97,707 research outputs found

    Design Optimization Utilizing Dynamic Substructuring and Artificial Intelligence Techniques

    Get PDF
    In mechanical and structural systems, resonance may cause large strains and stresses which can lead to the failure of the system. Since it is often not possible to change the frequency content of the external load excitation, the phenomenon can only be avoided by updating the design of the structure. In this paper, a design optimization strategy based on the integration of the Component Mode Synthesis (CMS) method with numerical optimization techniques is presented. For reasons of numerical efficiency, a Finite Element (FE) model is represented by a surrogate model which is a function of the design parameters. The surrogate model is obtained in four steps: First, the reduced FE models of the components are derived using the CMS method. Then the components are aassembled to obtain the entire structural response. Afterwards the dynamic behavior is determined for a number of design parameter settings. Finally, the surrogate model representing the dynamic behavior is obtained. In this research, the surrogate model is determined using the Backpropagation Neural Networks which is then optimized using the Genetic Algorithms and Sequential Quadratic Programming method. The application of the introduced techniques is demonstrated on a simple test problem

    Fine-Pruning: Joint Fine-Tuning and Compression of a Convolutional Network with Bayesian Optimization

    Full text link
    When approaching a novel visual recognition problem in a specialized image domain, a common strategy is to start with a pre-trained deep neural network and fine-tune it to the specialized domain. If the target domain covers a smaller visual space than the source domain used for pre-training (e.g. ImageNet), the fine-tuned network is likely to be over-parameterized. However, applying network pruning as a post-processing step to reduce the memory requirements has drawbacks: fine-tuning and pruning are performed independently; pruning parameters are set once and cannot adapt over time; and the highly parameterized nature of state-of-the-art pruning methods make it prohibitive to manually search the pruning parameter space for deep networks, leading to coarse approximations. We propose a principled method for jointly fine-tuning and compressing a pre-trained convolutional network that overcomes these limitations. Experiments on two specialized image domains (remote sensing images and describable textures) demonstrate the validity of the proposed approach.Comment: BMVC 2017 ora
    corecore