51,849 research outputs found

    Real-Time Anisotropic Diffusion using Space-Variant Vision

    Full text link
    Many computer and robot vision applications require multi-scale image analysis. Classically, this has been accomplished through the use of a linear scale-space, which is constructed by convolution of visual input with Gaussian kernels of varying size (scale). This has been shown to be equivalent to the solution of a linear diffusion equation on an infinite domain, as the Gaussian is the Green's function of such a system (Koenderink, 1984). Recently, much work has been focused on the use of a variable conductance function resulting in anisotropic diffusion described by a nonlinear partial differential equation (PDF). The use of anisotropic diffusion with a conductance coefficient which is a decreasing function of the gradient magnitude has been shown to enhance edges, while decreasing some types of noise (Perona and Malik, 1987). Unfortunately, the solution of the anisotropic diffusion equation requires the numerical integration of a nonlinear PDF which is a costly process when carried out on a fixed mesh such as a typical image. In this paper we show that the complex log transformation, variants of which are universally used in mammalian retino-cortical systems, allows the nonlinear diffusion equation to be integrated at exponentially enhanced rates due to the non-uniform mesh spacing inherent in the log domain. The enhanced integration rates, coupled with the intrinsic compression of the complex log transformation, yields a seed increase of between two and three orders of magnitude, providing a means of performing real-time image enhancement using anisotropic diffusion.Office of Naval Research (N00014-95-I-0409

    The Local Structure of Space-Variant Images

    Full text link
    Local image structure is widely used in theories of both machine and biological vision. The form of the differential operators describing this structure for space-invariant images has been well documented (e.g. Koenderink, 1984). Although space-variant coordinates are universally used in mammalian visual systems, the form of the operators in the space-variant domain has received little attention. In this report we derive the form of the most common differential operators and surface characteristics in the space-variant domain and show examples of their use. The operators include the Laplacian, the gradient and the divergence, as well as the fundamental forms of the image treated as a surface. We illustrate the use of these results by deriving the space-variant form of corner detection and image enhancement algorithms. The latter is shown to have interesting properties in the complex log domain, implicitly encoding a variable grid-size integration of the underlying PDE, allowing rapid enhancement of large scale peripheral features while preserving high spatial frequencies in the fovea.Office of Naval Research (N00014-95-I-0409

    A Software Retina for Egocentric & Robotic Vision Applications on Mobile Platforms

    Get PDF
    We present work in progress to develop a low-cost highly integrated camera sensor for egocentric and robotic vision. Our underlying approach is to address current limitations to image analysis by Deep Convolutional Neural Networks, such as the requirement to learn simple scale and rotation transformations, which contribute to the large computational demands for training and opaqueness of the learned structure, by applying structural constraints based on known properties of the human visual system. We propose to apply a version of the retino-cortical transform to reduce the dimensionality of the input image space by a factor of ex100, and map this spatially to transform rotations and scale changes into spatial shifts. By reducing the input image size accordingly, and therefore learning requirements, we aim to develop compact and lightweight egocentric and robot vision sensor using a smartphone as the target platfor

    An Active Pattern Recognition Architecture for Mobile Robots

    Full text link
    An active, attentionally-modulated recognition architecture is proposed for object recognition and scene analysis. The proposed architecture forms part of navigation and trajectory planning modules for mobile robots. Key characteristics of the system include movement planning and execution based on environmental factors and internal goal definitions. Real-time implementation of the system is based on space-variant representation of the visual field, as well as an optimal visual processing scheme utilizing separate and parallel channels for the extraction of boundaries and stimulus qualities. A spatial and temporal grouping module (VWM) allows for scene scanning, multi-object segmentation, and featural/object priming. VWM is used to modulate a tn~ectory formation module capable of redirecting the focus of spatial attention. Finally, an object recognition module based on adaptive resonance theory is interfaced through VWM to the visual processing module. The system is capable of using information from different modalities to disambiguate sensory input.Defense Advanced Research Projects Agency (90-0083); Office of Naval Research (N00014-92-J-1309); Consejo Nacional de Ciencia y Tecnología (63462

    A biologically inspired computational vision front-end based on a self-organised pseudo-randomly tessellated artificial retina

    Get PDF
    This paper considers the construction of a biologically inspired front-end for computer vision based on an artificial retina pyramid with a self-organised pseudo-randomly tessellated receptive field tessellation. The organisation of photoreceptors and receptive fields in biological retinae locally resembles a hexagonal mosaic, whereas globally these are organised with a very densely tessellated central foveal region which seamlessly merges into an increasingly sparsely tessellated periphery. In contrast, conventional computer vision approaches use a rectilinear sampling tessellation which samples the whole field of view with uniform density. Scale-space interest points which are suitable for higher level attention and reasoning tasks are efficiently extracted by our vision front-end by performing hierarchical feature extraction on the pseudo-randomly spaced visual information. All operations were conducted on a geometrically irregular foveated representation (data structure for visual information) which is radically different to the uniform rectilinear arrays used in conventional computer vision

    Real-Time Restoration of Images Degraded by Uniform Motion Blur in Foveal Active Vision Systems

    Full text link
    Foveated, log-polar, or space-variant image architectures provide a high resolution and wide field workspace, while providing a small pixel computation load. These characteristics are ideal for mobile robotic and active vision applications. Recently we have described a generalization of the Fourier Transform (the fast exponential chirp transform) which allows frame-rate computation of full-field 2D frequency transforms on a log-polar image format. In the present work, we use Wiener filtering, performed using the Exponential Chirp Transform, on log-polar (fovcated) image formats to de-blur images which have been degraded by uniform camera motion.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-96-C-0178); Office of Naval Research Multidisciplinary University Research Initiative (N00014-95-1-0409
    • …
    corecore