22,565 research outputs found

    Unsupervised video hashing by exploiting spatio-temporal feature

    Full text link
    © Springer International Publishing AG 2016. Video hashing is a common solution for content-based video retrieval by encoding high-dimensional feature vectors into short binary codes. Videos not only have spatial structure inside each frame but also have temporal correlation structure between frames, while the latter has been largely neglected by many existing methods. Therefore, in this paper we propose to perform video hashing by incorporating the temporal structure as well as the conventional spatial structure. Specifically, the spatial features of videos are obtained by utilizing Convolutional Neural Network (CNN), and the temporal features are established via Long-Short Term Memory (LSTM). The proposed spatio-temporal feature learning framework can be applied to many existing unsupervised hashing methods such as Iterative Quantization (ITQ), Spectral Hashing (SH), and others. Experimental results on the UCF-101 dataset indicate that by simultaneously employing the temporal features and spatial features, our hashing method is able to significantly improve the performance of existing methods which only deploy the spatial feature

    STDPG: A Spatio-Temporal Deterministic Policy Gradient Agent for Dynamic Routing in SDN

    Full text link
    Dynamic routing in software-defined networking (SDN) can be viewed as a centralized decision-making problem. Most of the existing deep reinforcement learning (DRL) agents can address it, thanks to the deep neural network (DNN)incorporated. However, fully-connected feed-forward neural network (FFNN) is usually adopted, where spatial correlation and temporal variation of traffic flows are ignored. This drawback usually leads to significantly high computational complexity due to large number of training parameters. To overcome this problem, we propose a novel model-free framework for dynamic routing in SDN, which is referred to as spatio-temporal deterministic policy gradient (STDPG) agent. Both the actor and critic networks are based on identical DNN structure, where a combination of convolutional neural network (CNN) and long short-term memory network (LSTM) with temporal attention mechanism, CNN-LSTM-TAM, is devised. By efficiently exploiting spatial and temporal features, CNNLSTM-TAM helps the STDPG agent learn better from the experience transitions. Furthermore, we employ the prioritized experience replay (PER) method to accelerate the convergence of model training. The experimental results show that STDPG can automatically adapt for current network environment and achieve robust convergence. Compared with a number state-ofthe-art DRL agents, STDPG achieves better routing solutions in terms of the average end-to-end delay.Comment: 6 pages,5 figures,accepted by IEEE ICC 202

    Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach

    Full text link
    Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependences, temporal dependences, and exogenous dependences need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependences within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. Experimental results, validated on real-world data provided by DiDi Chuxing, show that the FCL-Net achieves better predictive performance than traditional approaches including both classical time-series prediction models and neural network based algorithms (e.g., artificial neural network and LSTM). This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations.Comment: 39 pages, 10 figure

    Differential Recurrent Neural Networks for Action Recognition

    Full text link
    The long short-term memory (LSTM) neural network is capable of processing complex sequential information since it utilizes special gating schemes for learning representations from long input sequences. It has the potential to model any sequential time-series data, where the current hidden state has to be considered in the context of the past hidden states. This property makes LSTM an ideal choice to learn the complex dynamics of various actions. Unfortunately, the conventional LSTMs do not consider the impact of spatio-temporal dynamics corresponding to the given salient motion patterns, when they gate the information that ought to be memorized through time. To address this problem, we propose a differential gating scheme for the LSTM neural network, which emphasizes on the change in information gain caused by the salient motions between the successive frames. This change in information gain is quantified by Derivative of States (DoS), and thus the proposed LSTM model is termed as differential Recurrent Neural Network (dRNN). We demonstrate the effectiveness of the proposed model by automatically recognizing actions from the real-world 2D and 3D human action datasets. Our study is one of the first works towards demonstrating the potential of learning complex time-series representations via high-order derivatives of states

    Neural Avalanches at the Critical Point between Replay and Non-Replay of Spatiotemporal Patterns

    Get PDF
    We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity) between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain). Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns
    corecore