318 research outputs found

    Text-based Editing of Talking-head Video

    No full text
    Editing talking-head video to change the speech content or to remove filler words is challenging. We propose a novel method to edit talking-head video based on its transcript to produce a realistic output video in which the dialogue of the speaker has been modified, while maintaining a seamless audio-visual flow (i.e. no jump cuts). Our method automatically annotates an input talking-head video with phonemes, visemes, 3D face pose and geometry, reflectance, expression and scene illumination per frame. To edit a video, the user has to only edit the transcript, and an optimization strategy then chooses segments of the input corpus as base material. The annotated parameters corresponding to the selected segments are seamlessly stitched together and used to produce an intermediate video representation in which the lower half of the face is rendered with a parametric face model. Finally, a recurrent video generation network transforms this representation to a photorealistic video that matches the edited transcript. We demonstrate a large variety of edits, such as the addition, removal, and alteration of words, as well as convincing language translation and full sentence synthesis

    Neural Sign Reenactor: Deep Photorealistic Sign Language Retargeting

    Full text link
    In this paper, we introduce a neural rendering pipeline for transferring the facial expressions, head pose, and body movements of one person in a source video to another in a target video. We apply our method to the challenging case of Sign Language videos: given a source video of a sign language user, we can faithfully transfer the performed manual (e.g., handshape, palm orientation, movement, location) and non-manual (e.g., eye gaze, facial expressions, mouth patterns, head, and body movements) signs to a target video in a photo-realistic manner. Our method can be used for Sign Language Anonymization, Sign Language Production (synthesis module), as well as for reenacting other types of full body activities (dancing, acting performance, exercising, etc.). We conduct detailed qualitative and quantitative evaluations and comparisons, which demonstrate the particularly promising and realistic results that we obtain and the advantages of our method over existing approaches.Comment: Accepted at AI4CC Workshop at CVPR 202

    Neural Voice Puppetry: Audio-driven Facial Reenactment

    Get PDF
    We present Neural Voice Puppetry, a novel approach for audio-driven facial video synthesis. Given an audio sequence of a source person or digital assistant, we generate a photo-realistic output video of a target person that is in sync with the audio of the source input. This audio-driven facial reenactment is driven by a deep neural network that employs a latent 3D face model space. Through the underlying 3D representation, the model inherently learns temporal stability while we leverage neural rendering to generate photo-realistic output frames. Our approach generalizes across different people, allowing us to synthesize videos of a target actor with the voice of any unknown source actor or even synthetic voices that can be generated utilizing standard text-to-speech approaches. Neural Voice Puppetry has a variety of use-cases, including audio-driven video avatars, video dubbing, and text-driven video synthesis of a talking head. We demonstrate the capabilities of our method in a series of audio- and text-based puppetry examples. Our method is not only more general than existing works since we are generic to the input person, but we also show superior visual and lip sync quality compared to photo-realistic audio- and video-driven reenactment techniques

    Photo-realistic face synthesis and reenactment with deep generative models

    Get PDF
    The advent of Deep Learning has led to numerous breakthroughs in the field of Computer Vision. Over the last decade, a significant amount of research has been undertaken towards designing neural networks for visual data analysis. At the same time, rapid advancements have been made towards the direction of deep generative modeling, especially after the introduction of Generative Adversarial Networks (GANs), which have shown particularly promising results when it comes to synthesising visual data. Since then, considerable attention has been devoted to the problem of photo-realistic human face animation due to its wide range of applications, including image and video editing, virtual assistance, social media, teleconferencing, and augmented reality. The objective of this thesis is to make progress towards generating photo-realistic videos of human faces. To that end, we propose novel generative algorithms that provide explicit control over the facial expression and head pose of synthesised subjects. Despite the major advances in face reenactment and motion transfer, current methods struggle to generate video portraits that are indistinguishable from real data. In this work, we aim to overcome the limitations of existing approaches, by combining concepts from deep generative networks and video-to-video translation with 3D face modelling, and more specifically by capitalising on prior knowledge of faces that is enclosed within statistical models such as 3D Morphable Models (3DMMs). In the first part of this thesis, we introduce a person-specific system that performs full head reenactment using ideas from video-to-video translation. Subsequently, we propose a novel approach to controllable video portrait synthesis, inspired from Implicit Neural Representations (INR). In the second part of the thesis, we focus on person-agnostic methods and present a GAN-based framework that performs video portrait reconstruction, full head reenactment, expression editing, novel pose synthesis and face frontalisation.Open Acces

    EgoFace: Egocentric Face Performance Capture and Videorealistic Reenactment

    No full text
    Face performance capture and reenactment techniques use multiple cameras and sensors, positioned at a distance from the face or mounted on heavy wearable devices. This limits their applications in mobile and outdoor environments. We present EgoFace, a radically new lightweight setup for face performance capture and front-view videorealistic reenactment using a single egocentric RGB camera. Our lightweight setup allows operations in uncontrolled environments, and lends itself to telepresence applications such as video-conferencing from dynamic environments. The input image is projected into a low dimensional latent space of the facial expression parameters. Through careful adversarial training of the parameter-space synthetic rendering, a videorealistic animation is produced. Our problem is challenging as the human visual system is sensitive to the smallest face irregularities that could occur in the final results. This sensitivity is even stronger for video results. Our solution is trained in a pre-processing stage, through a supervised manner without manual annotations. EgoFace captures a wide variety of facial expressions, including mouth movements and asymmetrical expressions. It works under varying illuminations, background, movements, handles people from different ethnicities and can operate in real time

    Photorealistic Audio-driven Video Portraits

    Get PDF
    Video portraits are common in a variety of applications, such as videoconferencing, news broadcasting, and virtual education and training. We present a novel method to synthesize photorealistic video portraits for an input portrait video, automatically driven by a person’s voice. The main challenge in this task is the hallucination of plausible, photorealistic facial expressions from input speech audio. To address this challenge, we employ a parametric 3D face model represented by geometry, facial expression, illumination, etc., and learn a mapping from audio features to model parameters. The input source audio is first represented as a high-dimensional feature, which is used to predict facial expression parameters of the 3D face model. We then replace the expression parameters computed from the original target video with the predicted one, and rerender the reenacted face. Finally, we generate a photorealistic video portrait from the reenacted synthetic face sequence via a neural face renderer. One appealing feature of our approach is the generalization capability for various input speech audio, including synthetic speech audio from text-to-speech software. Extensive experimental results show that our approach outperforms previous general-purpose audio-driven video portrait methods. This includes a user study demonstrating that our results are rated as more realistic than previous methods
    • …
    corecore