201 research outputs found

    Neural Potential Field for Obstacle-Aware Local Motion Planning

    Full text link
    Model predictive control (MPC) may provide local motion planning for mobile robotic platforms. The challenging aspect is the analytic representation of collision cost for the case when both the obstacle map and robot footprint are arbitrary. We propose a Neural Potential Field: a neural network model that returns a differentiable collision cost based on robot pose, obstacle map, and robot footprint. The differentiability of our model allows its usage within the MPC solver. It is computationally hard to solve problems with a very high number of parameters. Therefore, our architecture includes neural image encoders, which transform obstacle maps and robot footprints into embeddings, which reduce problem dimensionality by two orders of magnitude. The reference data for network training are generated based on algorithmic calculation of a signed distance function. Comparative experiments showed that the proposed approach is comparable with existing local planners: it provides trajectories with outperforming smoothness, comparable path length, and safe distance from obstacles. Experiment on Husky UGV mobile robot showed that our approach allows real-time and safe local planning. The code for our approach is presented at https://github.com/cog-isa/NPField together with demo video

    Machine Learning For Robot Motion Planning

    Get PDF
    Robot motion planning is a field that encompasses many different problems and algorithms. From the traditional piano mover\u27s problem to more complicated kinodynamic planning problems, motion planning requires a broad breadth of human expertise and time to design well functioning algorithms. A traditional motion planning pipeline consists of modeling a system and then designing a planner and planning heuristics. Each part of this pipeline can incorporate machine learning. Planners and planning heuristics can benefit from machine learned heuristics, while system modeling can benefit from model learning. Each aspect of the motion planning pipeline comes with trade offs between computational effort and human effort. This work explores algorithms that allow motion planning algorithms and frameworks to find a compromise between the two. First, a framework for learning heuristics for sampling-based planners is presented. The efficacy of the framework depends on human designed features and policy architecture. Next, a framework for learning system models is presented that incorporates human knowledge as constraints. The amount of human effort can be modulated by the quality of the constraints given. Lastly, semi-automatic constraint generation is explored to enable a larger range of trade-offs between human expert constraint generation and data driven constraint generation. We apply these techniques and show results in a variety of robotic systems
    • …
    corecore