter will be given in section 7.6. 

 

7.2 Dynamic Neural Network Structure  

Most industrial systems are dynamic and non-linear in nature, and hence during fault 

identification it seems desirable to employ those models which can represent the 

dynamics of the system, to increase operational reliability and to optimise preventative 

maintenance.  

 

NNs can be categorised into dynamic and static, in static NNs the output is calculated 

directly from the input through feed-forward connections there and are no delays and 

feedback. Whereas in DNN, the output depends on the current and past inputs, outputs, 

or states of the network. Generally, DNN are more active than static NN, and studies 

have shown that their use can help to improve the fault prediction accuracy of electrical 

motor condition monitoring systems (Hyun et al. 2010). 

Furthermore, DNNs have a great capability for learning the dynamics of complicated 

non-linear systems, where conventional static NN cannot yield and perform acceptable 

modelling representation and mapping (Howard et al. 2006). The DNN is initially 

trained on past demand data, with the network input vector being a moving window on 

the load time series. As time progresses, the NN weights are dynamically adapted. It is 

common that once the networks are proven on the test data, it is concluded that they will 

perform consistently well for the foreseen demand trends. 

For providing a NN with dynamic behaviour, one of the existing methods is the 

insertion of a filter before or after the activation function, This method based on the 

file:///C:/Users/Mike/Dropbox/thesis%20chapters/CHAPTER%207.docx
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structure where all input signals flow in one direction, from input to output (Li et al. 

2005) i.e. NNs that have only feed forward connections, as mentioned in Chapter 2 and 

Figure 2.3. The filter can be applied to the network inputs only, keeping the network 

internally static as in the filtered multilayer perceptron (MLP), or at the input of each 

neuron, as in the MLP with FIR filter synapses. The main disadvantage of this approach 

is the limited past-history horizon, which needs to be used in order to keep the size of 

the network computationally manageable (Yousif 2012). 

The EN is another commonly used dynamic network category. It consists of a two-layer 

network with feedback from the first-layer output to the first-layer input. This recurrent 

connection allows the EN to both detect and generate time-varying patterns. An EN 

might use BP for training, but it tends to proceed too rapidly. 

 

 

The most general example of the implementation of feedbacks in a NN is the fully 

recurrent NN (FRNN) (Liu 2002). This is constituted by a single layer of neurons fully 

interconnected with each other or by several such layers. However, this network 

requires a large structure, so that in recent years growing efforts have been propounded 

to develop methods for implementing temporal dynamic feedback connections into the 

widely used multi-layered FFNN.  

 

Recurrent neural network (RNN) connections can be added by using two main types of 

recurrence or feedback: DNN classifiers for non-linear output classification without 

exogenous data, and a nonlinear autoregressive classifier with exogenous data (NARX)  

 

The first type has a delay line appear at only the input layer of a static MLP network, 

and is also known as a time delay neural network (TDNN), as shown in Figure 7.1, 

where 𝑥(𝑡) and 𝑦(𝑡) are the input and output respectively. Furthermore TDNN does not 

need dynamic BP to compute the network gradient static MLP network, and there are no 

feedback adjustable parameters (Huo and Poo 2013).  

file:///C:/Users/Mike/Dropbox/thesis%20chapters/CHAPTER%207.docx
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Figure 7.1 TDNN structure. 

 

The second type, NARX has a similar architecture to feed forward MLP NNs, with a 

delay line on the input and the output being fed back to the input by another delay line 

(Chetouani 2013). NARX can be called (NARX – RNN) (Lin et al. 1996) or dynamic 

DRNN, based on the linear ARX model. NARX has a limited output feedback not from 

hidden neurons like other RNN networks, as shown in Figure.7.2. As part of the 

standard NARX architecture The output of the NARX is feed back to the input of the 

FFNN.  

The network has tapped delay lines (𝑑) to store previous values of the input, 𝑢(𝑡) and 

output, 𝑦(𝑡) sequences; the tapped delay line on the input has a maximum delay of 1. 

The defining equation for the NARX model is: 

 

𝑦(+1) = 𝑓(𝑦(𝑘)……𝑦(𝑘 − 𝑞 + 1), 𝑢(𝑘),……𝑢(𝑘 − 𝑞 + 1))  (7. 1) 

 

where 𝑓 is the nonlinear approximation function, the next value of the dependent 𝑦(𝑡) 

output signal is regressed on the basis of an independent exogenous signal 

file:///C:/Users/Mike/Dropbox/thesis%20chapters/CHAPTER%207.docx
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(𝑢𝑡−1 …𝑢𝑡−𝑛) . The next value of the dependent output signal 𝑦(𝑡) is regressed on 

previous values of the output signal and an independent (exogenous) input signal. 

NARX response at any given time depends not only on the current input, but on the 

history of the input sequence. If the network does not have any feedback connections, 

then only a finite amount of history will affect the response. 

 

 

 

 
           Figure 7.2 A DRNN with exogenous data. 

 
 

 

Furthermore, NARX is commonly used in time series modelling, they have several 

advantages in practice. It has been reported that gradient-descent learning can be more 

effective in NARX networks than in other RNN architectures. In addition, the 

architecture of NARX will reduce the computational cost; this network will be 

discussed in detail in the next section. 
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7.3 The Proposed DRNN for PMDC Motor Fault Diagnosis  

 
Diagnosis is the task of estimating a system’s operating conditions to demine an 

accurate prediction technique, to predict behaviour that provides information about the 

remaining useful life of the components (Mohammadi et al. 2011).  

 

In this study, NARX was trained to detect and classify PMDC motor faults during 

stationary and non-stationary operating conditions. NARX are a special type of DRNN 

with a large number of network layers connected via feedback connections, supported 

by an external exogenous input to improve calibration. In this work, five time-delayed 

selected from the input and output were feedback as inputs to the network and are often 

used as shown in Figure 7.3. 

 
Figure 7.3 DRNN used for fault diagnosis 

. 

After the dimensionality reduction stage the wavelet features were reduced from 12 to 4 

features that represent network inputs. The input pattern of the network (input layer) at 

each time k consists of the four input features (present and delayed values), as well as 

the output feedback, and is formed as: 
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 𝒙(𝑘) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥1
𝑂𝐹𝑁𝐷𝐴(𝑘)

⋮
𝑥1

𝑂𝐹𝑁𝐷𝐴(𝑘 − 𝑛𝑑𝑖1)

⋮
𝑥3

𝑂𝐹𝑁𝐷𝐴(𝑘)
⋮

𝑥4
𝑂𝐹𝑁𝐷𝐴(𝑘 − 𝑛𝑑𝑖2)

�̂�1(𝑘 − 1)
⋮

�̂�1(𝑘 − 𝑛𝑑𝑜1
)

⋮
�̂�4(𝑘 − 1)

⋮
�̂�5(𝑘 − 𝑛𝑑𝑜5

)

  

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (7.2) 

 

where 𝑛𝑑𝑖𝑗 and 𝑛𝑑𝑜𝑗
 are the number of delays of input feature j and output j respectively. 

In this case, four input delays and three output delays were used for all input and output 

features respectively. The network used is a logistic classifier that incorporates sigmoid 

activations in all the hidden and output units. For each input pattern 𝒙(𝑘), the output of 

each node is calculated by forward propagation according to 

 

𝒂(1)(𝑘) = [
1

𝑥(𝑘)
] ;                                                                                     (7.3) 

𝒂(2)(𝑘) = [
1

𝑠(𝚯(1)𝒂(1)(𝑘))]
; (7.4)        

 

�̂�(𝑘) = 𝒂(3)(𝑘) = 𝑠(𝚯(2)𝒂(2)(𝑘)  (7.5) 

 

where 𝒂𝑖
(𝑙)

 denotes the activation or output of the i
th

 node of layer l, �̂� is the output 

vector of the network, 𝚯(1)and 𝚯(2)are the matrices of parameters of the network such 

that 𝚯𝑖𝑗
(𝑙)

 represents the strength of the connection between the j
th

 of layer l and node i
th

 

node of layer (l+1), and s(x) is the logistic function as shown in Figure 7.4, below. 

 

𝑠(𝑥) =  
1

1 + 𝑒−𝑥
 

                                                             (7.6) 
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Figure 7.4 Sigmoid logistic function 

For each input pattern, the network outputs four values: 

(�̂�(𝑘) = [�̂�1(𝑘), �̂�2(𝑘), �̂�3(𝑘), �̂�4(𝑘)]𝑇)  between 0 and 1; these output values are 

rounded to 0 or 1 to indicate a certain fault condition. Training consists of minimising 

the cost function with regularization is given by Andrew (2014): 

𝐽(𝜃) =
1

𝑚
∑ ∑[−𝑦𝑘 log((ℎ𝜃(𝑥))) − (1 − 𝑦𝑘) log((ℎ𝜃(𝑥)))]

𝑘

𝑘=1

𝑚

𝑖=1

+
𝛾

2𝑚
[∑ ∑(𝜃2)

𝑘=1𝑖=1

] 

   (7.7) 

𝛾 is the regularization factor, with respect to the network parameters 𝚯(1)and𝚯(2), where 

m is the number of training samples, and 𝒚𝑡 is the adequate target output for each one. 

This process was carried out recursively using the Gradient Descent (GD) method 

according to:   

 

𝚯𝑖𝑗
(𝑙) ≔ 𝚯𝑖𝑗

(𝑙) − 𝛼Δ𝑖𝑗
(𝑙)

  For all 𝚯𝑖𝑗
(𝑙)

  (7.8) 

Until convergence is reached, where Δ𝑖𝑗
(𝑙) =

𝜕𝐽

𝜕𝚯𝑖𝑗
(𝑙) and 𝛼 is the learning rate, in which the 

initial network parameters were chosen randomly. In order to calculate the gradient 

componentsΔ𝑖𝑗
(𝑙)

, BP method was used.  
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BP is an algorithm that uses the delta rule to compute the weights between connected 

processing elements, so that the difference between the actual and the desired output is 

minimised. The basic algorithm for back-propagation is presented by McClelland et al. 

(1986). 

BP method: 

For each training pattern𝒙(𝑘),  

1. Obtain   𝒂(1)(𝑘),𝒂(2)(𝑘), and �̂�(𝑘) = 𝒂(3)(𝑘) according to                                  (7-9) 

2. 𝛅(3)(𝑘) =  𝒚𝑡(𝑘) − �̂�(𝑘)                                                                                       (7.10) 

3. 𝛅𝑖
(2)

(𝑘) = 𝒂𝑖
(2)

(𝑘) (1 − 𝒂𝑖
(2)

(𝑘))∑ 𝚯𝑛𝑖
(2)

𝛅𝑛
(3)

(𝑘)4
𝑛=1 ;                                               (7.11) 

 𝑖 = 1,… , 𝑛ℎ,  

Δ𝑖𝑗
(2)

= −
1

𝑚
∑ 𝛅𝑖

(3)(𝑘)𝒂𝑗
(2)(𝑘);𝑚

𝑘=1                                                               (7.12) 

𝑖 = 1,… ,4;   𝑗 = 0,… , 𝑛ℎ 

Δ𝑖𝑗
(1)

= −
1

𝑚
∑ 𝛅𝑖

(2)(𝑘)𝒂𝑗
(1)(𝑘); 𝑚

𝑘=1                                                              (7.13) 

𝑖 = 1,… , 𝑛ℎ;   𝑗 = 0,… , 𝑛𝑖 

where 𝑛ℎ is the number of hidden units (not counting the bias unit) and 𝑛𝑖 the number of 

input units (not counting the bias unit). The GD process was applied in two stages. 

During the first set of iterations, the (delayed) target values 𝒚𝑡 were used to construct 

𝒙(𝑘) for computation of �̂� in the first step of the BP process, effectively training a 

network without feedback. During a second stage, (past) predictions of the network �̂� 

were used to construct 𝒙(𝑘) in accordance with the true feedback architecture of the 

network.  

The network is trained by an initially random weight, learning rate, and the 

regularisation parameter, and then presenting all training data repeatedly. The weights 
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are adjusted after each iteration until the weight convergence or the error is reduced to 

the desired value. Although the gradients computed with the BP algorithm in this case 

are approximations to the true gradient, the errors are small, as after the first set of 

iterations the network is sufficiently trained to output predictions close to the target 

values. 

 

7.4 DRNN for Bearing Fault Analysis under Stationary and   

Non-stationary Operating Conditions 
 

 

In order to reliably diagnose faults in a bearing, it is critical to select the number of 

feature (s) that can quantitatively describe the condition of the bearing vibrations and 

stator current, and use these features as inputs to the diagnosing NN. The number of 

features to be used as the input to the NN also affects the final performance: too many 

input features will result in high computational load and slow response, whereas too few 

features may not provide an accurate representation of the defect.  

 

 
 

Figure 7.5 The process of DRNN performance for bearing fault diagnosing  
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Input consists of the OFNDA features, 𝑥1
𝑂𝐹𝑁𝐷𝐴,𝑥2

𝑂𝐹𝑁𝐷𝐴, and 𝑥3
𝑂𝐹𝑁𝐷𝐴 ….𝑥𝑛

𝑂𝐹𝑁𝐷𝐴 and the 

output of the network consists of four units, used to indicate a particular bearing fault 

condition. 60% of the OFNDA was used as a training data asset and 20 % for testing 

and validation respectively. The proposed training DRNN methodology, as illustrated in 

Figure 7.5, contains training with both training and testing data sets, then in the first 

stage classifying bearing faults and in the second determining the level of fault.  

 

7.4.1 Bearing fault classification  

A total of fifteen tests with a length of 60 seconds each represent the motor under 

stationary and non-stationary conditions, with normal operation and three severities of 

local bearing faults (ball, inner race and outer race defects) and four severities of 

extended bearing fault (corrosion). This section will focus on the first stage mentioned 

in Figure 7.5 (bearing fault classification). So that a healthy condition should output a 1, 

an outer-race fault a 2, an inner-race fault a 3, a crushed ball fault a 4 and corrosion 

defects a 5, these outputs are compared with the correct output for each dataset, as 

shown in Table 7.1. It should be noted that misclassification only occurs when the 

rounded value does not coincide with the correct value.  

 

                  Table 7.1 DRNN output signification 

Output 

1 

Output 

2 

Output 

3 

Output 

4 

Output  

5 

Indication 

1 0 0 0 0 healthy 

0 1 0 0 0 inner-race fault 

0 0 1 0 0 outer-race fault 

0 0 0 1 0 crushed-ball 

0 0 0 0 1 Corrosion fault 

 

‘Ninety-nine data sets’ of raw vibration and stator current were recorded under 

stationary operating conditions for each of the three localised bearing defects (inner, 
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outer and ball) and the generalised bearing fault (corrosion), as well as normal condition 

being measured for comparison with fault cases. The data was collected at three 

different speeds (600, 900 and 1200) rpm and under no load, half load and full-rated 

load. Under the same operating conditions, 66 datasets were collected under variable 

speed and load conditions. After features extraction and the removal irrelevant of 

irrelevant features, the useful features will used to training, testing and validation of the 

DRNN. The learning algorithms of NN can be classified as: 

 

 

 
 

 Supervised learning: both of input and output are provided during the learning 

process. The error can be calculated by comparing the actual output with the desired 

output. Weights are usually randomly adjusted and the overall objective is to 

minimise the error by modifying the connection weights until an acceptable level of 

accuracy is obtained. 

 

 Unsupervised learning: the output is not provided to the network and the network 

learns by itself, by adapting to the structural features in input patterns. 

 

 

In this work, supervised learning algorithms were implemented and the training was 

carried out for 4000 iterations. The initial random weights = 0.05, learning rate for 

gradient descent (𝛼) = 0.03, regularisation parameter for the cost function λ = 0.05, 

feedback ratio (𝐹𝑅) = 0.7 with 6 input and output delays. A hidden layer with a different 

number of neurons has been tested to achieve the best training performance with a 

minimum number of neurons, for faster computation. The hidden layer size = 15, these 

parameters were selected based on network performance process.  

 

The comparison accuracy of the classification tests are illustrated in Table 7.2 for 

bearings operating under stationary conditions while, Table 7.3 summarises the DRNN 

performance under non-stationary operating conditions.  
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  Table 7.2 DRNN fault classification performance under stationary operating conditions 

 

 

 

 

 

 

 

 

 

 

Finally, training applies the inputs to the network, calculates the outputs, compares them  

to the associated targets, and calculates a mean square error. If the error goal is met, or 

if the maximum number of epochs is reached, the training is stopped; otherwise training 

goes through another epoch. The DRNN is trained using OFNDA dataset (868,292,288) 

for training, testing set and validation respectively, to assesses DRNN performance for 

inner and outer bearing faults classification, while for corrosion bearing faults, training, 

validation and testing for (1085, 360 and 365) were used respectively.  

 

 

Table 7.3 DRNN performance for rolling element bearing fault classification 

under non-stationary operating conditions 
 

 

Operating 

conditions 

Load- speed 

Defect Identified rate (%) 

Training data set Testing data asset 

1 2 3 4 1 2 3 4 

Variable load 

and  1200 rpm 
97.4 98.5 98.8 99.5 97.9 92.0 90.2 98.6 

900 rpm 97.2 98.1 98.5 99.2 97.2 90.2 90.0 98.0 

600 rpm 98.3  99.8  99.2  99.0  94.3  96.3  95.3  93.3 

Variable Speed 

and  Full load 
90.0 90.8 99.9 90.9 87.0 99.7 99.3 91.5 

No load 97.6 98.9 96.6 99.2 93.7 95.4 90.9 95.5 
 

 

Operating 

conditions 

Load- speed 

Defect Identified rate (%) 

Training data set Testing data set 

1 2 3 4 1 2 3 4 

No load 

  and  1200 rpm 
      98.3 98.0 97.0 98.9 95.1 95.1 92.3 92.7 

          900 rpm 98.8 96.4  99.0 98.8 94.4 97.5 97.5 96.3 

          600 rpm 99.7 99.7 90.0 92.0 98.6 96.8 91.3 91.4 

Half load  

and  1200 rpm 
96.3 98.1 98.6 98.6 95.8 96.5 95.8 90.2 

        900  rpm 90.2 95.4 94.0 90.0 96.5 98.0 98.5 98.3 

        600 rpm 99.3 99.3 81.5 99.4 95.1 95.8 91.3 94.4 

Full load 

  and  1200 rpm 
99.3 99.0 99.6 99.4 93.0 97.2 98.9 93.3 

        900  rpm 99.3 97.1 99.1 93.8 98.2 95.3 86.8 98.6 

        600  rpm 95.9 97.4 85.0 93.1 90.0 87.0 96.9 90.6 
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Figures (7.6 - 7.8) show the performance of DRNN to isolate rolling element bearing 

faults under stationary condition at no-load and 1200 rotating speed, under variable load 

with 1200 rpm speed, and under variable speed with no-load condition 

 

 

 

 

                             (c)                                                               (d) 

 

Figure 7.6 Bearing fault classifications for motor operating at no load and speed  
 

          1200 rpm (a) ball, (b) inner, (c) outer and (d) corrosion 
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                                    (b) 
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Figure 7.7 Bearing fault classification for motor operating at variable load and speed 

1200 rpm (a) ball, (b) inner, (c) outer and (d) corrosion 
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Figure 7.8 Bearing fault classification for motor operating at variable speed and no load  

conditions (a) ball, (b) inner, (c) outer and (d) corrosion 

 

7.4.2 Bearing fault severity prediction 

In the second stage of the proposed fault diagnosis approach (see Figure 7.5) fault 

severity prediction is included. 60% of OFNDA features were reserved for the trained 

DRNN and 20% for both testing and validation.  
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     (a) 

 

 
(b) 

Figure 7.9 OFNDA features for inner race defect at full load and 1200 rpm speed     
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432 and 144 OFNDA data sets were used for training and testing. Figure 7.9 shows 

inner race defects at full load and 1200 rpm rotation speed. The overall performance of 

DRNN for bearing fault prediction at half load, full load and no-load conditions, and 

1200 rpm rotation speed, is illustrated in Figures (7.10 - 7.12) respectively.  
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   (b) 

`  

(c) 

  

Figure 7.10 DRNN performance to predict bearing fault severity (a) outer, (b) inner and 

(c) corrosion under full load and 1200 rpm rotation speed 
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Figure 7.11 DRNN performance to predict bearing fault severity (a) inner, (b) outer and 

(c) corrosion under half rated load and 1200 rpm rotation speed 
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   (a) (b) 

 

 
(c) 

 

 

Figure 7.12 DRNN performance to predict bearing fault severity (a) outer, (b) inner and 

(c) corrosion under no load and 1200 rpm rotation speed 

 

 
 

 

Table 7.4 is provides comparison of fault severities prediction accuracy for inner race, 

outer brace and corrosion defect under different operating conditions.  
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         Table 7.4 Fault severity accuracy prediction under stationary operating conditions  

 
 

(a) Inner race defects  

Operating 

conditions 

Load- speed 

Inner race defect Identified rate (%) 

 

 

 

No load 

  and           

             1200 rpm 

Training accuracy 

for each DRNN 

output 

Testing accuracy 

for each DRNN 

output 

1 2 3 4 1 2 3 4 

99.8  99.5  99.8  99.9  98.6 97.6  99.3  99.3 

             900 rpm 99.3 98.3 99.3 99.4 96.2 93.4 97.9 98.6 

             600 rpm 99.8  99.4  99.5  99.9  98.6 96.9  98.3  99.0 

Half load 

and        1200rpm 
99.8 99.4 99.7 99.8 98.6 97.2 98.6 98.6 

              900rpm 99.8  99.8  99.8  99.7  95.1 91.0  97.2  99.3 

              600rpm 98.5  97.9  99.4  99.7  93.8 92.5  97.9  97.9 

Full load 

and        1200rpm 
99.4 99.1 99.5 99.8 97.2 96.5 98.3 97.2 

               900rpm 99.9  99.7  100  99.9  98.3 97.9  96.9  99.3 

               600rpm 99.8  98.6  98.5  99.4  90.3 90.0  99.3  99.3 

 

(b)  Outer race defects  

Operating 

conditions 

Load- speed 

Outer race defect Identified rate (%) 

 

 

 

 

No load 

  and      1200 rpm 

Training accuracy 

for each DRNN 

output 

Testing accuracy 

for each DRNN 

output 

1 2 3 4 1 2 3 4 

 98.8 98.3  99.3  99.1  93.1  92.0  97.6  98.3 

             900 rpm  99.7 98.8  99.2  99.7  95.8  93.8  97.2  97.9 

              600 rpm  93.4 85.0  91.7  99.8  91.3  87.8  92.0  93.8 

Half load 

and        1200rpm 
99.7 98.5 99.0 99.5 98.3 95.1 96.9 97.9 

              900rpm  97.9 96.1  97.1  98.6  95.8  90.3  94.1  98.3 

             600rpm  98.8 97.9  99.1  99.3  96.2  94.9  98.6  98.6 

Full load 

and         1200rpm 
99.4 99.1 99.4 99.8 97.9 95.5 97.6 99.7 

               900rpm  97.9 96.3  97.1  98.6  95.8  91.0  94.1  98.3 

               600rpm  98.8 97.8  99.0  99.3  96.6  95.5  97.9  98.6 
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(c)  Corrosion defects  

 

Operating 

conditions 

Load- speed 

Corrosion race defect Identified rate (%) 

 

 

No load 

         

and    1200 rpm                

Training accuracy for 

 each  DRNN  output 

Testing accuracy for 

each  DRNN  output 

1 2 3 4 5 1 2 3 4 5 

99.5 98.6 98.9 99.6 99.8 98.9 96.4 97.5 99.4 99.7 

        900 rpm              99.4 99.0 99.5 100 99.9 97.8 96.1 98.1 100 99.7 

        600 rpm              92.7 92.7 99.7 99.7 99.9 93.1 91.1 96.7 97.8 99.7 

  Half load  
 and    1200rpm 

99.5 99.0 99.0 99.6 99.8 93.4 91.2 96.4 98.6 99.5 

         900rpm               99.4 98.8 99.4 99.2 99.6 97.5 96.4 97.8 97.5 99.2 

         600rpm               99.5 99.3 99.2 99.1 99.7 96.4 95.3 97.2 97.2 99.2 

Full load      
and  1200rpm 

99.9 99.8 99.8 99.8 100 99.4 93.6 99.2 99.4 99.7 

          900rpm            99.8 99.7 99.7 99.5 99.7 99.2 98.6 98.1 89.7 90.3 

          600rpm                99.1 98.3 99.0 99.8 99.7 96.9 95.0 96.9 99.2 99.4 

 

 

For non-stationary conditions, the bearing was tested under six variable speed and load 

conditions. From Figure 7.13 (a) it is clear that the network has learned properly and 

correctly produced the desired output. Figure 7.13 (b) provides a good indication about 

the performance of the DRNN with the testing data set, giving the test output with good 

accuracy. 

 

Figures 7.14 and 7.15 show the overall fault diagnosis test for a motor operating at 

variable loads and speed of 600 rpm, and for variable speeds with no-load conditions. 

All the duration times of the misclassifications shown in Figures 7.10 - 7.12 are less 

than 0.7s. In practice, such misclassification times would not be noticeable. Hence, all 

the misclassifications can be considered spontaneous and can be ignored.  
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  (a) 

 

 
    (b) 

Figure 7.13 OFNDA features for inner race defect at variable load and 600 rpm speed 

(a) training and (b) testing 

0 100 200 300 400 500 600 700 800 900
-2

0

2
Training data set 

 

 

normal severity 1 severity 2 severity 3

0 300 600 900

-1

0

1

 

 

ANN output  1  - neuron 1ANN output. Accuracy : 98.0%:

0 300 600 900

-1

0

1

 

 

ANN output  2  - neuron 2ANN output. Accuracy : 98.2%:

0 300 600 900

-1

0

1

 

 

ANN output  3  - neuron 3ANN output. Accuracy : 99.9%:

0 300 600 900

-1

0

1

 

 

ANN output  4  - neuron 4ANN output. Accuracy : 99.9%:

0 50 100 150 200 250 300
-2

0

2

4

Testing data set 

 

 

normal severity 1 severity 2 severity 3

0 100 200 300

-1

0

1

 

 

ANN output  1  - neuron 1ANN output. Accuracy : 95.5%:

0 100 200 300

-1

0

1

 

 

ANN output  2  - neuron 2ANN output. Accuracy : 95.5%:

0 100 200 300

-1

0

1

 

 

ANN output  3  - neuron 3ANN output. Accuracy : 99.0%:

0 100 200 300

-1

0

1

 

 

ANN output  4  - neuron 4ANN output. Accuracy : 99.3%:



178 
 

 
 

     
 

 
         

  (a) 

 

 

       

   (b) 

 
 

 
 

(c) 

 
Figure 7.14 DRNN performance to predict bearing fault severity (a) outer, (b) inner and 

(c) corrosion under variable loads and 600 rpm rotation speed  
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(a) 

 
 

(b) 

 
 

(c) 

 
 

Figure 7.15 DRNN performance to predict bearing fault severity (a) outer, (b) inner and 

(c) corrosion under variable speed and no load  

 

 

 

Table 7.5 shows the ability of the DRNN to diagnose bearing faults using training and 

testing data sets.  
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 Table 7.5 Fault severity accuracy prediction under non-stationary operating conditions  
 

(a) Inner race defects  
 

Operating 

conditions 

Load- speed 

Inner race defect Identified rate (%) 

 

Variable load 

  and           

 

             1200 rpm 

             900 rpm 

              600 rpm 

Training accuracy for 

each DRNN output 

Testing accuracy for 

each DRNN output 

1 2 3 4 1 2 3 4 

98.8 95.4 96.3 97.5 95.8 94.4 94.4 100 

99.0 97.7 99.0 99.9 96.5 94.1 97.2 97.2 

98.0 98.2 99.9 99.9 95.5 95.5 99.0 99.3 

Variable speed  

and        full load 

              no load 

              half load 

99.8 99.8 99.1 99.1 96.5 93.8 98.6 99.3 

99.0 
 

98.0 99.0 99.2 93.8 91.3 97.6 99.0 

99.0 98.0 99.0 99.2 93.8 91.3 97.6 99.0 
 

(b) Outer race defects  
 

Operating 

conditions 

Load- speed 

Outer race defect Identified rate (%) 

 

Variable load 

  and           

 

             1200 rpm 

               900 rpm 

               600 rpm 

Training accuracy 

for each DRNN 

output 

Testing accuracy for 

each DRNN output 

1 2 3 4 1 2 3 4 

98.8 95.8 96.5 97.7 96.5 93.8 91.7 94.4 

99.2 98.3 99.1 99.4 92.7 91.7 98.6 97.9 

98.8 98.3 99.2 99.5 96.2 94.1 97.9 98.6 

Variable speed  

and        full load 

               no load 

              half load 

99.8 99.8 90.3 90.0 95.6 86.1 98.6 97.2 

94.1 90.0 96.2 97.6 99.7 98.8 99.2 99.3 

98.8 97.9 99.0 99.2 92.0 90.3 98.6 96.2 

 

  (c) Corrosion defect  
 

Operating 

conditions 

Load- speed 

Corrosion defect Identified rate (%) 

 
 

 

Variable load 

  and           

         1200 rpm 

          900 rpm 

           600 rpm 

Training accuracy for each 

DRNN output 

Testing accuracy for each 

DRNN output 

 

1 2 3 4 5 1 2 3  4 5  

99.4 99.4 98.6 97.9 99.1 96.7 96.2 95.6 90.0 93.4  

99.8 99.7 99.7 99.4 99.6 99.2 98.6 98.3 97.5 98.3  

99.8 99.6 99.5        99.4 99.8 91.7 91.4 96.4  91.9 95.3  

Variable speed  

and  full load 

        no load 

        half load 

98.3  97.7   98.4    93.4   95.4  88.0 88.0   94.5   91.5  96.4  

99.6 99.3 99.2 99.2 99.7 96.7 95.6 97.5 97.8 98.9  

99.1 85.1 96.5 94.2 99.8 91.4 94.3 85.7 93.6 95.7  
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7. 5 DRNN for Thruster motor Blades Fault Diagnosis  
 
 

Automatic marine control systems for ships of all sizes have been and are being 

designed and developed, to meet the needs of both the military and civil marine 

industries. Although modern ships’ automatic systems are endowed with highly 

sophisticated subsystems which are expensive, they also possess manual override 

facilities in case of emergencies and unforeseen occurrences.  

 

USVs are now being employed by the scientific, offshore and naval sectors to perform a 

multitude of different tasks with great effect. As a consequence of their success, these 

sectors are now demanding longer mission lengths coupled with increasingly more 

vehicle autonomy. With an escalation in autonomy comes the need for higher reliability 

in order for them to better cope with unexpected events. Hence there is a growing 

interest in the use of fault detection and diagnostic techniques in USVs.  

 

Thirty data sets were collected during experimental tests to represent thruster motors 

under four severities of blades fault at six rotation speeds, starting gradually from low to 

high speed. The extracted features from raw vibration and line current signals are 

optimised using OFNDA, and the same DRNN structure proposed in section 7.3 is 

implemented for thruster motor blade faults. The input consists of the eight OFNDA 

features, 𝑥1
𝑂𝐹𝑁𝐷𝐴,𝑥2

𝑂𝐹𝑁𝐷𝐴, and 𝑥3
𝑂𝐹𝑁𝐷𝐴, ……. 𝑥8

𝑂𝐹𝑁𝐷𝐴  and the output of the network 

consists of five units used to indicate a particular thruster motor blade: normal and four 

severities (full, 50%, 25% and 10% ) of blade cut.  
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(b) 

Figure 7.16 OFNDA features for blades defect at high speed  
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To ensure that its performance does not depend on specific data, OFNDA features (4500 

x8) represents blades at normal and four levels of fault severity; these features are 

divided into three subsets 60% for supervised training and 20% for testing and 

validation respectively, as shown in Figure 7.16.  

 

The performance of the DRNN should be consistently optimal over all the data sets with 

respect to classification accuracy. The network outputs four values between 0 and 1; 

these output values are rounded to 0 or 1 to indicate a certain fault condition, as shown 

in Table 7.6. Training of the NN involves trying several different values of λ, used to 

control the size of NN coefficients based on ridge logistic regression principles, number 

of input delays and number of hidden units, to achieve the optimised set for different 

parameters, Further, a small value of (𝛼) would increases the time for setting up the 

network, while a large value may lead to instability.  

 

A fast heuristic-based approach to set this parameter, according to minimal and 

maximal eigenvalues of the regression matrix and supervised learning, was 

implemented to calculate the error between the expected and the actual outputs, and this 

was used to strengthen the weights of the connections between the neurons.  

 

Table 7.7 proves the DRNN parameters that had been implemented during training 

process. Using too few neurons in the hidden layers will result in under fitting. Under 

fitting occurs when there are too few neurons in the hidden layers to adequately detect 

the signals in a complicated data set, while using too many neurons in the hidden layers 

can result an over fitting.  

 

Over fitting occurs when the NN has so much information processing capacity that the 

limited amount of information contained in the training set is not enough to train all of 

the neurons in the hidden layers. Furthermore, an inordinately large number of neurons 
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in the hidden layers can increase the time it takes to train the network. Several trial and 

error steps are used to optimise the suitable number of hidden neurons. 

 

 

 

            Table 7.6 DRNN output nodes 

Output 

1 

Output 

2 

Output 

3 

Output 

4 

Output 

5 

Indication 

1 0 0 0 0 healthy 

0 1 0 0 0 Blades severity 1 

0 0 1 0 0 Blades severity 2 

0 0 0 1 0 Blades severity 3 

0 0 0 0 1 Blades severity 4 

 

                        Table 7.7 Network training parameters  

𝛂 𝛌 𝐅𝐁 Delay No of 

iteration 

Hidden 

unit 

0.1 0.001 0.7 6 3000 25 
 

 

Figure 7.17 indicates the performance of DRNN for a thruster motor operating under 

different severity of blades fault (F1, F2, F3, and F4). Also, Figure 7.17 shows a 

misclassification occurs when the actual value does not coincide with the desired value.  
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(b) 

 

Figure 7.17 Overall fault diagnosis tests for motor operating under different severity of 

blades fault (F1, F2, F3, F4) at (a) high speed and (b) low speed 

 
 

Table 7.8 lists the results of the comparisons between the thruster motor under different 

severity of blades fault with six speed rotating conditions.  

 

 

Table7. 8 Thruster motor blade fault severities prediction 

Speed   Number 

of  

  OFNDA 

  features 

Blades  identified rate 

% 

Train data set  Testing data asset  

1 2 3 4 5 1 2 3 4 5 

High speed 8 99.7  99.4  99.6  93.1  93.1 98.4 94.0 94.3 92.3 93.0 

Speed 2 8  96.3  96.3  98.4  97.8  99.8  99.7  98.9  97.6 96.4 98.7 

Speed 3 8  97.1  97.2  97.9  98.0  99.8  99.3  98.3  98.3  91.6  98.3 

Speed 4 8  96.3  96.3  98.4  97.8  99.8  99.7  98.9  97.6  96.4  98.7 

Low speed 8  98.4  92.4  91.2  93.4  95.7  95.7  90.0  88.0  91.4  92.5 
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7. 6 Chapter Summary  

A fault diagnosis system based DRNN has been used to perform intelligent fault 

detection, classification and fault severity prediction. OFNDA features are used in 

training, validating and testing the DRNN, based on the sigmoid logistic transfer 

function that gives the optimal results.  

 

For generalization, the network was trained and tested rigorously under different 

operating conditions, for both of bearing and thruster motor blades faults. The results 

demonstrated the capability of the proposed DRNN structure for fault classification and 

fault severities predication. The next chapter will discuss the results of the proposed 

diagnostic FA approach, and tests it with different data sets under different operating 

conditions.  
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CHAPTER 8  

 

Results and Discussion 
 

 

“This chapter summarises the proposed fault diagnosis approach, starting from an 

analysis of the data that was collected during experimental testing and processing, 

using DWT for feature extraction and OFNDA for dimensionality reduction, these 

features then being fed into the DRNN for fault classification and level of fault severity 

prediction.”  

 

 
 

 

8.1 Introduction 

This chapter discusses the results obtained from tests carried out with the various 

diagnostic frameworks, in order to bring out their significance. It also reports on the 

successful implemented of a fault classification and fault severity prediction approach, 

based on the DRNN system. The results indicate that the proposed technique can be a 

suitable method for the detection, diagnosis and prediction of bearing and blade faults.  

 

This chapter is organised as follows: Section 8.2 presents the initial data sets that were 

collected during experimental tests. The results and a discussion of tests on features 

extraction and dimensionality reduction are presented in section 8.3, with a comparison 

of the proposed technique with other linear and nonlinear dimensionality reduction 

approaches. In section 8.4, results for the performance of DRNN for fault classification 

and level of fault severity prediction are presented. Finally, section 8.5 gives a summary 

of the chapter’s findings. 

8.2 Initial Results and Discussion 

Experimental tests carried out are described in Chapter 4, the experiment including two 

case studies. The first one involved, building a test rig to examine PMBLDC motor 
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performance under three single localised faults and corrosion bearing faults. 15 sets of 

data and 18112 data samples were collected during experimental tests, at 60s duration 

for each bearing fault. Results were acquired under stationary and non-stationary 

operating conditions.  

 

In the second an experimental test was designed to measure PNBDC motor blade faults, 

and motor performance was tested at four levels of fault severity, with blades cut (10%, 

25%, 50% and 100%), and at six speeds of operation. 

 

Vibration measurement is the most widely used and effective way to detect rolling 

bearing faults such as cracks or corrosion. However, in many cases mechanical signals 

do not give a clear indication, especially in rugged environments and under low speed 

conditions. In addition, vibration signals always produce the sum of all the vibrations 

from other the machine components. Therefore, to increase fault diagnosis reliability in 

critical applications, the stator current signal can be used as another fault indicator.  

 

Using a current sensor does not necessarily increase the cost of the system, as current 

sensors already form part of power protection circuits used in such systems. 

Furthermore, owing to the fact that bearing defects will cause eccentricity, and this will 

affect the electrical field and then the current, current signal analysis will be an effective 

indicator for bearing fault diagnosis. Raw vibration and stator current signals can be 

used as fault indicators, as explained in Chapter 5, to increase diagnostic reliability, 

especially under low speed conditions.  

 

In order to summarise all the results that represent all data sets collected during the 

experiment, and for better understanding of the effects of faults, the root mean square 

(RMS) value of the stator current and raw vibration signals are calculated under 

different operating conditions. 
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A bar graph is given in Figure 8.1 that compares the RMS values of the stator current 

and raw vibration variations under constant load conditions (full load, half rated load 

and no load) and (600, 900, 1200) rpm rotation speeds, with different bearing faults 

(inner race, outer race, ball and corrosion). 

 

The RMS value can be computed according to the following equation: 

 
 

𝑅𝑀𝑆 = √
1

𝑛
∫ 𝑋𝑖

2𝑛

𝑖=1
 (8.1) 

 

where 𝑛  is the number of test patterns, and 𝑋𝑖 is the sensor output (vibration and current). 

 
 

Form Figure 8.1 it can be observed that the stator current changes much more when the 

load changes compared with the RMS value of the vibration signals, and it can also be 

seen that an inner race crack fault will cause significant changes in the RMS value of 

the stator current. Furthermore, there is a slight change in vibration when a fault occurs 

under no load condition (see Figure 8.1.c), while the stator gives good indication of an 

abnormal situation at low speed (see Figure 8.1.a). 
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(b) 

  
(c) 

 

 

Figure 8.1 RMS value of stator current (left) and the raw vibration (right) at (a) full 

load, (b) half load and (c) no load, under stationary and various speed conditions.  

 

In the same manner, Figure 8.2 shows the variation of stator current and raw vibration 

signals under variable load and speed conditions. It can be seen from Figure 8.2.a that 

the RMS value of the current and vibration are changed significantly at high speed 

(1200 rpm) compared with low speed (600 rpm), and that the current sensor give a good 

indication of bearing defects under all operating conditions. 
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(a) 

 

  

   (b) 
 

Figure 8.2 RMS value of stator current (left) vibration (right) under (a) variable load 

conditions and (b) variable speed conditions 

 

 
 

 

In addition, under variable load conditions, when a fault occurs, the RMS value of the 

vibration level decreases rapidly (see Figure 8.2.b). Both Figures 8.1 and 8.2 indicate 

that the stator current is more effective than vibration at stationary and non-stationary 

operating conditions. 

 

In the frequency domain, the presence of peaks in the stator current and raw vibration 

spectrum can be used to identify bearings under normal conditions (see Figure 5.1- 5.3) 
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with different speed and load conditions. In (Chapter 5), Table 5.3 shows single 

localised bearing defect frequencies and Figure 5.8 compares the spectrums of the raw 

vibration signal of the outer race defect under three different severities at no-load and 

1200 rpm. Generally the level of spectrum increases alongside fault severity. Similarly, 

Figure 5.14 shows the corrosion defect spectrum under four severities, while Figure 

5.15 shows the vibration and current signal with developed blades faults. 

 

For nonlinear operating conditions such as loads and speeds, which have an effect on 

the vibration and current signals, it is very difficult to make an accurate evaluation of 

the working condition of faults through analysis in time or frequency domains only. 

Furthermore, the fault-induced fault signal is often too weak to be detected directly from 

the resonance sign. Thus, analysing resonance signals allows us to find the key to 

bearing fault diagnosis. 

 

 

8.3 Discussion of results from features extraction and 

dimensionality reduction 
 

Corresponding to different signal processing methods, the signal analysis method 

should be properly selected. Inaccurate and improper features reduce the overall 

reliability of fault diagnosis techniques and make them unable to predict actual 

condition. 

 

 

T-FA techniques are needed to avoid the drawback of time-domain methods and 

frequency-domain features, as discussed in (chapter5). T-FA is the three-dimensional 

time, frequency and amplitude representation of a signal and is commonly implemented 

for rotating machine fault diagnosis, because it accurately extracts the useful features 

from a non-stationary signal.  
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DWT is one of the T-FA methods, and has the important and useful ability to detect and 

recognise stationary and non-stationary characteristics of signals. To extract the useful 

information, DWT was implemented to provide the time and frequency information. 

DWT has the ability to explore signal features with partial characteristics and analyse 

signals with different time and frequency resolutions. As explained in Chapter 6, DWT 

includes a large number of wavelet functions (see appendix C). 

 

DWT was optimised before being implemented for features extraction, as mentioned in 

(Chapter 6). STD and MDL data criteria are used to select the suitable wavelet function 

and the DIS for the number of decomposition levels, optimising them. See Tables 6.1 

and 6.10 for both of rolling element bearing and thruster motor blade defects, 

respectively. 

 

DWT features were extracted for each operating condition and each type of fault. A 

sequence of data from the healthy case was prefixed to the data obtained from a faulty 

condition. 724, 1448, 1448 and 1810 wavelet features for ball, inner, outer and 

corrosion faults at DWT level five were extracted under stationary and non-stationary 

operating conditions. In the same way, 4500 features at DWT level 8 were extracted for 

blade faults under different speed conditions. 

 

Tables 6.3 and 6.4 indicated DWT decomposition details and distribution of the outer 

race defect under stationary and variable load and speed conditions, with three levels of 

severities. Similarly, appendix.C.2 indicates these coefficients for ball, inner, and 

corrosion defects. Figures 6.5-6.8 plot the five levels of wavelet decomposition detail 

and approximate signal for vibration and current signals for the outer race defect. 

Wavelet details can be used to predict the probability of fault severity development, as 

shown in Figures 6.9 and 6.12 for stationary and non-stationary conditions, respectively. 
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In the same way, according to equations 6.19 and 6.21, for blade fault, the DWT 

functions and decomposition levels were optimised, as shown in Table 6.10 and energy 

details and approximate coefficients were calculated at six speeds conditions, as 

illustrated in Table 6.11. Figure 6.16 shows the comparison of wavelet energy under 

different levels of fault severities.  

 

 

 To overcome the redundancy features that affect diagnostic accuracy, a proper feature 

reduction technique can reduce the total fault diagnosis time without compromising the 

quality of classification. OFNDA is presented as a new approach for feature reduction. 

It works to maximise the distance between features belonging to different classes, whilst 

minimise the distance between features in the same class, and taking into account the 

contribution of the samples to the different classes. 

 

 OFNDA has been successfully applied to classify 4 classes of rolling element bearing 

defects and normal conditions (Chapter 6). For rolling element and blade faults (four 

and eight) OFNDA features respectively were fed into the DRNN. Figure 6.21 

illustrates the step for OFNDA performance, and Figures 6.21-6.24 show OFNDA 

features used for fault classification and level of severity prediction at no-load and 1200 

rpm speed. 

 

 

In this section, a brief comparison is carried out of typical results obtained using 

OFNDA as a feature reduction technique, with PCA and LDA as linear and non- linear 

dimensionality reductions, respectively. PCA is one of the linear feature reduction 

techniques used to transfer data to a new orthogonal basis whose axes are oriented in the 

directions of the maximum variance of an input data set (Harmouche et al. 2015). To 

reduce dimensionality from d to m, PCA starts with centring the data matrix 𝑥𝑗 and then 

calculates a covariance matrix C by subtracting the sampling mean from each row, as 

represented in the following equations:  
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    C =  
1

𝑛−1
𝑥𝑗𝑥𝑗

𝑇  (8.2)  

  𝐶𝑗𝑘=
1

𝑛−1
∑ (𝑥𝑗𝑖 – 𝑥𝑖

∗)𝑛
𝑗=1 (𝑥𝑗𝑘 – 𝑥𝑘

∗)  (8.3) 

  𝑗, 𝑘 = 1,…… . 𝑝   

where xj denotes data matrix and n is the matrix dimension, the next step is to calculate 

the eigenvectors and eigenvalues of the matrix C by solving the following equation:  

    |𝐶 − 𝑙𝐼| = 0  (8.4)

       

One of the main drawbacks of PCA is that it works to reduce feature redundancy only, 

without taking into account the relation of features or variables with the specific class 

labels, and this will affect the classification accuracy (Delgado et al. 2011 ). PCA also 

has the drawback of its limited ability to deal with non-linear behaviour of the data.  

 

Figure 8.3 show the eigenvalues of the matrix C with indexes, and are based on the cut 

off values of the eigenvalues. Two principal components were found appropriate for 

feature reduction in this case. The cumulative percentages of variance using PCA for 

each feature are obtained as: 72.92, 89.7, 94.9, 98.0, 99.2, 99.6, 99.8, 99.9, 99.9, 

100,100, 100, 100,100,100, and 100,100,100. 

 

LDA is another supervised feature reduction technique which searches for the 

projection axes on which the distance between data points of different classes are 

increased and those between of the same class are minimised. Further details of the 

LDA can be found in [36].  
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Figure 8.3 PCA performance 
 

 

The main difference between LDA and PCA is that the former performs data 

classification whereas PCA does feature classification. In PCA, the shape and location 

of the original data set changes when transformed to a different space , whilst LDA does 

not change the location but only tries to provide more class separation and draws a 

decision region between the given classes.  

 

The comparison (after using the same DRNN structure) indicated that feature reduction 

with the OFNDA technique provided better fault classification accuracy compared to 

PCA techniques. PCA reduces features by selecting the main 3 important features. One 

of the main drawbacks of PCA is that it works to reduce feature redundancy only, 

without taking into account the relation of features or variables with the specific class 

labels, and this will affect classification accuracy. 
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                     Table 8.1 Classification accuracy under variable load 

 

 

                         

                          

 

 

 

 

 

 

 

 

 

                     Table 8.2 Classification accuracy under variable speed 

 

 

 

 

 

 

 

 

 
 

 

Furthermore, PCA’s capability will decrease with nonlinear data (Jian et al. 2011). 

Tables 8.1 and 8.2 show the percentage diagnostic accuracy of DRNN with OFNDA 

and PCA. After applying PCA as a feature reduction tool, the overall percentage 

accuracy was reduced at variable loads, with 1200rpm, 900rpm, 600 rpm and variable 

speed with no-load conditions.  

    

In a comparison with the classification accuracy obtained using OFNDA, the latter 

generally shows better fault prediction performance compared with PCA and LDA. 

Similarly, Table 6 indicates the comparison between the prediction accuracy of 

OFNDA, PCA and LDA for features reduction under low and high speed conditions. 

Figure 8.4 shows the prediction performance when PCA and LDA are implemented as 

features reduction tool. It can be seen from the prediction performance using OFNDA 

Operating       

Conditions 
Bearing Faults 

Accuracy       

OFNDA   PCA 

1200 rpm Inner race 98.2 97.7 

Outer race  96.8 98.4 

Ball 99.3 67.6 

 Inner race 98.2 77.1 

900rpm Outer race              96.8 84.7 

Ball 97.2 90.5 

600rpm Inner race 93.8 87.8 

Outer race 95.4   86.9 

 Ball 98.2 97.7 

Operating 

Conditions 
Bearing Faults 

Accuracy 

  OFNDA   PCA 

Full load 

Inner race 98.2 92.2 

Outer race  98.8 81.3 

Ball 97.4 84.7 

Half rated 

load 

 

 Inner race 94.7 82.4 

 Outer race              94.0 72.9 

 Ball 93.3 79.5 

No- load           

 Inner race 95.4 96.9 

Outer race 97.8 71.3 

 Ball 96.7 73.9 
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(see Figure 7.17), that OFNDA is better than PCA and LDA in terms of 

misclassification and time needed to react to the presence of a fault. 

 

                     Table 8.3 Comparison of the performance of different reduction methods 
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Speed 

(rpm) 

Blades  identified rate 

% 

      Using Testing data set 

1 2 3 4 5 

PCA 

High  speed 

Low speed 

97.7 95.9 98.1 78.2 80.0 

99.1 82.8 77.9 64.2 96.0 

LDA 

High  speed 

 Low speed 

95.6 95.8 99.2 85.6 85.8 

51.4 72.4 80.0 80.0 80.0 

OFNDA 

High  speed 

 Low speed 

99.0 98.4 96.7 93.6 96.4 

99.7 98.9 97.6 96.4 98.7 
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             (b) 

  Figure 8.4 Overall fault diagnosis tests for motor operating under different severity of    

blade fault (F1, F2, F3 and F4) using (a) PCA features and (b) LDA feature 

  
 

 
 

8.4 DRNN for Fault Classification and Level of Fault Severity 

Prediction 
 

At any instant in time, the response of a static NN based on the value of the input 

sequence at that time instant. In real-life applications there are several circumstances 

where the motor is never operating at a constant speed or with a constant load. 

 

18112x2 samples (represents motor vibration and current signals) were collected then  

DWT was selected to extracted features, DWT features were extracted for each 

operating condition under different type of faults: inner race, outer race, ball defects and 

corrosion. In the first stage, 724 wavelet features were obtained for ball defects, 1448 

for both inner and outer race and 1810 for corrosion faults. In the second stage 70% and 

30% of wavelet features were used for training and testing OFNDA respectively, 

OFNDA was implemented to remove the redundant wavelet features and nearly 50% 
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reduction was achieved. 60% of these OFNDA features were reserved as a training set 

for DRNN and 20% each for both testing and validation.  

 

DNNs have been successfully applied for fault diagnosis, performing better than their 

static counter parts and providing the capability to learn the dynamics of complicated 

nonlinear systems, which conventional static NN cannot model. DRNN have been 

implemented for fault classification and level of fault severity prediction, as shown in 

Figure 7.4. OFNDA features are used as inputs into the DRNN for training and 

validation, and to test whether it was capable of detecting and classifying the different 

faults accurately. The measuring of misclassification ratios will give an indication about 

the classification algorithm; in this work the classification approach was tested with 

different operating conditions and different types of faults using many data sets. 

 

A supervised learning algorithm was implemented and the training was carried out. NN 

parameters were selected based on the network performance process.  The first stage 

focused on the bearing fault classification. Tables 7.2 and 7.3 indicate the classification 

accuracy under stationary and variable loads and speeds conditions.  

 

The results show the ability of DRNN to classify bearing faults under different 

operating conditions, as shown in Figures 7.6 -7.8. The overall accuracy of the DRNN 

for bearing fault prediction at half load, full load and no-load conditions and 1200 rpm 

rotation speed is illustrated in Figures (7.10 - 7.12) respectively, and Table7.5 indicates 

the performance of DRNN for fault severity prediction under non-stationary operating 

conditions. The transition periods are not included in the misclassification count, but the 

delay is measured as a separate quantity in Table.8.4. The table measures the 

performance of the proposed approach, where NMC is the number of misclassifications 

and MMCT the maximum misclassification time. RT represents the network’s response 

time to react to the presence of a fault. 
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        Table 8.4 Test results for severity of fault under stationary operating       

conditions 

 

Operating load 

 

Bearing Faults NMC MMCT 

(s) 

RT 

(s) 

No load  and 

1200rpm 

 

900rpm 

 

 

600rpm 

 

Inner race 1 0.4 1 

Outer race 3 0.2 2.5 

Corrosion 0    0 1 

Inner race 2    0.4 2.6 

Outer race 2 0.6 2.7 

Corrosion 2  0.27 2 

Inner race 0    0 2.5 

Outer race 4 0.6 4 

Corrosion 2 0.5 4 

Half load  and 

1200rpm 

 

 

900rpm 

 

 

600rpm 

Inner race 1 0.2 1 

Outer race 0     0 1.5 

Corrosion 0     0 4 

Inner race 1 0.4 4 

Outer race 0    0 3.5 

Corrosion 0    0 2 

Inner race 1 0.4 4 

Outer race 2 0.2 2.7 

Corrosion 1 0.8 3 

Full load  and 

1200rpm 

 

 

900rpm 

 

600rpm 

 

Inner race 4 0.4 2 

Outer race 0    0 1.5 

Corrosion 0    0 4 

Inner race 5 0.8 1.5 

Outer race 0    0 3.5 

Corrosion 3 0.5 5 

Inner race 1 0.2 3.5 

Outer race 1 0.4 2 

Corrosion 4  0.35 2.5 
 

           
 

 The maximum misclassification occurs with corrosion faults at variable load conditions 

(6 samples), with MMCT 2.5 S not exceeding 0.5 sec for both stationary and variable 

loads and speeds conditions. In practice, such misclassification times would not be 

noticeable. Hence, all the misclassifications can be considered spontaneous and can be 

ignored. Similarly, Table 8.5 indicates the fault severities prediction ability of the 

proposed approach under variable speed and load conditions (see appendix D).  
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                Table 8.5 Test results under non-stationary operating conditions 

 

Operating load 

 

Bearing Faults NMC MMCT(s) RT(s) 

Variable load    

1200rpm 

 

Inner race 0 0  2.3 

Outer race 0 0  3 

Corrosion 0 0  1 

 

900rpm 

 

Inner race 5 0.3  3 

Outer race 2 0.4  4.5 

Corrosion 0 0  1 

600rpm 

 

Inner race 0 0  2.5 

Outer race 2 0.2  2.5 

Corrosion 6 2.5  4.75 

 Variable speed    

Full load 

Inner race 0 0  1.8 

Outer race 3 3.5  3 

Corrosion 4.5 2 3.7 

              

                Half load  

Inner race 0 0  3.2 

Outer race 2 2.7  3.0 

Corrosion 3 3.5  3 

 

No load 

Inner race 1 0.4  3.5 

Outer race 0 0  4.5 

Corrosion 0 0  2.5 
 

 

For blade faults, 900 data sets were used for testing. Table 8.6 indicates the 

results for the level of fault severity under different speed conditions. From 

Table 8.6, it can be concluded that the number of misclassifications represents 

less than 1% of the data sample. 

                              Table 8.6 Test results under non-stationary operating conditions 

Rotation 

speed 

NMC MMCT (s) RT(s) 

Low speed  1 0.5 1.5 

Speed 2 1 0.4 3.5 

Speed 3 3 3.5 3 

Speed 4 0 0 2.3 

Speed 5 4 0.3 0.5 

High speed  2 2.7 3.0 
 

On-line testing for fault classification and severity of faults prediction has been done 

using training and testing data sets comprised of both normal and faulty data, using 

testing data sets that are different form the training data (see appendix E). This was done 

in Matlab environment with 4 GB of memory with an Intel dual core processor of 3.3 

GHz speed. Owing to the delay introduced by the dynamics of the network architecture 
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(feedback loop), it should also be noted that the network cannot instantly respond to a 

faulty condition. Table 8.7 illustrates the time delay needed for fault classification 

purposes. The results show the ability of the current approach to analyse a fault and 

predict its severity at an early stage; the maximum time needed to diagnose a fault 

occurs with corrosion in both stationary and non-stationary conditions. It is clear from 

Tables 8.6 and 8.7 that the maximum time is needed to diagnose bearing faults under 

variable speed conditions with ball bearing faults, while corrosion faults can be 

diagnosed at an early stage. 

                                      Table 8.7 On-line testing performance   

(a) On-line testing under stationary operating conditions 

Operating condition 

 

Type of fault Time delay 

(s) 

Stationary operating 

condition 

Inner race 3.24 

Outer race 3.24 

   Ball bearing 6.21 

Corrosion 3.14 

 

                         (b) On-line testing under non-stationary operating conditions 

Operating condition 

 

Type ff fault Time delay 

(s) 

Non-stationary operating 

condition 

Variable load 

Inner race 4.76 

Outer race 4.55 

Ball bearing 6.62 

Corrosion 2.48 

Non-stationary operating 

condition 

Variable speed 

Inner race 6.63 

Outer race 6.63 

Ball bearing 14.09 

Corrosion 2.48 
 

 

To measure the performance of DRNNA at zero skill (without training), the 

probability of fault diagnosis is calculated under different operating conditions as 

illustrated in Table 8.8. It was found that ability of DRNN is almost less than 5% for 

fault classification and fault severity prediction. 
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Table 8.8 DRNN performance at zero skill 

Test Accuracy 

% 

Fault 

classification 

No load -1200 rpm 2 

Variable speed – no_ load 4 

Variable load -1200 rpm 1 

Fault severity 

prediction 

Full lad 1200 rpm 

(corrosion fault) 

4 

Half load -1200 rpm 1.6 

No load -1200 rpm 

(corrosion fault) 

2 

Variable speed- full load 

(corrosion fault) 

5 

Variable load -1200 rpm 

(corrosion fault) 

4 

 

The binomial distribution is defined as the discrete probability distribution of the 

number of successes in a sequence of trail and can be described in the following 

equation is discrete as the following:  

𝑓(𝑘) = (
𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘                                                    (8.5) 

 Where k is the number of successes in n is the number of trails and p is the 

probability of success. 180 data sets were collected represents motor operating at 

normal and abnormal conditions with different level of fault severities at stationary 

and nonstationary operating conditions.  

When n=180, k=n-11, the success rate of a "null hypothesis" for fault classification 

(p=0.2). So that the binomial probability distribution at zero skill is calculated 

according to the above equation is (7.5778e-103), the smaller value provides that the 

proposed approach is more skilful to classify and predict severity of faults.  

 According to MacKay (2005) the Bayesian approach helps detect poor underlying 

assumption in learning model and the system that was more complex will have large 

Occam factor and will have small evidence. So that the calculated value of the 

https://en.wikipedia.org/wiki/Discrete_probability_distribution
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binomial probability distribution should be less than the Occam factor that can be 

defined as the following equation (MacKay, 1992): 

  

                        𝑜𝑐𝑐𝑎𝑚 𝑓𝑎𝑐𝑡𝑜𝑟 = (2𝜋)2𝑘𝑑𝑒𝑡−1/2 𝐴 exp(−𝛼𝐸𝑊
𝑀𝑃) /𝑍𝑤(𝛼)             (8.6) 

 

where 𝛼 is the decay rate, 𝐸𝑤  is the regularization function, 𝑍𝑤 Gaussian integral, 𝐴 is 

the network architecture and  𝑀𝑃 is the most probable parameter. The Occam factor 

for a model is straightforward to evaluate (MacKay, 2005):  

 

8.5 Chapter Summary  
 

A number of tools have been employed to obtain a reliable industrial fault diagnosis 

system.  Confidence in the proposed fault diagnostics approach has been backed up by 

testing the motor under different operating conditions (stationary and non-stationary), 

and for different of levels of fault severity. Furthermore, the proposed approach has 

been tested with different types of fault for two types of PMDC motors. The 

combination of current and vibration as fault indicators helps to exploit the advantages 

of both. OFNDA was applied to obtain the best features for fault classification, and the 

results show that better classification accuracy was obtained across different data sets 

and a number of classes. 

 

These features were fed into a DRNN for fault classification, enabling the fault 

classifier to incorporate a dynamic component. The application of these techniques to 

real data has shown that they constitute an effective fault classifier in practice, capable 

of detecting and classifying bearing and blade faults under stationary and non-stationary 

operating conditions fairly accurately.  

 

DRNN has demonstrated a great capability in learning the dynamics of complicated 

non-linear systems during online testing, to classify and predict levels of fault severity 
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at an early stage, where conventional static neural networks cannot yield comparable 

results or perform an acceptable modelling representation and mapping. To increase 

confidence in the fault analysis results, the developed framework has been tested under 

multiple operating points. The current approach has proven its capability to diagnose 

different types of fault belonging to two types of motor, under constants and variable 

loads and speeds conditions. 
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CHAPTER 9 

 

Conclusion and Recommendations for 

Future Research 

 

“This chapter summarises the proposed fault analysis approach on different bearing 

and thruster motor blade faults. Conclusions are drawn on the progress made on 

developing a method, using the proposed approach to discriminate fault locations and 

level of severity predictions, and suggestions for possible future work are presented.” 

 
 

9.1 Summary and Conclusions  

Electric machines are important components for specific industrial applications. The 

continuous healthy operations of machines are critical for the reliability of the entire 

system. Robust FA including the diagnosis of faults and predicting their level of 

severity is necessary to optimise maintenance and improve reliability.  

 

Early diagnosis of faults that might occur in the supervised process renders it possible to 

perform important preventative actions, especially important for critical applications 

such as aircrafts aerodynamic surfaces. Condition monitoring thus renders it possible to 

perform important preventative actions, thereby avoiding economically damaging losses 

of elements and parts, through an adequate maintenance management system, as well as 

avoiding stalled production.  

In this research a new approach for PMDC motor fault analysis (fault classification and 

level of fault severity prediction) has been proposed. The proposed approach is based on 

data collection, feature extraction and feature subset reduction, fault classification and 

level of faults severities prediction, and it is implemented to analyse single localised and 
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generalised bearing faults of PMBLDC motors and unbalanced rotor (blade faults) of 

PMBDC motors.  

The literature review (Chapter 2) showed the limitations of conventional methods such 

as a model based and signal processing techniques. Recently, AI has been introduced 

into the fault diagnosis process for condition monitoring. AI aims to generate 

classifying expressions simple enough to be understood easily by humans.  

In the available literature there were also no researchers dealing with both types of 

bearing fault (localised and generalised) under both stationary and non-stationary 

conditions. In addition, thruster motor blades defect with different levels of fault 

severities under different speeds conditions are not covered in the available literature. 

Some background about PMDC motor characteristics applied to high performance 

applications is provided, and common electrical and mechanical faults are described in 

Chapter 3. 

Localised, corrosion rolling element bearing as well as blades fault experimental tests 

have been constructed to validate the proposed fault analysis approach. To test the 

performance of the proposed techniques with different types of motor and fault, an 

experimental rig was designed and used to diagnose thruster blade faults with different 

severities and under several rotation speed conditions, as detailed in Chapter 4. Data 

was logged under healthy operating conditions as well as with the motor running for 

each type of defect  

 

To investigate the effects of speed and load conditions, data acquisition software was 

developed to acquire both raw vibration and current signals during experimental tests 

under constant and variable speeds and load conditions.   

 

Vibration measurement is the most widely used and effective way to detect rolling 

bearing faults, but does not give a clear indication of faults at low speed. Vibration can 
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be picked up from other mechanical parts, thus leading to false positives. The stator 

current signal can be used as another fault indicator. It has been shown to be an 

effective fault indicator, especially at low motor speeds.  

 

The combined use of both vibration and current signals will provide a more robust fault 

detection and diagnosis system without a significant increase in cost, and this is the 

approach used in this work. The ability of the vibration and current signals acquired 

during experimental tests to be indicators of the motor situation has been discussed in 

Chapter 5. 

 

To extract the useful information, DWT, a signal analysis method that provides the time 

and frequency information of the signal was applied. The information that cannot be 

readily seen in the time domain can be observed in the frequency domain. It has the 

ability to explore signal features with partial characteristics and analyse signals with 

different time and frequency resolutions.  

 

DWT was optimised for level and mother wavelet function. In this work, for optimal 

wavelet analysis selection, STD and MDL data criteria are used. The proposed features 

extraction methods were proven in terms of their accuracy, and the efficiency of the 

proposed extraction method on various datasets compared with time and frequency, as 

well as its ability to overcome irrelevant features that effect diagnostic performance 

(Chapter 6).   

 

 OFNDA has not previously been used in electrical motor fault diagnosis system, but 

her has been implemented as a new approach for feature reduction. It works to 

maximise the distance between features belonging to different classes while minimizing 

the distance between features in the same class, and taking into account the contribution 

of the samples to the different classes (see Chapter 6).  
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Finally these features were fed into the fault classification and severity prediction 

algorithm. DNNs have been implemented for fault detection and diagnosis and fault 

severity prediction, based on OFNDA features used for training, validation and testing, 

as well as accurately diagnosing results. DRNN as a type of DNN has been successfully 

applied for fault diagnosis of nonlinear system compared with static NNs (Chapter 7).  

The results showed the ability of the proposed diagnostics approach to recognise 

bearing and thruster motor blade defects under a variety of operating conditions 

(Chapter 8). The application of these techniques to real data has shown that they 

constitute an effective fault classifier in practice, capable of detecting and classifying 

bearing and blades faults under different operating conditions fairly accurately. 

 

9.2 Recommendations for Future Research  

Although this work has made contributions to the areas of localised and generalised 

rolling element bearing faults, and unbalanced load faults in thruster motors under a 

variety of operating conditions, there is still additional work required to prepare these 

new condition monitoring schemes for application in industry. Some of this work, 

which could initiate interesting research in the future is as follows:  

 

 

 Detailed fault modelling  

 

PMDC motor fault modelling is still inadequate. During the development of the fault 

model, several assumptions were made for simplicity, such as the assumption of infinite 

magnetic permeability of iron, sinusoidal distribution of magnetic motive force and 

flux, and the lack of consideration of magnetic saturation and higher order harmonics. 

All these assumptions will affect diagnostic reliability. Thus, advanced modelling 

techniques are needed to overcome this problem. 
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 Fault prognosis and useful life time  

 

For improving reliability and reducing overall maintenance costs, an important area of 

condition monitoring research is the prediction of the remaining life of a bearing, which 

many bearing manufacturers take into account. However, relatively little work has been 

done on bearing prognosis, because of the difficulty of estimating the remaining life of a 

bearing, even with an accurate vibration history. Methods such as particle filtering show 

great promise for remaining useful life time prediction. 

 

 Extension to other faults 
 
 

The proposed approach can be extended to diagnose different types of rolling element 

faults, such as misalignment, unbalance, looseness, and lack of lubrication, as well as 

electrical faults such as stator winding faults and rotor eccentricity defects. 

 

 DNN optimisation setup  
 
 

DNN parameters have been selected based on trial and error and this is difficult in real 

life. Instead, a genetic algorithm could be implemented to optimise DNN structure 

parameters. This will reduce the DNN training time and limit the possibility of sub-

optimisation via convergence in a local minimum. 

 

 

 Develop fault tolerant techniques  

There is a need to extend the proposed approach by developing a fault tolerant system, 

to increase the reliability of electrical power systems, especially for critical applications. 

 

 

 

 

 

 

 

 

http://thesaurus.yourdictionary.com/extension
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         Figure A-1 Electrical motor fault diagnosis approaches based on the available literature 

 

A: Fault diagnosis techniques based on available literature 
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B: Corrosion fault LAB simulator   
 

Corrosion fault was simulated in the lab, including bearing de-lubrication and then 

measure the effect of chemical material on bearing surface that usual happen in 

industrial components     

 

Figure B.1 bearing cleaning and remove lubrication for experimental test  
 

 

Figure B.2 Measure the effect of chemical material on bearing structure   
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Figure B.3 Simulate bearing corrosion fault with different severities  
 

 
Figure B.4 prepare bearing for experimental test  
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Figure B.5 different severities of the corrosion fault 
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 C: Wavelet Transform 

Table C-1 Wavelet transforms families 

Wavelet family Name Wavelet family 

( short name) 

Order 

Haar wavelet ′ℎ𝑎𝑎𝑟' 𝑑𝑏1 

Daubechies wavelet ′𝑑𝑏' 𝑑𝑏2 − 𝑑𝑏45 

Symlets ′𝑠𝑦𝑚' 𝑠𝑦𝑚2  - 𝑠𝑦𝑚20 

Coiflets ′𝑐𝑜𝑖𝑓' 𝑐𝑜𝑖𝑓1- 𝑐𝑜𝑖𝑓5 

Biorthogonal wavelets ′𝑏𝑖𝑜𝑟' 𝑏𝑖𝑜𝑟1.1−𝑏𝑖𝑜𝑟6.8 

Reverse biorthogonal wavelets ′𝑟𝑏𝑖𝑜' 𝑟𝑏𝑖𝑜1.1−𝑟𝑏𝑖𝑜6.8 

Meyer wavelet ′𝑚𝑒𝑦𝑟' ′𝑚𝑒𝑦𝑟' 

Discrete approximation of Meyer  ’𝑑𝑚𝑒𝑦' ’𝑑𝑚𝑒𝑦' 

Gaussian wavelets ′𝑔𝑎𝑢𝑠' 𝑔𝑎𝑢𝑠1−𝑔𝑎𝑢𝑠8 

Mexican hat wavelet ′𝑚𝑒𝑥ℎ'  

Morlet wavelet ′𝑚𝑜𝑟𝑙' 𝑚𝑜𝑟𝑙' 
Complex Gaussian wavelets ′𝑐𝑔𝑎𝑢' 𝑐𝑔𝑎𝑢1−𝑐𝑎𝑔𝑢5 

Shannon wavelets ′𝑠ℎ𝑎𝑛' shan1−1.5 

shan1−1 

shan1−0.5 

shan1−0.1 

shan2−3 

Frequency B-Spline wavelets ′𝑓𝑏𝑠𝑝' fbsp1−1−1.5 

fbsp1−1−1    

 fbsp1−1−0.5     

fbsp2−1−1     

fbsp2−1−0.5   

fbsp2−1−0.1   

Complex Morlet wavelets ′𝑐𝑜𝑚𝑟' cmor1−1.5   

cmor1−1   

cmor1−0.5   
cmor1−0.1   
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    Table C.2 Wavelet energy (J) for different DWT decomposition details and 

distribution  

 

(a) Inner  race with defect size 0.2x1x3 mm at different loads (KW) and speeds  

(rpm) conditions  
 

Load - speed A D1 D2 D3 D4 D5 

No load -   600 49.9426 16.5860    33.2572     0.1310     0.0499     0.0334 

No load -   900 51.2805 3.7726    42.1815     2.4608     0.2645     0.0401 

No load - 1200 46.1757 17.3596    36.2472     0.1267     0.0572     0.0337 

Half load - 600 59.9101   0.6067    12.6353    26.6153     0.1915     0.0412 

Half load - 900 54.2367 3.4859    39.6218     2.3533     0.2623     0.0400 

 Half load - 1200 49.9426 16.5860    33.2572     0.1310     0.0499     0.0334 

 Full load-  600 16.5405   0.5161    26.9588    55.6328     0.3219     0.0299 

 Full load- 900 7.3913 7.1982    81.3613     3.5524     0.4884     0.0085 

 Full load-1200 4.2694 32.2635    63.3807     0.0645     0.0163     0.0056 

 

(b) Inner  race with defect size 0.5x1x6 mm at different loads (KW) and speeds 

(rpm)  conditions   

 

Load - speed A D1 D2 D3 D4 D5 

No load -   600 10.5558 28.6206    60.4903     0.1995     0.0908     0.0429 

No load -   900 15.8862   6.3541    72.8685     4.3614     0.4748     0.0550   

No load - 1200 13.6850 28.5165    57.5193     0.1598     0.0796     0.0398 

Half load - 600 15.9689 1.2501    28.0294    54.3413     0.3477     0.0626 

Half load - 900 12.8014 6.5886    75.2766     4.7486     0.5000     0.0847 

Half load - 1200 10.5558 28.6206    60.4903     0.1995     0.0908     0.0429 

Full load-  600   4.5427 0.6492    34.7642    59.8127     0.2125     0.0187 

Full load- 900 2.0807   7.3997    86.0884     3.9210     0.5006     0.0096 

Full load-1200   2.6797 31.4408    65.7977     0.0547     0.0182     0.0088 

      

 

        (c) Inner race with defect size 3x1x9mm at different loads (KW) and speeds (rpm)   

conditions  

Load - speed A D1 D2 D3 D4 D5 

No load -   600 1.7403 34.9685    62.8872     0.2425     0.1040     0.0575 

No load -   900 4.0098 6.5637    82.1207     6.8055     0.4018     0.0985 

No load - 1200 3.1829 32.1487    64.2804     0.2369     0.0976     0.0536 

Half load - 600 3.3386 1.5470    33.1371    61.6105     0.2942     0.0726 

Half load - 900 1.9533 7.3789    84.4128     5.6596     0.5086     0.0868 

 Half load - 1200 1.7403 34.9685    62.8872     0.2425     0.1040     0.0575 

 Full load-  600 0.2821 0.5765    33.8741    65.1373     0.1087     0.0213 

 Full load- 900 0.0645 7.7618    87.8442     3.8003     0.5199     0.0093 

 Full load-1200 0.0592 34.3821    65.5115     0.0322     0.0102     0.0047 
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  Table C.3 Energy (J) for different DWT decomposition details and approximation 

under non-stationary operating conditions for inner race defect 
 

 

 

 

 

 

 

          

       

 

     

 

 

 

 

 

 

 

                      Table C.4 Energy (J) for different DWT decomposition details and approximation 

under variable speeds conditions for inner race defect 

   

Load A D1 D2 D3 D4 D5 

     Inner race with defect size 0.2x1x3 mm at variable speeds conditions 

  No load 59.6051 5.2910 28.0593 6.8315 0.1749 0.0382 

Half load 7.2061 14.7889 68.5869 9.1694 0.2324 0.0162 

Full load 7.4611    7.0560    77.0741     8.3878     0.0142     0.0068 

     Inner race with defect size 0.5x1x6 mm at variable speeds  conditions 

  No load 15.5743 10.9015 58.0487 15.0535 0.3564 0.0656 

Half load 14.2714 11.5026 58.6813 15.1228 0.3532 0.0686 

Full load 4.6993 15.7725 68.3142 10.9454 0.2490 0.0197 

Inner race with defect size 1x3x9 mm at variable speeds conditions 

  No load 0.6324 12.3843 66.2816 19.9790 0.6404 0.0823 

Half load 1.6200 0.9218 34.6751 62.5130 0.2341 0.0360 

Full load 0.0763 17.9148 71.2402 10.4938 0.2638 0.0111 

 

 

 

 

 

Speed A D1 D2 D3 D4   D5 

       Inner race with defect size 0.5x1x3 mm at variable load conditions 

600 55.6261 0.5288 13.5415 30.0590 0.2069 0.0376 

900 44.3083 3.8649 48.2867 3.2501 0.2539 0.0361 

1200 27.3136 23.5519 49.0068 0.0858 0.0273 0.0146 

     Inner race with defect size 0.5x1x6 mm at variable load conditions 

600 10.088 0.8815 30.0745 58.3943 0.4983 0.0616 

900 4.3400 7.6323 83.9986 3.4823 0.5296 0.0173 

1200 7.6460 30.023 62.1257 0.1207 0.0556 0.0290 

Inner race with defect size 1x3x9 mm at variable load condition 

600 2.0993 13.1747 68.1087 16.1833 0.3686 0.0653 

900 0.3374 7.6825 87.3806 4.0611 0.5212 0.0172 

1200 0.1765 34.1775 65.5493 0.0695 0.0187 0.0084 
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Table C.5 Energy (J) for different DWT decomposition details and approximation for 

ball defect 

 

(a) Ball defect under stationary operating conditions 

 

Operating 

conditions 

A D1 D2 D3 D4 D5 

 Half load _600 33.0603         0.8356    21.4121    44.2874     0.3680     0.0366 

 Half load _900 26.6720                23.8964    49.1833     0.1619     0.0598     0.0265 

Half load_1200 20.0009 13.9543    65.6833     0.2476     0.0796     0.0344 

Nooad_600 31.6185             5.4199    58.5096     4.0283     0.3808     0.0429 

Noload_900 8.3416            30.9423    60.6441     0.0566     0.0107     0.0047 

Noload_`1200 6.9315               7.7652    80.9522     3.7852     0.5576     0.0084 

Fullload_600 12.7763                0.5626    28.6682    57.9124     0.0593     0.0212 

Fullload_900 6.9315               7.7652    80.9522     3.7852     0.5576     0.0084 

Fullload_900 8.3416                30.9423    60.6441     0.0566     0.0107     0.0047 

 

(b) Ball defect under non-stationary operating conditions 
 

Variable load A D1 D2 D3 D4 D5 

600  18.8982 0.6709 27.1168  53.0933 0.1898 0.0311 

900 8.9347 7.1224 78.4854 4.9253 0.5091 0.0231 

1200 6.2987    32.3988 61.2128 0.0698 0.0135 0.0064 
  Variable speed A D1 D2 D3 D4 D5 

Full load 3.7200   18.1163 69.6958 8.1872 0.2719 0.0088 

  Half  load  32.8643 9.2137 45.6615 11.9508 0.2738 0.0359 

    No load  34.2632 8.8974 44.7409 11.7507 0.3044 0.0434 

 

 

 

 

 

 

Table C.6 Energy (J) for different DWT decomposition details and approximation for  

                          corrosion defect 

 

(a)  Corrosion with defect severity 2 at different loads (KW) and speeds (rpm) 

conditions 
 

Load - speed A D1 D2 D3 D4 D5 

 No load -  600 9.5977 0.6168 17.3160 70.8929 1.1593 0.4173 

 No load -  900 65.5136 0.4957 33.5268 0.3605 0.0660 0.0374 

 No load - 1200 62.4882 7.0193 30.3116 0.1010 0.0572 0.0227 

Half load - 600 9.5977 0.6168 17.3160 70.8929 1.1593 0.4173 

Half load - 900 65.5136 0.4957 33.5268 0.3605 0.0660 0.0374 

Half load- 1200 62.4882 7.0193 30.3116 0.1010 0.0572 0.0227 

Full load- 600 7.0150 1.8201 87.3358 3.5778 0.2176 0.0337 

Full load- 900 7.0150 1.8201 87.3358 3.5778 0.2176 0.0337 

Full load-1200 5.9477  29.6753 62.3549 1.8421 0.1469 0.0330 
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D: Fault severities prediction 
 

DRNN have been tested under different operating conditions figures below illustrates 

the overall level of fault severities prediction under stationary and non -stationary 

operating conditions 

 

 

  

 

(b) Corrosion with defect severity 3 at different loads (KW) and speeds (rpm)   

conditions 
 

Load - speed A D1 D2 D3 D4 D5 

No load -   600 0.3462 0.7970 19.9104 77.9788 0.8438 0.1238 

No load -   900 2.6137 0.9719  95.7453 0.5136 0.0988 0.0567 

No load - 1200 2.1889 17.8393 79.6589 0.1748 0.0810 0.0572 

Half load - 600 0.3462 0.7970    19.9104 77.9788 0.8438 0.1238 

Half load - 900 2.6137 0.9719     95.7453 0.5136 0.0988 0.0567 

Half load - 1200 2.1889 17.8393 79.6589 0.1748 0.0810 0.0572 

Full load-  600 0.0731 1.8613 94.6213 3.2056 0.1755 0.0632 

Full load- 900 0.0731 1.8613 94.6213 3.2056 0.1755 0.0632 

Full load-1200 0.2467 0.5782 21.4097 76.0065 1.5551   0.2038 
 

 

   (c) Corrosion with defect severity 4 at different loads (KW) and speeds (rpm)   

conditions 
 

Load - speed A D1 D2 D3 D4 D5 

No load -   600 0.3024 0.8917 17.9696 `80.0994 0.5885 0.1485 

No load -   900 65.195 0.4098 34.0946 0.2304 0.0464 0.0228 

No load - 1200 61.9384 6.7352 31.1768 0.0840 0.0447 0.0208 

Half load - 600 0.3024 0.8917 17.9696 80.0994 0.5885 0.1485 

Half load - 900 65.1959 0.4098 34.0946 0.2304 0.0464 0.0228 

   Half load - 1200 61.9384 6.7352 31.1768 0.0840 0.0447 0.0208 

Full load-  600 0.1058 1.8069 94.3671 3.2796 0.3815 0.0591 

Full load-  900 0.1058 1.8069 94.3671 3.2796 0.3815 0.0591 

Full load- 1200 0.0846 9.6698 89.4236 0.7042 0.0907 0.0270 
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(a) 

 
 

 

(b) 
 

 
 

(c) 

 

Figure D.1 DRNN performance to predict bearing fault severity (a) outer, (b) inner and 

(c) corrosion half load and 600rpm speed   
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(a) 

 
 

(b) 
 

 
 

(c) 

 

Figure D.2 DRNN performance to predict bearing fault severity (a) outer, (b) 

inner and (c) corrosion half load and 900rpm speed  
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   (a) 

 
                                  

                             (b) 
 

 
 

(c) 
 

Figure D.3 DRNN performance to predict bearing fault severity (a) outer, (b) 

inner and (c) corrosion at no load and 600 (rpm) speed 
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(a) 

 
 
 

(b) 
 

                                                            

                                                           (c) 

Figure D.4 DRNN performance to predict bearing fault severity (a) outer,  

(b) inner and (c) corrosion at no load and 900rpm speed 

 

 

 

 

 

0 20 40 60
0

1

2

3

4

Time(s)

O
u

tp
u

t

 

 

target

NN output

misclassification

0 20 40 60
0

1

2

3

4

Time(s)

O
u

tp
u

t

 

 

target

NN output

misclassification

0 20 40 60
0

1

2

3

4

5

6

Time(s)

O
u

tp
u

t

 

 

target

NN output

misclassification



243 
 

 
       

(a)  

 
                                     
 

                                       (b) 

 

 
 

(c) 
 

Figure D.5 DRNN performance to predict bearing fault severity (a) outer,  

                   (b) inner and (c) corrosion at full load and 600 rpm speed 
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(a) 

 
 

(b) 

 
 

(c) 

 

Figure D.6 DRNN performance to predict bearing fault severity (a) inner, 

 (b) outer and (c) corrosion at full load and 900rpm speed  
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(a) 

 
 

(b) 
 
 

 
 

(c) 

Figure D.7 DRNN performance to predict bearing fault severity (a) inner, (b) outer and 

(c) corrosion at variable load and 1200 rpm speed 
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(a) 

 
 
 

(b) 
 

 

 
 

(c) 
 

Figure D.8 DRNN performance to predict bearing fault severity (a) inner, (b) outer and    

(c) corrosion at variable load and 900rpm speed 

 
 

E: On line testing  
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Figure E1 on line testing for variable speed and half load condition-inner race fault 
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Figure E.2 on line testing for variable speed and half load condition-outer race fault 
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Figure E.3 on line testing for variable speed and half load condition-ball fault 
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Figure E.4 on line testing for variable speed and half load condition-corrosion fault 
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