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Abstract- This paper considers the construction of a
biologically inspired front-end for computer vision based on an
artificial retina 'pyramid' with a self-organised pseudo-randomly
tessellated receptive field tessellation. The organisation of
photoreceptors and receptive fields in biological retinae locally
resembles a hexagonal mosaic, whereas globally these are
organised with a very densely tessellated central foveal region
which seamlessly merges into an increasingly sparsely tessellated
periphery. In contrast, conventional computer vision approaches
use a rectilinear sampling tessellation which samples the whole
field of view with uniform density.

Scale-space interest points which are suitable for higher level
attention and reasoning tasks are efficiently extracted by our
vision front-end by performing hierarchical feature extraction on
the pseudo-randomly spaced visual information. All operations
were conducted on a geometrically irregular foveated
representation (data structure for visual information) which is
radically different to the uniform rectilinear arrays used in
conventional computer vision.

I. INTRODUCTION
In this paper the authors describe the construction of a

generic space-variant computational vision front-end capable
of identifying locations of interest on an image suitable for the
extraction of feature information. The authors' approach
differs from that used previously by using a biologically
inspired methodology to extract visual information from an
image. A multi-resolution 'pyramid' of artificial retinae with
independently self-organised receptive field tessellations
fixates upon and samples visual information from an image.
The tessellation of the artificial retinae resembles the
tessellation of retinal receptive fields and photoreceptors in the
human retina [1], with a local hexagonal grouping which is
very dense in the central foveal region of the retina and
becomes increasingly sparse in the surrounding space-variant
periphery.
A space-variant sampling of visual information using a

foveated sensor reduces the combinatorial explosion of
information and massive computational processing load
associated with vision. In human retinae, the highest acuity
region in the foveola has a diameter of about 1 1/2 degrees
around the point of fixation in our field-of-view. This
corresponds to about 1cm at arms length. The rest of our field-
of-view is sampled at reduced acuity by the rest of the fovea

(with a diameter of 5 degrees) and at increasingly reduced
detail in the large periphery (diameter 150 degrees). This
reduction in sampling density with eccentricity isn't just
because of the biological difficulty of tightly packing sensor
elements in our retinae. The visual information extracted by
our retinae undergoes extensive processing in the visual
cortex. Based on the biological computational machinery
dedicated to the human fovea, our brains would have to weigh
about 60kgs if we were to process our whole field-of-view at
foveal resolution!

Most machine approaches to computer vision tend to rely
on uniform, rectilinear information sampling approaches and
internal representations. The whole field-of-view is evaluated
at the same resolution while processing resources and the
sampling machinery are not sparingly conserved. The internal
representation of visual information in these machine systems
is almost invariably a pixel array which contains the responses
of sampling elements or the results after filtering operations.

There is a discrepancy between the sampling and
representations found within biological vision systems and
those available to computational machine approaches to
vision. This paper demonstrates that it is viable to construct a
computational artificial vision front-end that is capable of
extracting useful visual information and which is based on the
sampling of a biologically-inspired artificial retina with a
tessellation similar to that found in human retinae.

II. BACKGROUND
Most artificial retinae that sample images in modern

computer vision are based on an analytic retino-cortical
transform that projects locations in retinal space (image space)
to an associated 'cortical space' which is biased to the foveal
region near the point of fixation. These transforms are
motivated by the topography of the projection of retinal
afferents to the LGN and visual cortex in biology. Schwartz's
complex-log transform [2] creates a retinotopic cortical space
image by taking the complex logarithm of the image pixel
coordinates. While almost all machine retinae that sample
images are based on this model it contains severe limitations.
There is a singularity in the centre of the retina and the model
over-samples visual information on the image near the point of
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fixation resulting in a highly correlated foveal area in the
cortical image. While other retino-cortical transforms have
been proposed [3, 4] none quantitatively calculate the actual
receptive field locations (tessellation) of an artificial retina.
The work is based on the projection of the radial component of
retinal coordinates to cortical space and does not consider the
angular relationships between the (polar) coordinates of the
retinal plane when performing the projection. No analytic
approach or geometric mapping that can describe the gradual
change in topography of the retina between a uniform fovea
and space-variant periphery transforming the lateral and radial
coordinate of a receptive field or image pixel to a cortical
space has been reported in the literature to date.

Researchers [5, 6] have also attempted to process the central
foveal region separately to avoid the central singularity and
over-sampling. Sandini et. al. [7] even created hardware
implementations of such retinae. The central region comprises
of a uniform density mosaic while the periphery region is
space-variant. However, using this approach results in a
discontinuity between the foveal and periphery in the retinal
sampling and internal visual representation. Thus far
researchers have failed to report computing plausible retinae
based on an analytical transform that can sample an image
using a single space-variant retinal topology and map
locations in the field of view to a continuous cortical layer.
The authors question the tractability of finding a continuous

space-variant retinal tessellation using an analytic perspective
that meets the constraints of a continuous uniform fovea and
space-variant periphery sampling regimen. Therefore in this
paper the authors determined the retinal receptive field
locations using self-organisation.

III. RETINA TESSELLATION

A retinal tessellation with a uniform foveal region which
seamlessly merges into a space-variant periphery was created
using Self-Similar Neural Networks [81 self-organisation. This
approach resembles Kohonen's Self-Organising Feature Map
[9] but differs by deriving the input stimulus by applying a
given sequence of transformations to the current network of
weights. In this paper, a two-dimensional point xi E kg 2
represents each retinal neuron or network weight. The network
is initialized by an arbitrary random tessellation of the
required number of retinal neuron positions which will
eventually self-organise into the retinal tessellation that is
required for a foveated retina. For a retina with N neurons, the
input stimulus y,(n) at iteration n is calculated by the
following, where x,{n - I) is the ih neuron at iteration n - I
and I <i<N.

y, (n) = T(n) x, (n -I)

2) A dilation (increase in eccentricity) comprising of the
exponent of a dilation factor which is random between 0
and log(8).

3) A random translation of the network weights with a
value between 0 andf

As the input stimuli y,(n) could be transformed beyond the
domain of the network, those points which lie outside the
bounds of the retina were culled before the network weights
x(n - 1) were stimulated to calculate x/n). The following
learning rule was used to stimulate the network.

(2)Xj (n) = Xj (n-I) + aZ(n) X,(yn(n)-x)(n-I))
ieA, (n)

A, (n) ={ i: Iy (n) - xj (n -1)I < lyV (n) -x, (n -1)I, k j }(3)

A,{n) contains the indices to the input stimuli y (n) to which
x0n - 1) is the closest network vector.

Fig. I. Self-organised retina receptive field tessellation with 4096 nodes

Unlike complex-log transform based retinae, the retina
tessellation resulting from self-organisation has a uniform
foveal sampling density (Fig. I and Fig. 2). The above retina
tessellation was implemented using a composite of horizontal
(f= 0.2), vertical (f= 0.2) and radial (f= 0.066) traslations in
the composite transform T to create a tessellation with a large
uniferm isometric foveal region and the leaming rate was
annealed for 20000 iterations.
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The final global configuration of the network is governed
by the composite transform T. The following sequence of
transforms T was used to make the resultant network converge
onto a foveated space-variant retinal tessellation.

1) A rotation of the network with a random transformation
angle between 0 and 2z.
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Fig. 2. Magnified view of the foveal and receptive field density. The retina
tessellation has a radius of one unit.
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IV. RECEPTIVE FIELDS
A retinal tessellation cannot sample visual information.

Visual information must not be gathered by point sampling the
locations indicated by the tessellation. Such an approach
would cause aliasing in the extracted visual information.
Instead neurons need to extract information using overlapping
receptive fields. In this paper receptive fields with Gaussian
support profiles were used initially sample visual information
from an image because the wide, low-pass frequency support
of a Gaussian would reduce aliasing of the retinal sampling. A
circularly symmetric un-normalized two-dimensional
Gaussian support G(x,y) with standard deviation a is as
follows,

G(x,y,aXY) =exp( y20 )

The response of the receptive field was generated by
multiplying the underlying image pixels with coefficients of
the receptive field G(x,y,a,X,Y). As the implemented retina
was not based on a retino-cortical transform there isn't a
coherent cortical space structure to store and represent the
retinal responses. However it is useful to represent retinotopic
relationships as information extracted in adjacent areas in the
field of view tend to be processed together in higher level
feature extraction operations. In this paper a graph structure
(Fig. 4) extending the work by Wallace et. al. [10] was used to
define higher level receptive fields in the processing hierarchy.

(4)

(X, Y) are the horizontal and vertical sub-pixel offsets in
placing the retinal receptive field on the integer locations of
the image. The receptive field is therefore placed on the digital
image with sub-pixel precision. All the input weights of the
retinal neuron's simple receptive field were normalized to sum
to unity. The standard deviation a of the support region was
chosen such that

r= %6 (5)

where d is the diameter of the receptive field. It can be argued
that the size of the receptive field is related to local node
density. Receptive fields in the periphery of the retina have to
be much larger than those in the fovea. The following was
used to determine the receptive field diameter di of retinal
neuron i

dj=k4i (6)
ji=2

where A,,J is the sorted Euclidean distance matrix of the retinal
tessellation, k is the neighbourhood size for determining node
density and s is a scaling constant. A value of s = 4 was used
to create overlap ofreceptive fields and suppress aliasing.

Fig. 3. Overlapping receptive fields on a 1024 node retina tessellation. The
indicated receptive field area subsumes 95% of its support region.

Fig. 4. Cortical graph for a retina with 1024 nodes generated using Delauney
triangulation. A parafoveal and a peripheral receptive field are indicated.

The response of a higher order receptive field in a feature
extraction hierarchy 0(c) on node c on a layer with N neurons
is given by

O(c) = ,R(i) JJ'.(v,) where I < i < M, I < c < N (7)

Here R(i) is the response of the receptive field on node v; of
the immediately lower layer in the feature extraction hierarchy
with M nodes and W, is the coefficient of the higher layer
receptive field for the afferent from lower layer node v;.

The Laplacian of Gaussian (LoG) [11] is of interest in
biologically inspired computer vision due to its resemblance to
the profile of biological retinal ganglion cell receptive fields.
As a LoG filter is a spatial frequency band pass filter, the
Gaussian responses from the artificial retina can be processed
by neurons with a LoG support profile to detect contrast in the
extracted visual information. The following equation was used
to compute the receptive field coefficients W,(v,) for a LoG
neuron.

(r' -2)e2) 4
(8)

Here r is the retinotopic distance to an afferent node from
the LoG neuron's centre. The response of the neuron is
computed using Eqn. 7.

V. RETINA PYRAMID
Although the space-variant density of the retinal tessellation

results in higher spatial acuity in fovea than in the periphery of
the field-of-view, a single LoG neuron layer is restricted to
extracting visual information at a single narrow band-pass
frequency range from a particular location in the scene from a
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single retinal fixation. Since the LoG is a band-pass filer, in
this paper Gaussian neuronal sampling is used for multi-
resolution feature extraction. While it is possible to self-
organise not only Gaussian neuronal retinal layer positions but
also multi-resolution support regions, extracting higher level
features from the responses of the resulting self-organised
multi-scale sampling mechanism is not arbitrary. In this paper
the standard computer vision Gaussian pyramid [12] was
extended to be able to operate on an retina-based irregular
information representation. Only the finest scale retina layer
actually samples image. All others sub-sample the
immediately finer Gaussian retina layer. Each sub-sample
operation of the Gaussian retina pyramid necessitates the pre-
computing of unique receptive field coefficients over an
irregular representation as indicated in Section IV (in contrast
to the regular rectilinear arrays normally found in computer
vision). However the computational advantage of sub-
sampling visual information in a Gaussian pyramid of retinae
far exceeds this processing penalty.
The pyramid structure, which the authors refer to as a retina

pyramid, has layers which approximate octave separation. The
Gaussian retina pyramid illustrated in Fig. 5 contains 8192,
4096, 1024 and 256 nodes.

Gaussian Retina Pyramid

(P
3
(D

Laplacian of Gaussian
Retina Pyramid

LoG receptive fields between layers.

VI. LoG SCALE-SPACE EXTREMA
The identification of stable interest points is an important

step in modem machine vision. The local visual information
extracted at interest point locations is more invariant and
robust than global information extracted from the whole object
or scene [13]. This reduces the ambiguity and increases the
discrimination of the vision system in performing tasks such
as recognition and visual search. The detection of interest
points based on discrete LoG scale-space extrema enables the
extraction of features not only at stable salient spatial locations
in the image but also at the characteristic scale of a particular
salient feature [14, 15].
The LoG layers within each octave of the LoG retina

pyramid detect contrast, yet are not suitable for the detection
of discrete scale-space extrema because the response
amplitude of a LoG generally decreases with scale. Lindeberg
[16] and Mikolajczyk [14] showed that the scale normalised
derivative D of order m centred on v, can be given by

Dm(vc,,a) = e Lm(Vc,a) (10)

The de term helps to somewhat normalise the image
derivative's Lm response to scale (m=2 for LoG). In our
experiments the authors found that even this normalisation
was not sufficient to generate scale space extrema equitably on
LoG layers within an octave of the retina pyramid. Therefore
each (unique) LoG receptive field in the pyramid was
independently normalised by the response of that receptive
field when the vision front-end was fixated upon random dot
stimuli. If D2 contains the mean response to random dot
stimuli, the normalised responses D2 is given by

D2 (V,Ia) = D2 (vK ,a)
D2(V~,Ia) (I 1)

Fig. 5. Gaussian and associated Laplacian ofGaussian retina pyramid. Dark
arrows indicate sampling or feature extraction.

Instead of processing each Gaussian retina layer with a
single LoG retina layer, the granularity of the LoG sampling
across scale was increased by sampling the Gaussian efferents
using LoG retina layers with receptive fields having different
support region standard deviations (J. The standard deviation
of the nWh LoG layer in an octave 'stack' is given by

a=a s n-I19
n 0

where a,, is the standard deviation of the finest LoG layer in
the octave and s is the increase in standard deviation of the

Using the normalised LoG responses D2, it is possible to
detect extrema in discrete LoG scale-space. A classification of
a LoG receptive field (vc,&) in the pyramid centred at v, and
LoG standard deviation spread ad is given by the following

extrema: (V,, CY),> (Vk, C} ), j = i-l.i+ 1: Vk E N(Vc )
(v"c,d)= extrema:(vC,o')<V(vk,To-),j = i- ..+l: VkEN(v)

not extrema: otherwise (12)

where node vk is a neighbour of node v, in space and scale(ao)
in the LoG retina pyramid.

Since for the detection of extrema in LoG responses across
frequency requires an additional two LoG retina layers, the
scaling factor s (Eqn. 9) for a LoG retina pyramid with n
layers per octave is

5 = 2X-2 (13)

The interest points detected along an edge in the image are
not well localised because of the ambiguity caused by the
similarity of the interest point feature descriptor along the
edge. A variant of the Harris comer detector [17] was used to
remove interest points detected at image edges. The following
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with a value of r= 10 [ 15] was used

(Dr, +Dy) < (r+I)' (14)

Dr D,Dy-Dry Dyx r

The derivatives were calculated on the LoG responses of the
retina pyramid using the following

Cos Vi .Y 2 jJ*((VnS')-(v,S')) vj e N(v0)

Dn =EcosCos +Z4 I*((v,,s)-(v,s)) Vvj e N(v0)
vi, -v e

Dr =Cos VI' Iff4j *((vOs')-(v s)) Vv E N(v1)

V, -v

I'

back-propagated response at node v, in the immediately lower
level in the hierarchy is given by the following

R(i) =O(c) W.(v,) (16)

The responses from the LoG retina pyramid were similarly
visualised by back-projecting back to the image plane (Fig. 7).

4096 LoG retina a. layer 1024 LoG norettina. layer

VII. RESULTS

The following figure contains the responses from the
Gaussian retina pyramid. As the responses are internally
represented as one-dimensional vectors the authors chose to
visualise the responses by reversing the entire sub-sampling
process and back-propagating the responses back to retina
(image) space.

Input image 81 92 Gaussian retina laye

10MA r-u-ia.n re-ina ler

Fig. 7. Back-propagated LoG responses. LoG layer responses were back-
propagated through the Gaussian retina pyramid back to the image plane. The
band-pass filtering of the LoG layer neurons that extract contrast information
can be observed in the back-projected LoG responses. The contrast
information extracted near the point of fixation on Lena's right eye has a
higher spatial frequency than that extracted from more peripheral regions in
the field-of-view.

Table I
Number of LoG discrete scale-space extrema in the retina pyramid.

4096 octave LoG 1024 octave LoG 256 octave LoG
layers layers layers

Scaling ofsupport s2 S3 S4 5 S
2 3 S4 S5S 2S 4S

region (Eqn. 9) 1| ss | 3 | 5sss 5s| ss1 5

space extrema
No. ofextrema after 55 52 38 31 34 19 11 13 10 6 1 7 5 4 1

normalization

Table I contains the number of scale-space extrema
detected at LoG layers in the retina pyramid within each
octave. In this experiment each octave had seven LoG layers
(n=7 in Eqn. 9). Not normalising the LoG response results in
most extrema being detected in the coarser layers of each
octave of the retina pyramid while normalising with the LoG
response to random stimuli (D2) results in extrema being
detected more equitably across scale within the octave.

All Extnema in 4096 LoG Reana Octave

its MO 333 4C0 51t 3_ 40 60L
Fig. 6. Input greyscale Lena image and back-propagated responses from the
octave separated Gaussian retina pyramid. Even though filter/sub-sample
operations have occurred on an irregular sampling tessellation, Gaussian
blurring of the visual stimulus can be observed. The space-variant nature of
the processing is apparent with the region near Lena's right eye being sampled
at a higher spatial frequency than more peripheral regions of the image.

The back-propagation operation resembles the sub-sampling
operation over the pseudo-random retina tessellation. If 0(c)
contains the receptive field response at node vC in a layer, the

All Exernna in 1024 LoG Renna Octave

Fig. 8. LoG scale-space extrema (after comer detection). The extrema are
displayed on the back-propagated Gaussian layer responses.
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VIII. DISCUSSION

This paper showed that multi-resolution hierarchical feature
extraction and interest point detection is possible with visual
information extracted using a biologically-inspired non-
uniform sampling of an artificial retina with pseudo-randomly
tessellated receptive fields. While there is previous work on
filtering hexagonal grids [18] and space-variant image
processing [10], this paper addressed the problem of filtering
space-variant, irregular tessellations in multi-resolution feature
extraction hierarchies. Gaussian filtering / sub-sampling and
Laplacian of Gaussian filtering was demonstrated using an
efficient pyramidal approach to multi-resolution visual
processing. Discrete LoG scale-space extrema were detected
and evaluated with a corner detector to generate interest
points.

The retinal tessellation that resulted from the self-
organisation in the paper has a locally irregular receptive field
distribution. In other signal processing domains [19], an
irregular, non-uniform sampling has been used to increase
frequency bandwidth and used for aliasing-free digitisation of
analogue signals.

By foregoing geometric regularity of the retinal mosaic the
approach achieves continuity in sampling density throughout
the retina - from the uniform fovea to the extremity of the
coarse periphery. The structure of the retina locally resembles
a hexagonal lattice with occasional deviations in the
hexagonal topology in locations where there is a transition
between the dominant influences on the network. These
deviations enable the retina tessellation to maintain a sampling
density continuum at a macroscopic level with the retina's
uniform foveal region seamlessly coalescing into a space-
variant periphery. It has been found that a hexagonal lattice is
the most efficient way to tile a plane [20] and has useful
properties such as equal distance to neighbours and being an
approximation to a circular tiling.

Using scale normalised LoG receptive fields was not
sufficient to find LoG scale-space extrema that were equitably
distributed among the LoG retina layers in each octave. Each
LoG receptive field in the retina pyramid had to be normalised
by its response to random stimuli for extrema to be equitably
distributed among the retina pyramid layers generating
interesting points useful for higher level reasoning.

IX. FUTURE WORK
The authors are currently working on extending the

described vision front-end into a complete space-variant vision
system capable of task-based attention behaviour. Visual
information extracted at the interest points in the periphery of
the field-of-view are used for generating object hypothesises
for an attention mechanism and that from interest points in the
high acuity foveal region, for direct task-based reasoning.
Space-variant vision using a fixed retina-based sampling
mechanism evolved in nature to reason with a dynamic
changing visual environment. Animal eyes are bombarded
with an ever changing visual environment as the animal
navigates in its surroundings or the environment itself

changes. The authors believe that foveated, space-variant
vision evolved for reasoning in a dynamic visual environment,
i.e. video. The foveated, space-variant vision strategy reduces
the combinatorial explosion of visual information while the
fixed retina structure is serially targeted at the most salient
location in the dynamic scene depending on the task at hand.
The authors believe that the work presented in this paper is a
useful tool for the future investigation of foveated space-
variant vision.
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