31,716 research outputs found

    Predicting and Evaluating Software Model Growth in the Automotive Industry

    Full text link
    The size of a software artifact influences the software quality and impacts the development process. In industry, when software size exceeds certain thresholds, memory errors accumulate and development tools might not be able to cope anymore, resulting in a lengthy program start up times, failing builds, or memory problems at unpredictable times. Thus, foreseeing critical growth in software modules meets a high demand in industrial practice. Predicting the time when the size grows to the level where maintenance is needed prevents unexpected efforts and helps to spot problematic artifacts before they become critical. Although the amount of prediction approaches in literature is vast, it is unclear how well they fit with prerequisites and expectations from practice. In this paper, we perform an industrial case study at an automotive manufacturer to explore applicability and usability of prediction approaches in practice. In a first step, we collect the most relevant prediction approaches from literature, including both, approaches using statistics and machine learning. Furthermore, we elicit expectations towards predictions from practitioners using a survey and stakeholder workshops. At the same time, we measure software size of 48 software artifacts by mining four years of revision history, resulting in 4,547 data points. In the last step, we assess the applicability of state-of-the-art prediction approaches using the collected data by systematically analyzing how well they fulfill the practitioners' expectations. Our main contribution is a comparison of commonly used prediction approaches in a real world industrial setting while considering stakeholder expectations. We show that the approaches provide significantly different results regarding prediction accuracy and that the statistical approaches fit our data best

    DeepSoft: A vision for a deep model of software

    Full text link
    Although software analytics has experienced rapid growth as a research area, it has not yet reached its full potential for wide industrial adoption. Most of the existing work in software analytics still relies heavily on costly manual feature engineering processes, and they mainly address the traditional classification problems, as opposed to predicting future events. We present a vision for \emph{DeepSoft}, an \emph{end-to-end} generic framework for modeling software and its development process to predict future risks and recommend interventions. DeepSoft, partly inspired by human memory, is built upon the powerful deep learning-based Long Short Term Memory architecture that is capable of learning long-term temporal dependencies that occur in software evolution. Such deep learned patterns of software can be used to address a range of challenging problems such as code and task recommendation and prediction. DeepSoft provides a new approach for research into modeling of source code, risk prediction and mitigation, developer modeling, and automatically generating code patches from bug reports.Comment: FSE 201
    corecore