
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2021

Machine Learning For Robot Motion Planning Machine Learning For Robot Motion Planning

Clark June Zhang
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Computer Sciences Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Zhang, Clark June, "Machine Learning For Robot Motion Planning" (2021). Publicly Accessible Penn
Dissertations. 4546.
https://repository.upenn.edu/edissertations/4546

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/4546
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F4546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F4546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F4546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4546?utm_source=repository.upenn.edu%2Fedissertations%2F4546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4546
mailto:repository@pobox.upenn.edu

Machine Learning For Robot Motion Planning Machine Learning For Robot Motion Planning

Abstract Abstract
Robot motion planning is a field that encompasses many different problems and algorithms. From the
traditional piano mover's problem to more complicated kinodynamic planning problems, motion planning
requires a broad breadth of human expertise and time to design well functioning algorithms. A traditional
motion planning pipeline consists of modeling a system and then designing a planner and planning
heuristics. Each part of this pipeline can incorporate machine learning. Planners and planning heuristics
can benefit from machine learned heuristics, while system modeling can benefit from model learning.
Each aspect of the motion planning pipeline comes with trade offs between computational effort and
human effort. This work explores algorithms that allow motion planning algorithms and frameworks to
find a compromise between the two. First, a framework for learning heuristics for sampling-based
planners is presented. The efficacy of the framework depends on human designed features and policy
architecture. Next, a framework for learning system models is presented that incorporates human
knowledge as constraints. The amount of human effort can be modulated by the quality of the
constraints given. Lastly, semi-automatic constraint generation is explored to enable a larger range of
trade-offs between human expert constraint generation and data driven constraint generation. We apply
these techniques and show results in a variety of robotic systems.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Electrical & Systems Engineering

First Advisor First Advisor
Alejandro Ribeiro

Keywords Keywords
Machine Learning, Motion Planning

Subject Categories Subject Categories
Computer Sciences | Robotics

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/4546

https://repository.upenn.edu/edissertations/4546

MACHINE LEARNING FOR ROBOT MOTION PLANNING

Clark Zhang

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2021

Supervisor of Dissertation

Alejandro Ribeiro, Professor, Electrical and Systems Engineering

Graduate Group Chairperson

Victor Preciado, Associate Professor of Electrical and Systems Engineering

Dissertation Committee

Pratik Chaudhari, Assistant Professor, Electrical and Systems Engineering

Dinesh Jayaraman, Assistant Professor, Computer and Information Science

Szymon Jakubczak, Ph.D., Computer Science

MACHINE LEARNING FOR ROBOT MOTION PLANNING

© COPYRIGHT

20221

Clark June Zhang

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/

A C K N O W L E D G E M E N T

The road to this dissertation has had many twists and turns, and I am grateful for everyone

who has supported me along the way. First, I would like to thank my advisor, Alejandro

Ribeiro, for his wisdom and support over the years. He has encouraged my research even

when things seemed tough. This dissertation could not have been written without him.

I would also like to thank my committee, Pratik Chaudhari, Dinesh Jayaraman, and

Szymon Jakubczak for their advice and insight. They have taken time from their busy

schedules to provide guidance in my research and the dissertation process.

I would also like to thank all my fellow collaborators that worked with me. Through

conversations, conferences, meals, and more, they have made my time at Penn more

enjoyable and productive. I would particularly like to thank Arbaaz Khan, Jinwook Huh,

Heejin Jeong, Bhoram Lee, and Santiago Paternain for their work and friendship.

Lastly, but certainly not least, I would like to thank my family and friends for their love

and support. My Ph.D. would not be possible without them.

iii

A B S T R A C T

MACHINE LEARNING FOR ROBOT MOTION PLANNING

Clark Zhang

Alejandro Ribeiro

Robot motion planning is a field that encompasses many different problems and algorithms.

From the traditional piano mover’s problem to more complicated kinodynamic planning

problems, motion planning requires a broad breadth of human expertise and time to

design well functioning algorithms. A traditional motion planning pipeline consists of

modeling a system and then designing a planner and planning heuristics. Each part of

this pipeline can incorporate machine learning. Planners and planning heuristics can

benefit from machine learned heuristics, while system modeling can benefit from model

learning. Each aspect of the motion planning pipeline comes with trade offs between

computational effort and human effort. This work explores algorithms that allow motion

planning algorithms and frameworks to find a compromise between the two. First, a

framework for learning heuristics for sampling-based planners is presented. The efficacy

of the framework depends on human designed features and policy architecture. Next, a

framework for learning system models is presented that incorporates human knowledge as

constraints. The amount of human effort can be modulated by the quality of the constraints

given. Lastly, semi-automatic constraint generation is explored to enable a larger range

of trade-offs between human expert constraint generation and data driven constraint

generation. We apply these techniques and show results in a variety of robotic systems.

iv

C O N T E N T S

1 introduction 1

1.1 Examples of Robot Motion Planning Problems 3

1.2 Categories of Planning Algorithms 5

1.2.1 Graph-based Planners 6

1.2.2 Sampling-based Planners 9

1.2.3 Optimization-based Planners 12

1.3 Model Learning 13

1.4 Reinforcement Learning and Planning 14

1.5 Goals of this Work 16

2 learning planning heuristics 17

2.1 Background 20

2.1.1 Rapidly-Exploring Random Trees 21

2.1.2 Heuristics and Heuristic Learning 25

2.1.3 Reinforcement Learning 28

2.2 An Experienced Piano Mover’s Problem 34

2.3 Learning Implicit Sampling Distributions for Planning 36

2.3.1 Representing Distributions Implicitly 36

2.3.2 Rejection Sampling as a Markov Decision Process 37

2.3.3 Solving the Markov Decision Process 39

2.3.4 Probabilistic Completeness 41

2.4 Experiments 43

2.4.1 Implementation Details 43

2.4.2 Flytrap Environments 45

2.4.3 Simulated Pendulum 48

2.4.4 Real Robot Arm 49

2.5 Conclusions 51

3 constrained model learning 53

3.1 Background 56

3.1.1 Types of Models and Model Learning 56

v

3.1.2 Lagrangian Duality 60

3.2 Sufficiently Accurate Model Learning 62

3.2.1 Problem Approximation 66

3.3 Surrogate Duality Gap 68

3.3.1 Proof of Surrogate Duality Gap Bound 71

3.4 Constrained Solution Via Primal-Dual Method 75

3.5 Experiments 78

3.5.1 Double Integrator with Friction 79

3.5.2 Ball Paddle System 85

3.5.3 Quadrotor 90

3.6 Conclusion 95

4 semi-automatic constraint generation 96

4.1 Background 98

4.1.1 Constraint Learning 98

4.1.2 Learning Trajectory Constraints 99

4.2 Constraint Generation 100

4.2.1 Methodology 102

4.2.2 Update Constraint Heuristics 105

4.3 Experiments 106

4.3.1 Simple Rocket Model 107

4.3.2 Bicycle Model 111

4.3.3 Conclusion 117

5 conclusions 119

6 appendix 121

6.1 Expectation-wise Lipschitz-Continuity of Loss functions 121

6.2 Equivalent Problem Formulation 122

6.3 Proof of Theorem 3 124

6.4 Proof of Lemma 1 128

list of tables 130

list of illustrations 132

bibliography 136

vi

1 I N T R O D U C T I O N

Robot motion planning is a technology that enables autonomous behaviors in robot systems

as well as other fields. At its core, robot motion planning algorithms attempt to address

the general problem of “How can we find a plan for a robotic system to achieve a goal?"

These algorithms have seen success in autonomous cars [70, 142], humanoid robotics [66],

autonomous underwater vehicles [11], robotic arms [166], and many other robotics systems.

Additionally, robot motion planning has been applied in other fields such as video games

[154] and protein folding [6]. While robot motion planning algorithms have made great

strides, it is not a solved problem. The robot motion planning problems can often lead to

large computation times or a compromise on solution quality. Machine learning provides

many techniques that can provide heuristics to guide traditional planning problems to

increase their computational efficiency or solution quality.

Robot motion planning encompasses a variety of problems. The most basic form of a

motion planning problem can address finding a continuous path from one configuration

state to another for a holonomic system [120]. This is known as the Piano Mover’s Problem.

It is often described as the problem a piano mover must solve to find a path for a piano to

move in or out of a house. A motion planning algorithm designed to solve such problems

will typically used a model of the robotic system that relates how the state of robot

changes when actions are applied. This model then constrains how a search algorithm

or optimization procedure can chart a motion plan to achieve its goal. Beyond the basic

motion planning problem, there are many variations for different types of robotic systems

1

introduction 2

or environmental scenarios. Motion planning problems can deal with deterministic systems

[120, 72, 77, 27, 42] or stochastic systems with both aleatoric and epistemic uncertainty [85,

12, 140, 26]. Problems can involve finding a set of open-loop controls [72, 42] or a set of

closed loop controllers [77, 26, 137]. Researchers can find the most optimal motion plan (in

terms of a defined cost function) [57, 27] or simply a feasible path to save on computational

time [81]. The robotic systems can be smooth and continuous [87] or contain discrete

elements [54] or discontinuities [106].

Configuration Space and Task Space

Figure 1.1: (Configuration and Task Space) Illustration of the configuration space of a 3 link planar
robot arm. On the left, the task space is shown. The purple lines represent the physical
links of the robot arm. The red circle is an example of a circular obstacle in the plane.
On the right, the purple dot represents the configuration space coordinates of robot
arm configuration shown in the left. On the right, the red shape represents the circle
obstacle in configuration space coordinates.

Before discussing some of the specific problems that motion planning algorithms attempt

to solve, we will define the idea of a configuration space and a task space. A particular

configuration of a robotic system is the full description of the state of the robot relevant to

1.1 examples of robot motion planning problems 3

planning. This is analogous to the state-space representation used in control theory [61,

Chapter 1.1]. The configuration space used for defining a planning problem depends on

the fidelity of planning that is required. For example, a simple model of a rocket might

have a configuration state consisting of a location, a velocity, an attitude, and an angular

velocity. For generating coarse motion plans, a simple model might be good enough. In

a higher fidelity model of a rocket, the configuration state might consist additionally

of the mass of the rocket fuel onboard and nozzle angles. A technical definition of the

configuration space is also presented in [71, Chapter 4].

The task space for a robotic system is simply the space in which obstacles and goals are

expressed. There exists a map from the configuration space to the task space, though this

map may not necessarily be injective or surjective. For illustrative purposes, we will look

at a 3 link planar robot arm (all three joints rotate around parallel axes). For this robot

arm, the configuration space might be the space of the 3 angles of the joints of the arm.

This is shown on the right in Figure 1.1. The task space can be the 2D euclidean plane in

which the robot arm moves. An obstacle, such as the circle on the left in Figure 1.1 can be

expressed as a set of 2D coordinates in the task space. This obstacle can be translated into

a configuration space obstacle by mapping which points in configuration space collide

with the obstacle.

1.1 examples of robot motion planning problems

We are now ready to look at some concrete examples of motion planning problems.

Example 1.1. The basic Piano Mover’s Problem consists of a start, xstart, and goal, xgoal state

both defined in the configuration space, X. It also includes configuration space obstacles, Cobs,

which is a set of configuration states for which the piano would be in collision with something in

1.1 examples of robot motion planning problems 4

the house. The goal is to find a continuous path x(t) : [0, 1] → X that avoids the obstacles and

travels from the start to the goal that minimizes some cost. The cost can be something as simple as

the length of path.

min
x(t)

c(x(t))

s.t. x(0) = xstart, x(1) = xgoal

x(t) /∈ Cobs,∀t

(1.1)

Example 1.2. A common problem for robot arm manipulation will be to guide the robot arm

through a cluttered environment such that its end-effector will be at some pose. The robot arm starts

in a configuration xstart ∈ Rn and the goal is expressed in the task space ygoal ∈ SE(3) with

a mapping from configuration to task space T(x) : Rn → SE(3).Similar to the previous example,

there exists configuration space obstacles, Cobs.

min
x(t)

c(x(t))

s.t. x(0) = xstart, T(x(1)) = ygoal

x(t) /∈ Cobs,∀t

(1.2)

Example 1.3. For kinodynamic systems we might look at solving for a sequence of actions rather

than a continuous path. Given a discrete system model which involves elements of the configuration

space xt ∈ X and the control space ut ∈ U

xt+1 = f(xt,ut), (1.3)

we might define a problem that optimizes the controls over an allowable control set Uallowed as

follows

1.2 categories of planning algorithms 5

min
{ut}

T
t=1

T∑
t=1

c(xt,ut)

xt /∈ Cobs, for t = 1, . . . T

ut ∈ Uallowed

(1.4)

Example 1.4. [85] describes an example of a probabilistic planning problem. A slight adaptation of

that problem is shown here. Given a stochastic linear system model

xt+1 = Axt +But +ωt

x0 ∼ N(x̂0,Px0)

ωt ∼ N(0,Pω),

(1.5)

and a set of state space obstacles, Cobs, one goal can be to find a sequence of controls that obtains

the minimum average cost path that has at most an ε chance of collision at every time-step The

random variable that denotes the distribution of the state at time t is denoted as Xt.

min
{ut}

T
t=1

T∑
t=1

E[c(Xt,ut)]

P(Xt ∈ Cobs) < ε, for t = 1, . . . T

(1.6)

1.2 categories of planning algorithms

We have seen a selection of motion planning problems in Section 1.1, and many more

exist in literature. Because there are many types of motion planning problems, there have

also been a large number of motion planning algorithms that can be roughly grouped

into three categories: graph-based planners, sampling-based planners, and optimization-

1.2 categories of planning algorithms 6

based planners. Each of these categories are suited to different types of motion planning

problems. There is not one algorithm that is superior to all others. Instead, each algorithm

takes advantage of certain aspects of the problem they are designed to solve.

1.2.1 Graph-based Planners

Figure 1.2: (Motion Planning Graph) Illustration of how a graph can model vehicle movement on
a road.

The first category of planning algorithms can be described as graph-based planners.

At their core, these algorithms take as input a graph G = (V ,E) with a set of vertices V

and edges E, and perform a graph search. This type of motion planning algorithm may

have been the earliest to be developed, starting with what is now known as Dijkstra’s

algorithm [27], published in 1959. The vertices of the graph, V , represent configurations in

the configuration space while the edges, E, describe the cost of moving between them. For

example, a car traveling on a road may be described with a set of vertices that represent a

set of locations (longitude and latitude) and edges that describe the distance between those

1.2 categories of planning algorithms 7

locations. In this graph context, many motion planning problems can now be described as

a search for the minimum cost path from a start vertex to a goal vertex.

Graph Search

The search graph of an environment and robotic system contains a lot of the intricacies

of the problem itself. Whether a system has dynamics or is holonomic will be realized

in how vertices are connected as well as the weight of the edges. The obstacles in the

environment are also represented by whether or not two vertices may be connected as

well as the weight of connected edges. With a lot of the system complexity hidden in

the graph itself, the algorithms can focus on searching the graph. Dijkstra’s algorithm

[27], finds the shortest path from a start vertex to a goal vertex by keeping track of a set

of currently expanded vertices. Initially, the list contains only the start vertex. The search

proceeds in iterations, and at each iteration, the set of all directly connected vertices to the

expanded set is considered, and the one with the lowest total path cost is added to the list.

When a vertex is added to the expanded list, the cost from the start vertex to that vertex is

recorded as well as which parent vertex it came from. Thus, all vertices in the expanded

set are guaranteed to have a lower cost from the start vertex than any vertex not in the

expanded set. Additionally, the recorded cost for each expanded vertex is the lowest cost

to reach it. The algorithm ends when the goal vertex is added to the expanded set.

An improvement to Dijkstra’s algorithm is the A? algorithm [42]. A? follows the same

principles of Dijkstra’s algorithm with one difference. Instead of choosing the lowest cost

(from the start) vertex to expand, the vertex with the lowest cost + heuristic is expanded.

The heuristic is an estimate of the cost-to-go (cost from the vertex to the goal). Thus,

cost+heuristic is an underestimate of the total cost of an optimal path from the start to

goal containing the vertex. A? maintains the same guarantee of finding the minimum

cost path, provided the heuristic is admissible (it never overestimates the true cost) and

1.2 categories of planning algorithms 8

consistent (obeys the triangle inequality). The introduction of the heuristic can speed up

the computational time of the graph search as the heuristic can guide the search towards

more promising vertices first.

There are many different improvements to A? for different problems or systems with

specific structures. One variation of the common motion planning problem is being able to

provide a feasible path at any point during the computation. This is referred to as anytime

planning and is useful in the case of robotics as there may be instances a feasible path

is good enough. It is more important to execute a reasonable path than to spend extra

computational effort finding the most optimal path. An algorithm to solve this problem is

given by ARA? [81]. This algorithm works by running A? with different inflated heuristics.

Inflating the heuristics gives more weight to it and can find a path faster as it could

examine less vertices during the search. However, arbitrary inflation can cause the heuristic

to no longer be admissible, which means the solution found might not be optimal. ARA?

performs several searches by first using a high inflation value to find a possibly highly

sub-optimal path but in a short amount of time. It then performs subsequent searches

with lower and lower inflation values to find better paths. In this way, the algorithm can

be stopped at (almost) anytime and provide a feasible solution.

Another variation of simply finding the minimum cost path is to find the minimum cost

path given information about solutions of very similar graphs. The idea is when a robot is

moving around in a dynamic environment, it may be solving a series of very similar path

planning problems when small parts of the environment change. This idea is presented by

LPA? (Life Long Planning A?) [62]. By saving the cost-to-go, and propagating changes in

the graph only as needed, it can greatly reduce computational time on repeated runs of

the algorithm. The ideas of anytime search as well as lifelong planning are combined in

AD? [80].

1.2 categories of planning algorithms 9

Both Theta? [24] and Jump Point Search [41] work in very specific environments. They

both assume uniform grids with uniform costs. This has applications in 2D navigation

for holonomic ground vehicles as well as in video games By leveraging knowledge about

the highly structured grid environment, both Theta? and Jump Point Search can provide

better or faster solutions.

The advantages of graph-based planners are the strong theoretical guarantees that come

with them. For many of the planners, optimal paths are guaranteed in finite time (for finite

graphs). Even the non-optimal graph-based planners such as ARA? come with strong

theoretical guarantees about the solution quality. There are, however, a few drawbacks to

graph-based planners. When the planning domain is naturally in a continuous domain

(which includes a large number of robot motion planning problems), using a graph-based

planner necessitates discretizing the space. This discretization process can introduce sub-

optimality in the continuous space, or turn feasible continuous problems into infeasible

discrete graph search problems. For example, if a robot needs to fit into a tight entrance,

but the discretization process is too coarse to contain a vertex in the small entrance, the

graph problem will be unsolvable despite the fact that the underlying problem has a

solution. Additionally, graph-based methods can suffer from the curse of dimensionality as

uniform discretization of a configuration space scales exponentially with the number of

dimensions.

1.2.2 Sampling-based Planners

Sampling-based planners are randomized algorithms that sample a continuous config-

uration space to obtain a discrete representation of it. Many popular sampling-based

planners attempt to address the problem of both coarse discretization and the curse of

dimensionality that plagues graph-based planners. In the case of a popular sampling-based

1.2 categories of planning algorithms 10

Figure 1.3: (Sampling-based vs Graph-based Planners) Comparison between paths found by
Rapidly-Exploring Random Trees (RRT) and Dijkstra Graph Search on an empty 2D
map with a holonomic robot.

planner, Rapidly-Exploring Random Trees (RRT) [73], the algorithm iteratively samples and

searches the continuous configuration space, building a tree of connected configurations,

until a path is found. Each new sample attempts to connect to the closest configuration in

the existing tree. This allows the planner to operate in higher dimensions as the sampling

allows for possibly more efficient exploration of the configuration space (new samples have

a Voronoi Bias [73]). The planning process is not limited to exhaustively search through all

the nodes of a chosen discretization level. Additionally, small areas but important areas of

the configuration space which might be missed with a coarse predetermined discretization

will be sampled with high probability as the number of samples increase. More concrete

details about RRT will be given later in Section 2.1.1. Other popular sampling-based

planners include Probabilistic Roadmap (PRM) [58] and Expansive-Space Trees (EST) [47].

Both RRT and EST sample and grow trees for one time path planning. PRM solves a

slightly different problem of planning repeatedly in the same environment. It samples the

configuration space, and tries to connect nearby configuration space samples if possible

into a graph, and later performs graph search when a path in the environment is required.

1.2 categories of planning algorithms 11

PRM can be seen as a way to discretize a continuous space using random sampling and

then running graph search algorithms. Because of the offline nature of PRM’s sampling

method, it does not address the issue of sampling coarseness.

While sampling-based planners do not have the strong theoretical guarantees of graph-

based planners, there still exist some weaker guarantees. In particular, RRT is known to be

probabilistically complete [65] in the case of holonomic systems. This is not always true for

kinodynamic systems [67]. Probabilistic completeness is the notion that the probability of

finding a feasible path converges to 1 as the number of samples goes to infinity. Note that

this does not provide any guarantee on what happens in a finite amount of time.

The RRT algorithm has been modified by many researchers to solve different problems.

RRT motion plans can be highly sub-optimal (see Figure 1.3), which the RRT? algorithm

[57] attempts to correct. RRT? will rewire the tree, changing edges between existing tree

nodes if new samples of the configuration space can provide more optimal paths. This

allows RRT? to refine paths over time, and the algorithm can be run for as long as desired

to obtain more cost efficient paths (in a similar method to ARA? [81]). It was also shown

that as the number of samples tends towards infinity, the probability of RRT? finding

the most optimal path converges almost surely to 1 [57, Theorem 38]. The asymptotic

optimality of RRT? comes at the cost of being more computationally expensive as each

iteration must find all the nearest neighbors in a radius (rather than the single nearest

neighbor) and check if they must be rewired. Additionally, the rewiring process may

not be easily extendable to non-holonomic systems. There exists some work to extend

RRT? to some kinodynamic systems [78, 148, 100] but they require strong assumptions

about properties of the system such as Chow’s condition or linearity or lose the hard

dynamics constraints between tree vertices. Another variation of RRT, denoted as Chance-

Constrained RRT (CC-RRT) [85], looks at extending the piano mover’s problem to linear

systems with additive noise. It is able to reason about collision probabilities and choose

1.2 categories of planning algorithms 12

best cost paths subject to chance constraints by propagating process noise throughout the

tree.

Sampling-based planners are typically more efficient in high dimensional spaces and do

not require explicit discretization schemes. However, they lose many of the strong theoreti-

cal guarantees that graph-based planners have. In practice, sampling-based planners may

be used to find an initial solution and then smoothed or optimized over later (perhaps by

using a method that will be discussed in Section 1.2.3).

1.2.3 Optimization-based Planners

Another major class of motion planning algorithms are those that use optimization solvers

for specific types of optimization problems. The motion planning problem for a system is

formulated in some canonical optimization form and solved using specific or generic opti-

mization solvers. Quadratic Programs are solved in [87], Sequential Quadratic Programs

are utilized in [117], and Gradient descent is employed in [166]. A specific solver, iLQR, is

developed by [77] for nonlinear objectives with specific nonlinear dynamics constraints.

Many motion planning problems can be written as generic nonlinear programs [117, 166,

77, 56].

The benefits of optimization-based planners are that they can find locally optimal

solutions in high dimensional, continuous configuration spaces with complex system

dynamics and without any discretization error or sampling artifacts. Additionally, they

typically can run an order of magnitude faster than competing sampling-based planners

in high dimensions [166]. The main disadvantage of optimization-based planners is that

both general solvers and specific solvers do not guarantee convergence to globally optimal

solution for generic nonlinear problems. In practice, many motion planning problems

solved with nonlinear solvers must have a good initial guess at the solution to converge

1.3 model learning 13

to a reasonable motion plan. While this can be alleviated by restarting the optimization

problem with different initial conditions [166], problems with highly nonlinear dynamics

or very high dimensionality can require an exponentially large number of restarts.

Recently, the lines between the field of Control Theory and Motion Planning have

become more blurred. In older research works, when computational power was more

limited with respect to the system and planning algorithms were less efficient, planning

was seen as providing a one time input into a lower level controller [45, 87, 45]. Recently,

planning algorithms are more often to be run in a closed loop [82, 70, 149]. While lower

level controllers to track joint angles, velocities, robot attitude, etc. may still exist, planning

algorithms are run at higher frequencies than before. A robot system consisting of a

fast closed loop planner and an even faster low level controller stack appear similar to

hierarchical control stacks [113] or cascaded controllers [32, 75]. Many of these optimization-

based planners can be seen as doing Model Predictive Control (MPC) [14] when run in a

closed loop.

1.3 model learning

All the algorithms discussed in Section 1.2 require a model of the robotic system and its

environment. These models are commonly referred to as the system model or dynamics model.

Graph-based algorithms utilize these models to build the search graph itself. Sampling-

based algorithms use these models to check for valid samples and connections between

them. Optimization-based planning use the models as hard constraints or as soft penalties

in the objective function. Thus, the accuracy of a model is important to the performance of

a planning algorithm. If there is a large mismatch between the real system and the model

of the system, the computed motion plans can be useless. While certain algorithms try to

1.4 reinforcement learning and planning 14

account for model mismatch [44, 126], these methods cater to the worst case error and can

lead to overly conservative motion plans or simply fail if the mismatch is too high. Thus,

an accurate system model is still necessary for performance.

In control theory, the sub-field of System Identification [59] deals with using collected

data from a system to estimate its parameters. For linear systems, there exist results on

convergence along with the conditions in which convergence is possible [101, 95, 104]. For

generic nonlinear systems, such strong theoretical results do not exist, though there has

been work on nonlinear systems with specific structures [116].

In robotics, a variety of methods have been tested to learn nonlinear dynamics models

from data: Gaussian Processes Regression [94, 109, 26], Locally Weighted Projection

Regression [114], Gaussian Mixture Models [76], and Neural Networks [76, 91, 97, 159, 160].

The work by the robotics community has applied model learning to robot-arm trajectory

tracking [94], multi-legged robot locomotion [91], and many other tasks.

1.4 reinforcement learning and planning

A field that is closely related to motion planning is Reinforcement Learning (RL) [131].

Reinforcement Learning deals with the problem of selecting actions for a system to

maximize the rewards (or minimize the costs). The problem setup is very similar to many

motion planning problems, except for the fact that in Reinforcement Learning, usually

the model and possibly the reward/cost function is unknown. There are two categories

of Reinforcement Learning algorithms, model-based and model-free. A more rigorous

introduction into this topic is given in Section 2.1.3.

Model-based Reinforcement Learning algorithms function much in the same way as

learning a dynamics model and then planning with it. Many modern day model-based

1.4 reinforcement learning and planning 15

Reinforcement Learning algorithms are based off of the Dyna [130] framework, which

iterates between learning a dynamics model and using the model to plan. More modern

approaches such as [76, 31] function in similar ways with neural network models and

policies operating on more complicated state domains such as images. The DynaQ algo-

rithm interleaves model learning with learning the action-value function through Bellman

updates. Dijkstra’s algorithm can be seen as performing Bellman updates with a specific

known structure [127]. Thus, the Dyna framework is analogous to interleaving traditional

System Identification with motion planning.

Model-free Reinforcement Learning algorithms decide how to actuate a system by

trying actions many times and observing rewards to update a policy directly (or value

function from which a policy is derived). Model free methods such as Q-learning [146]

and REINFORCE [132, 102] as well as modern variations of them [39, 118, 119, 103] have

been applied to robotic system simulations including ones from a suite of benchmarks

know as the OpenAI gym [17]. When applying to robotic systems, a common strategy is

to use a simulation of the real robot and apply these algorithms in simulation. Then, the

control policy may be put on a real system, perhaps with some additional modifications

[79, 98]. This scenario of using a simulation to apply Reinforcement Learning algorithms

can be seen in the lens of a traditional motion planning algorithm. In this case, the system

model is the simulator, which is used with a motion planning algorithm to generate closed

loop controls. Just as in traditional motion planning, the difference between the model

of the system (the simulation) and the real world can cause many problems. This is well

known in the Reinforcement Learning community as the simulation-reality gap or reality gap

[98, 134, 163].

1.5 goals of this work 16

1.5 goals of this work

This work utilizes machine learning techniques to address some of the shortcomings of

classical planning algorithms. First, it will address the computational time of planning

in complicated domains. The basic Piano Mover’s Problem is demonstrated to be p-space

complete [120, Chapter 11] and the numerous changes in the problem can be even more

difficult to solve. Obtaining reasonable motion plans for problems can be accelerated by

relying on specific problem structure. This structure can come in the form of data. Learning

heuristics for common motion planning problems from data can provide a way to increase

the efficiency of motion planning algorithms in the face of p-space complete problems.

This will be discussed in Chapter 2.

Another aspect of this work will address the problem of model learning. The model of a

system is crucial to the functionality of motion planning algorithms. This work proposes

using machine learning techniques to combine both data and human intuition to obtain

models can provide better results during the planning process. This will be discussed in

Chapters 3 and 4.

2 L E A R N I N G P L A N N I N G H E U R I S T I C S

This chapter will discuss using machine learning techniques to speed up the computational

time of motion planning algorithms. We will focus on developing methods to learn

heuristics for sampling-based planners. To aid in the discussion, the RRT [73] algorithm

will be used as the prototypical sampling-based planner, but the method works for all

sampling-based planners. We cover various existing heuristics in sampling-based planners,

and provide a unifying view in the form of rejection sampling. A reinforcement learning

algorithm is used to optimize the rejection sampler to provide heuristics that suit a set

of environments. It utilizes information from past searches in similar environments to

generate better heuristics in novel environments, thus reducing overall computational cost.

Heuristics play an important role in motion planning algorithms as they guide the

exploration of the configuration space. Without a heuristic, a brute force search will be

necessary that can result in a large increase in the computation time of the motion plans.

However, for complex problems, general purpose heuristics such as L1 or L2 distance can

still be relatively uninformative. When a robot operates in a set of similar environments,

say office spaces or warehouses, we can learn heuristics that are unique to that type of

environment. The problem discussed here is sometimes known as the Experienced Piano

Mover’s Problem. The idea being, unlike the regular Piano Mover’s Problem, the experienced

piano mover has seen many houses and many pianos and has a good idea of how to move

pianos in a new house they have never seen. They have developed a heuristic for moving

pianos around houses. The input into a motion planning algorithm for this problem is not

17

learning planning heuristics 18

Figure 2.1: (Cost-to-go) Example of a cost-to-go function on a 2D grid world with rooms. The
colorbar shows the cost-to-go normalized between to the range [0, 1].

simply a description of the environment and a desired start and goal, but also a set of

previous problems and the solutions that were found. For a class of problems, it may be

possible to use previous experience finding motions plans to guide and improve future

instances of the motion planning problem.

The best heuristic for any motion planning problem environment is the true cost-to-go,

which is a function V(x) : Xconfig → R that maps states in the configuration space to the

true optimal cost to reach the goal from that state (in Reinforcement Learning, this is also

called the value function). An example of such a function is shown in Figure 2.1. Finding the

cost-to-go is as difficult as solving the planning problem. Knowing the cost-to-go already

yields the solution to a motion planning problem. For each state, the optimal action will be

the one that minimizes the cost-to-go at the next state. Thus the goal of heuristic learning is

to try to estimate the cost-to-go while taking into account a description of the environment

and the goal state. A example of a heuristic that may work well in an office environments

can be one that encourages exploration near doors and the corners of hallways. Thus even

learning planning heuristics 19

Figure 2.2: (Rejection Sampling) An example of a learned distribution for the task of a robot
arm reaching for various objects on a tabletop. On the left, samples from a uniform
distribution of the configuration space are displayed. Some of which may be rejected
by a learned rejection sampling policy to form a new learned distribution over the
configuration space.

when confronted with a completely new office space, a robot might efficiently plan in it

knowning that good areas to explore during planning are doors and corners.

In sampling-based planners, the sampling distribution can be seen as a heuristic [158].

Traditionally, sampling-based planners draw random state samples from a uniform distri-

bution (many times with a slight goal bias). However, for many classes of environments, a

different probability distribution over the state space can speed up planning times. For

example, in environments with sparse obstacles, it can be useful to heavily bias the samples

towards the goal region as the path to the goal will be relatively straight. The natural

questions to ask are “How heavily should the goal be biased?” or more generally “What is

the best probability distribution to draw out of?” In previous literature, many researchers

have found good heuristics [155, 122] to modify the probability distributions for specific

environments. However, these heuristics do not work generally and may not apply to new

environment types. In fact, a heuristic can increase the planning time dramatically if it is

unsuited to the problem at hand.

2.1 background 20

In this work, we present a systematic way to generate effective probability distributions

automatically for different types of environments. The first issue encountered is how to

choose a good representation for probability distributions. The sampling distributions can

be very complicated in shape and may not easily be representable as common distributions

such as Gaussians or Mixtures of Gaussians. Instead, the distribution is represented with

rejection sampling, a powerful method that can implicitly model intricate distributions.

The process of accepting or rejecting samples is formulated as a Markov Decision Process.

This way, policy gradient methods from traditional Reinforcement Learning literature can

be used to optimize the sampling distribution for any planning costs such as the number

of collision checks or the planning tree size. The method presented will use past searches

in similar environments to learn the characteristics of good planning distributions. Then,

the rejection sampling model will be applied to new instances of the environment. This

process is shown pictorially in Figure 2.2. Section 2.1 will discuss the necessary background

required for the learning method, Section 2.2 will formalize the problem of the experienced

piano mover, Section 2.3 will introduce the learning method, and Section 2.4 will present

experimental results and analysis.

2.1 background

Before discussing our method, we will present existing and relevant information and work.

Section 2.1.1 will go over in detail the RRT algorithm that will be used throughout for

explanation. Section 2.1.2 will discuss existing methods for heuristic learning. Section 2.1.3

will formally introduce the framework and algorithms of Reinforcement Learning as they

are a crucial part of the methodology.

2.1 background 21

2.1.1 Rapidly-Exploring Random Trees

The RRT algorithm was first introduced in 1998 [73] and quickly gained popularity for its

simplicity, effectiveness, and probabilistic completeness. The base algorithm is detailed in

Algorithms 1 and 2.

Algorithm 1 RRT

1: procedure RRT(xstart, xgoal)

2: Initialize Empty(Directed) Graph G = (V ,E)

3: V ← V ∪ {xstart}

4: while xgoal /∈ V do

5: xrand ← SAMPLE()

6: EXTEND(xrand,G)

7: end while

8: end procedure

Algorithm 2 EXTEND

1: procedure EXTEND(xrand,G)

2: xnear ← NEAREST(xrand,G)

3: xnew,path← STEER(xnear, xrand)

4: if COLLISION_FREE(path) then

5: V ← V ∪ {xnew}

6: E← E∪ {(xnear, xnew)}

7: end if

8: end procedure

xstart is a start state, xgoal is the desired goal state. The algorithm starts with a tree

that contains only the start state. It then iteratively samples a random state and extends

2.1 background 22

the tree towards it. The extension is performed by choosing the closest vertex in the tree

to the random state and then steering that vertex towards it, adding a new vertex. At the

end of the algorithm, the tree G will contain a path from xstart to xgoal. This path can

be found simply by finding the goal vertex and recursively following the parents of each

vertex back to xstart. RRT is dependent on several robot specific functions. For any robotic

system to use RRT planning, there must exist

• SAMPLE: Draws a random state from the state space, S.

• NEAREST(x,G): Finds the node nearest to x in the graph G based on some metric, p.

For differentially constrained problems, p may not be a proper metric as it can be

asymmetric.

• STEER(x0, x1): Applies a control to the system to generate a path (usually ignoring

obstacles) that goes from x0 to xnew, where p(x0, x1) > p(xnew, x1) This can be

a nontrivial function for many systems. This function will return xnew, the state

the path ends with, and some representation of the path (usually a collection of

waypoints) taken. For general kinodynamic systems, a generic way to create this

STEER function can be to randomly sample controls and a period of time to apply

that control. Then, choose the control that moves the state closest to the x1.

• COLLISION_FREE(path): Checks if the path is in collision with the environment.

A common modification to the RRT algorithm is the RRT-Connect algorithm [65]. The

RRT-Connect algorithm uses two trees, one rooted at the start and the other at the goal,

and attempts to extend each one. When extended, the algorithm will attempt to connect

the trees together by repeatedly extending one tree towards the other. This is detailed in

Algorithms 3, 4, and 5.

2.1 background 23

Algorithm 3 RRT-CONNECT

1: procedure RRT-CONNECT(xstart, xgoal)

2: Initialize Empty(Directed) Graphs G1 = (V1,E1) and G2 = (V2,E2)

3: V1 ← V1 ∪ {xstart}

4: V2 ← V2 ∪ {xgoal}

5: while xgoal /∈ V do

6: xrand ← SAMPLE()

7: if EXTEND(xrand, G1) 6= Trapped then

8: if CONNECT(xnew, G2) = Reached then

9: Break

10: end if

11: end if

12: SWAP(G1, G2)

13: end while

14: end procedure

2.1 background 24

Algorithm 4 EXTEND (RRT-Connect)

1: procedure EXTEND(xrand,G)

2: xnear ← NEAREST(xrand,G)

3: xnew,path← STEER(xnear, xrand)

4: if COLLISION_FREE(path) then

5: V ← V ∪ {xnew}

6: E← E∪ {(xnear, xnew)}

7: if xnew = xrand then

8: Return Reached

9: else

10: Return Advanced

11: end if

12: else

13: Return Trapped

14: end if

15: end procedure

Algorithm 5 CONNECT

1: procedure CONNECT(xrand,G)

2: S← EXTEND(xrand,G)

3: while S 6= Advanced do

4: S← EXTEND(xrand,G)

5: end while

6: end procedure

2.1 background 25

2.1.2 Heuristics and Heuristic Learning

Heuristic Learning in Graph-based Planners

In graph-based planning, there has been work in directly trying to learn a cost-to-go

function as a heuristic. Since graph-based planners can find optimal paths, a supervised

learning problem may be posed for a function approximator like a neural network to

regress the cost-to-go values returned from an optimal planner [10, 23, 4]. While [10] uses

the (generally inadmissible) heuristic as the sole determining factor to do a greedy search,

[4] bounds the learned heuristic with an admissible heuristic and uses a traditional graph

search algorithm. Similar to ARA? as discussed in Section 1.2.1, the inadmissible heuristic

seems to provide large computational time improvements at the cost of optimality. The

heuristic that is learned in [4] utilizes a convolutional neural network takes as input the

start, goal, and a representation of all the obstacles. The heuristic is trained to regress the

cost-to-go. Thus, one interpretation is that the convolutional network itself is attempting to

solve the planning problem within the computational constraints of the network weights.

There may exist a convolutional neural network large enough with specific weights such

that all grid problems of a certain size might be fully solved by it without an explicit

planning algorithm. However, the trade off here is between using a planning algorithm that

is provably optimal versus a learned heuristic that may be more efficient at recognizing

patterns for cost-to-go computations. [48] uses a similar approach in a realistic robot arm

planning scenario in higher dimensions.

Sampling-based Planner Heuristics

While strong supervision exists for problems that can be solved with graph-based planners,

more difficult problems may not have an optimal planner available to provide supervised

2.1 background 26

cost-to-go values. There is no guarantee that sampling-based planners such as RRT (or the

asymptotically optimal variants) will find an optimal path in any finite amount of time.

In fact, it has been shown that the probability of sampling-based algorithms finding the

optimal path in any finite time is zero [57] given some reasonable assumptions (optimal

paths have zero-measure). Thus, the approach used to learn heuristics from data in graph-

based planning algorithms are not easily translatable to sampling-based approaches.

Many researchers have used human intuition to develop heuristics that work for different

sets of environments. There is a number of methods that use rejection sampling to bias the

sampling distribution. [13] introduces a method to bias random samples towards obstacles

for the PRM planner. For every sampled state, an addition state is generated from a

Gaussian distribution around the first state. A sample is only accepted if exactly one point

is in collision. [141] proposed a method to compute lower cost RRT paths. Each node in

their tree is given a heuristic quality value that estimates how good a path passing through

that node will be. Rejection sampling is used to sample points near high quality nodes.

This method is mostly superseded by RRT∗ [57], but is a useful case of how rejection

sampling has been used to improve path quality. Dynamic-Domain RRT [155] rejects

samples that are too far from the tree. The idea is that drawing samples on the other side

of an obstacle is wasteful since it will lead to a collision, so sampling is restricted to an area

close to the tree. BallTree [122] uses a heuristic that is the opposite of Dynamic-Domain

RRT and rejects samples that are too close to the tree. The idea is that many nodes in

the tree are wasted in exploring areas that are close. [123] present a heuristic to improve

RRT performance for differentially constrained systems by rejecting samples where the

reachability region of the nearest neighbor is further from the random sample than the

nearest neighbor itself, so that extending towards the sample will not actually encourage

exploration. Informed RRT? [34] improves RRT∗ performance by restricting samples to

an ellipsoid that contains all samples that could possible improve the path length after

2.1 background 27

an initial path is found. This technique does not improve the speed at which the first

path is found, but the speed at which the solution is further optimized. [68] improved the

informed sampling technique to improve efficiency in high dimensions while [156] has

extended the approach to kinodynamic systems.

There are also methods that do not utilize rejection sampling. [161] modifies random

samples by moving points in the obstacle space to the nearest point in free space. The effect

of this method is that small “tunnels” that are surrounded by obstacles will be sampled

more frequently. As noted, this is effective for environments that have narrow passages

which are particularly hard for traditional planners to solve due to the small probability of

sampling within the narrow passage. [16] grows a backward tree in the task space and

biases samples in the forward configuration space tree towards it. The backward task

space tree can be much more easily found in manipulation tasks and can effectively guide

the forward configuration space tree. [153] proposes a method to quickly compute an

approximation to the medial axis of a workspace. Their goal is to generate PRM samples

that are close to the medial axis, as it is a good heuristic to plan in environments with

narrow tunnels. This has also been explored in [151].

Heuristic Learning in Sampling-based Planners

While the previous work has yielded good results for certain environments, they are not

generally applicable. There has been some work in automating how to improve sampling

for different environments. [165] introduced a method to optimize workspace sampling.

The workspace is discretized and features such as visibility are computed for each discrete

cell. The workspace sampling is improved using the REINFORCE algorithm [150]. This

method performs well in the environment it is optimized in, but new environments can

potentially have a high preprocessing cost to compute the features. In addition, discretizing

the workspace may be infeasible for certain problem domains. More recently, [49] used

2.1 background 28

a Conditional Variational Autoencoder [28] to learn an explicit sampling distribution for

FMT* [53] by maximizing the likelihood of generating samples from previous successful

motion plans or human demonstrations. Motion Planning Networks [107] also uses

supervision from human demonstrations or near-optimal plans to learn a network that

outputs a state sample which is used greedily. Neural Exploration-Exploitation Trees [20]

proposes a similar method that uses supervision from previous successful plans to suggest

samples which are used in combination with uniform random samples.

2.1.3 Reinforcement Learning

This section will provide a quick introduction into Reinforcement Learning (RL), which is

a vital component in our method of heuristic learning. For a more detailed introduction,

[131] is a good resource. Our method will formulate a rejection sampling process as a

Markov Decision Process (MDP) in Section 2.3.2 and provide the Reinforcement Learning

algorithm to solve it in Section 2.3.3. The relevant background to what will be discussed is

presented here.

Markov Decision Processes

Reinforcement Learning operates in the framework of a MDP. A MDP is a general frame-

work that can model fully observable systems with control inputs. Formally, a discrete

MDP consists of a tuple (S,A,P, r) where

1. S is a set of states that the system can be in. This is analogous to the configuration

space defined in Chapter 1.

2. A is a set of actions the system may take.

2.1 background 29

3. P : S×A× S→ [0, 1] is a transition function that is denoted as P(st+1|st,at) where

st, st+1 ∈ S and at ∈ A. This function represents the probability of taking an

action at at state st and ending up in state st+1. This should be a valid probability

distribution such that
∑
st+1

P(st+1|st,at) = 1, ∀(st,at).

4. r : S×A→ R is a reward function that represents the immediate goodness of taking

an action at a specific state.

Often, the goal of solving a MDP is to find a policy to maximize the (possibly discounted)

sum of rewards from the initial state. A policy is a function that maps a state to a desired

action or distribution of actions. It is often denoted as π(s), s ∈ S for a deterministic policy

or π(a|s),a ∈ A, s ∈ S for a stochastic policy. Concretely, a common objective of solving a

MDP in a finite time horizon setting is to find π to optimize the following

max
π

E{St,At}Tt=0
[

T∑
t=0

r(St,At)] (2.1)

where St is a random variable that takes on values in S which represents the distribution

of states at time t when following a policy π. Similarly, At is a random variable that takes

on values in A which represents the distribution of actions at time t when following policy

π. Even in the case of a deterministic policy, At can still be a distribution if the state

transition function P is stochastic. The expectation is taken over all the states and actions

at all times. Thus, (2.1) is a problem to find π to maximize the average sum of rewards

over a finite time horizon.

Another common objective is to maximize the discounted sum of rewards over a infinite

time horizon

max
π

E{St,At}∞t=0 [
∞∑
t=0

γtr(St,At)] (2.2)

2.1 background 30

where γ ∈ [0, 1) is the discount factor. γ plays two roles: 1) it determines how much more

we value short term rewards over long term rewards and 2) it allows the infinite sum to

converge to a finite number (provided that the rewards are bounded) so policies can be

compared by a finite number. To see the latter point, consider a MDP where one action

at any state will always give a reward of 1, and another action will always give a reward

of 2. Without the discount factor, a policy that always chooses the action that obtains a

reward of 1 would look just as appealing as any other policy. We would like to be able

to formulate a problem where the action that chooses a reward of 2 is more preferable.

Depending on the literature, the discount factor, γ, is sometimes included in the definition

of the MDP tuple. To illustrate how a MDP might be used to model a system, we will give

an example.

Figure 2.3: (MDP Example) A simple example of a Markov Decision Process with a robot traveling
on a line.

Example 2.1. We look at a lazy robot traveling on a line as shown in Figure 2.3. The state space

S = {. . . , s1, s2, s3, s4, . . .} consists of the discrete locations that the robot can exist in. The action

space A = aleft,aright consists of the two actions that can be commanded to the robot. Since the

2.1 background 31

robot is lazy, it will only do what it is commanded half the time, the other half it stays put. The

transition function P is defined as

P(s′|s,a) =

0.5, if s = s′

0.5, if s is to the left of s′ and a = aright

0.5, if s is to the right of s′ and a = aleft

0, otherwise

(2.3)

We can also define a reward function that rewards the robot if it is at state s3.

r(s,a) =

1, if s = s3

0,otherwise

(2.4)

Note that there are multiple ways of defining a MDP in literature. Some use a reward

function that takes into account the state at the next timestep as well as the state and

action at the current timestep. Different definitions can be notationally useful in specific

circumstances.

Reinforcement Learning Algorithms

We have discussed the framework in which Reinforcement Learning algorithms are defined

in. If all the ingredients in the discrete MDP tuple, (S,A,P, r), are known, then there exists

dynamic programming methods to find an optimal policy [131, Chapter 4]. Reinforcement

Learning deals with how to solve the MDP when certain ingredients are unknown – most

commonly the state transition function P and reward function r. While the exact functions

are unknown, it is possible to sample trajectories from the MDP. For example, the transition

2.1 background 32

function may be unknown for a novel robotic platform, but controls can be applied and the

resulting states can be recorded. In these cases there are different categories of algorithms

to solve the MDP. There exist model-based methods that attempt to learn P and r from

data and use algorithms similar to dynamic programming to solve it [130, 91, 55]. There

are different model-free algorithms as well, ranging from value-based methods [146, 138,

125] to policy gradient methods [150, 132, 38, 124] to actor-critic methods [152, 63, 103].

For sake of brevity, we will briefly describe only policy gradient methods as they

are used in our heuristic learning method. The original policy gradient method, known

as REINFORCE, was introduced by Williams [150] and later extended into function

approximators by Sutton [132]. The idea behind policy gradient methods is to directly take

the gradient of the Reinforcement Learning objective defined in (2.1) and (2.2) with respect

to the parameters of a policy and apply gradient ascent to maximize it. The original policy

gradient methods utilize stochastic policies, π(a|s)

We look at the finite horizon case with a policy πθ that is parameterized by a vector of

parameters θ, where the objective is

Vπθ(s0) = E{St,At}Tt=0
[

T∑
t=0

r(St,At)] (2.5)

which can be rewritten as

Vπθ(s0) =
∑
τ

Pπθ(τ)R(τ) (2.6)

where τ = s0,a0, s1,a1, . . . is a trajectory sample of states and actions. R(τ) =
∑T
t=0 r(st,at)

is the total discounted sum of rewards of that trajectory, and Pπθ(τ) is the probability of

2.1 background 33

that trajectory sample happening under a policy πθ. The expected sum of rewards is the

same as the expected trajectory reward. We can now look at computing the gradient

∇θVπθ(s0) = ∇
∑
τ

Pπθ(τ)R(τ)

=
∑
τ

R(τ)∇θPπθ(τ)

=
∑
τ

R(τ)Pπθ(τ)∇θ log(Pπθ(τ))

(2.7)

where the expected discounted sum of rewards of a single trajectory sample does not

depend on the policy parameters, thus it is constant with respect to θ. Additionally, the

last line comes from the fact that ∇θlog(f(θ)) = 1
fθ
∇θf(θ). We can write the gradient of

the log probability of a trajectory sample as

∇θ logPπθ(τ) = ∇θ log(ΠTt=0πθ(at|st)P(st+1|st,at))

= ∇θ(
T∑
t=0

logπθ(at|st) +
T∑
t=0

logP(st+1|st,at))

=

T∑
t=0

∇θ logπθ(at|st)

(2.8)

where P is the state transition probabilities and is constant with respect to policy parame-

ters. Thus, the entire policy gradient can be written as

∇θVπθ(s0) =
∑
τ

R(τ)Pπθ(τ)∇θ log(Pπθ(τ))

= EPπθ(τ)
[R(τ)

T∑
t=0

∇θ logπθ(at|st)].
(2.9)

(2.9) is known as the Policy Gradient Theorem. It is useful, because the expectation on

the right hand side can be estimated by running multiple trajectories and averaging the

2.2 an experienced piano mover’s problem 34

expression in the inside of the expectation. The gradient of the log policy can be computed

analytically for most parameterized policies. Often, a baseline that is policy independent

(but can be state dependent), b(s) , can be introduced to decrease the variance of the policy

gradient [131, Chapter 13.4].

∇θVπθ(s0) = EPπθ(τ)
[(R(τ) − b(τ))

T∑
t=0

∇θ logπθ(at|st)]. (2.10)

With the ability to compute the gradient of the Reinforcement Learning objective, a

stochastic gradient ascent algorithm can be formulated that iterates between 1) running

trajectories on the MDP to gather samples to estimate (2.10) and 2) computing the gradient

and applying gradient ascent to the policy parameters.

Policy gradient methods may not find the optimal policy, unlike many value-based

methods. However, the advantages are that is that they converge to a local optimum

speedily and have an explicit representation of the policy which can be fast to compute.

2.2 an experienced piano mover’s problem

Now that the appropriate background has been given, we mathematically define the

statement of the Experienced Piano Mover’s Problem that we seek to solve. We would like to

reduce the computational cost of sampling-based planners in certain types of environments

by modifying the sampling distributions. For clarity, let us consider planning trajectories

for a robotic arm in typical tabletop environments.

Following the notation from [57], a configuration space for a planning problem is

denoted as X. For a given environment, let Xobs denote the obstacle space, a subset of X

that the robot can not move in. Thus a map is uniquely defined by its Xobs. A specific

2.2 an experienced piano mover’s problem 35

environment type, E, is a probability distribution over possible obstacle spaces, Xobs. For

a 7DOF robotic arm, X is the 7 dimensional configuration space, and E will assign higher

probability to environments that look like scattered objects on a table.

Let Yk ∼ µk be a sequence of Random Variables that represents the ith random sample

of the state space drawn during the planning process (Note that the random variables

do not need to be identical and can change during the planning process). In standard

sampling-based planners, Yk are independent and identically distributed. Now given a

specific map, Xobs, and a sequence of random state space samples, let Z(Xobs, Y1, Y2, . . .)

be a random variable representing the computation effort of the planner which can be

computed from number of collision checks, the size of the search tree, and the number of

random samples drawn during the planning process. Z is a random variable due to its

dependence on the random samples, Yi, that are drawn. The problem this work addresses

is the following optimization problem:

{µ∗k} = arg min
{µk}

EXobs,{µk}[Z(Xobs, Y1, Y2, . . .)]. (2.11)

(2.11) succinctly describes the following: Given a distribution of maps, E, find the

sequence of distributions {µ∗k} that minimizes the expected computational cost of the

search, Z. These distributions can be a function of the map and planner. For a robotic

arm, this amounts to finding the probability distribution that will minimize the number

of collision checks, size of the search tree, and the number of random samples drawn in

common tabletop environments.

2.3 learning implicit sampling distributions for planning 36

2.3 learning implicit sampling distributions for plan-

ning

Unlike in previous work that assumes an optimal planner [4, 10, 23, 48], this work addresses

the problem when no such optimal planner is available. Thus, it is not possible to formulate

a supervised problem. Instead, a weaker Reinforcement Learning signal can be utilized.

While we can not assess the optimality of any given sample, we can attempt to assess

the local goodness of a sample based on metrics we care about such as computation time.

We will begin by introducing how to parameterize distributions and then discuss how to

apply the Reinforcement Learning framework to this problem.

2.3.1 Representing Distributions Implicitly

It is difficult to represent the sequence of distributions, µk, from (2.11) explicitly. The distri-

bution may be very complicated and not easily representable with simple distributions. In

addition, for many problems, there may not be an easy explicit map available (often there

is just an oracle that returns whether a collision has occurred or not). A way to implicitly

represent a complicated distribution is with rejection sampling, similar to techniques

presented in [13, 155, 122, 123]. In our method, random samples will be drawn from some

explicitly given distribution, ν (usually the uniform distribution with a peak at the goal).

For each random sample x ∈ X drawn, a probability of rejection is computed. The sample

is then either passed to the planner or rejected. The end result is that unfavorable samples

are discarded with high probability so computation time is not wasted in attempting to

add the node into the tree or in checking it for collisions. This can improve performance

as the sampling operation is usually cheap, but collision checking and tree extension is

2.3 learning implicit sampling distributions for planning 37

much more expensive. For example, in the robotic arm experiments described later, the

policy has learned that samples with large distances between joints and obstacles are

unfavorable as it does not progress the search. The policy is learned offline, and is applied

to new environments that are similar in nature (for example, in a grasping task, a desk

with different objects in different locations).

More formally, the probability of rejecting a sample x ∈ X is denoted as π(areject|x)

where areject is the action of rejecting a sample. The function, π is learned offline (dis-

cussed in Section 2.3.3). Thus, π can implicitly represent a probability measure µ, the

distribution that is effectively being sampled when applying rejection sampling.

µ(XS ⊂ X) =
∫
XS

(1− π(areject|x))dν(x)∫
X(1− π(areject|x))dν(x)

(2.12)

This µ is valid as long as
∫
X(1− π(areject|x))dν(x) is some finite positive number. This

will be easily satisfied if π(areject|x) < 1,∀x ∈ X.

2.3.2 Rejection Sampling as a Markov Decision Process

The process of rejecting samples during the planning algorithm will be modeled as a

Markov Decision Process as defined in Section 2.1.3. In the setting of sampling-based

planners, a state st ∈ S consists of the environment, Xobs, the current state of the planner,

and a randomly generated random sample xt ∈ X from the distribution ν. The action space

is A = {aaccept,areject}. Upon taking action aaccept, the sample xt ∈ X will be passed to

the planner. Upon taking action areject, the sample will be rejected. In both cases, a new

random sample, xt+1 ∈ X will be included in the new state st+1. A reward, r(st,at) is

given based on Z(Xobs, Y1, Y2, . . .). The cost defined for Z will simply become the negative

reward. A MDP model of the rejection sampling applied to RRT is described pictorially in

2.3 learning implicit sampling distributions for planning 38

Figure 2.4: (Rejection Sampling MDP) MDP representing rejection sampling in a RRT. Blue circles
represent nodes in the tree, while the lines represent edges connecting nodes. At a state
st, you can transition to possible next states, st+1, by rejecting or accepting the random
sample xrand.

Figure 2.4. Note that algorithms that may use batches of samples such as PRM or BIT* can

utilize this simply by drawing and rejecting samples until there is enough for a batch.

The policy will be defined as π(a|s), the probability of taking action a in state s.

Furthermore, π will be restricted to a class of functions with parameters θ and take in

as input a feature vector φ(s) instead of the raw state s. The policy will be referred to as

πθ(a|φ(s)). In this work, the function is represented as a neural net where θ represents the

weights in the network. By implicitly defining probabilities µk in (2.12) with policy πθ, µk

can be written as a function of θ. The optimization problem in (2.11) can be rewritten as

θ∗ = arg min
θ

EXobs [Z(Xobs, Y1(θ), Y2(θ), . . .)]. (2.13)

2.3 learning implicit sampling distributions for planning 39

where all µk share the same parameters θ but may be different distributions due to the

different states the planner will be in. Furthermore, to keep notation with the reinforcement

learning literature, the planning cost, Z, will be redefined as

Z(Xobs,P, Y1, Y2, . . .) = −

T∑
t=0

rXobs(st,at) (2.14)

where the rewards rXobs(st,at) have been chosen to reflect the negative cost represented by

Z(Xobs, Y1, Y2, . . .). Specific reward functions for experiments are described in Section 2.4.

Finally, the expectation can be approximated with some samples of typical environments

that E contains.

θ∗ = arg max
θ

1

|IE|

∑
Xobs∈IE

E{ai}∼πθ [rXobs(st,at)]. (2.15)

where IE is a set of Xobs that are representative of the environment E.

2.3.3 Solving the Markov Decision Process

There are many methods from reinforcement learning literature that has been developed

to solve the optimization problem posed in (2.15). This work utilizes policy gradient

methods as described in Section 2.1.3, specifically REINFORCE with a baseline. The

rationale for choosing policy gradient methods over value-based methods is that the

policy will have an explicit form that is fast to evaluate which is vital as the policy will

be used in the innerloop of sampling-based planners. The baseline V(φ(st)) will provide

an estimate of the value function. Given an environment Xobs and policy πθ, policy

gradient can be estimated by running the planner N times with πθ and collecting samples

2.3 learning implicit sampling distributions for planning 40

of (φ(st),at, rXobs(st,at),V(φ(st))) tuples to calculate
∑T
t=0∇log(πθ(at|φ(st)))(R

Xobs
t −

V(φ(st))) for each rollout, then averaging over the N rollouts.

During training, another neural network is fitted to represent Vw(φ(st)) with weights

w. Utilizing the samples (φ(st),at, rXobs(st,at),V(φ(st))) in each iteration of the policy

gradient ascent, an iteration of gradient descent is run on w to minimize the loss function

L =

T∑
t=0

(V(φ(st)) − R
Xobs
t)2. (2.16)

to update the baseline V(φ(st)). The steps of the algorithm are detailed in Algorithm 6.

One downside of policy gradient methods is that they are susceptible to local minima as

the objective function is not convex. To mitigate this, several different policies are initialized

and the best policy is chosen. Different features should also be tested. The performance

depends on what information is available. An example what the rewards might look like

while running the policy gradient algorithm is shown in Figure 2.5.

Algorithm 6 Learning Sample Distribution

1: procedure Learn({X(i)
obs}

M
i=1)

2: Initialize parameters θ0 for policy πθ0
3: Initialize parameters w0 for value baseline, Vw0
4: Run planner with πθ0 several times with each environment and collect data D0 =

(φ(st),at, r(st,at),Vw0(φ(st)))
5: Use D0 to fit Vw0 by running gradient descent on the loss function in (2.16)
6: for i=1:NumIterations do
7: for each environment in IE do
8: Run πθi−1 N times and collect data Di,j
9: Use (2.10) to compute gradient and update θi = θi−1 + ηθ∇V(s0)

10: Compute gradient of (2.16) and update wi = wi−1 − ηw∇L
11: end for
12: end for
13: end procedure

2.3 learning implicit sampling distributions for planning 41

Figure 2.5: (Policy Gradient Reward Curve) Rewards while using the policy gradient to update a
rejection sampling policy for RRT.

2.3.4 Probabilistic Completeness

The original RRT algorithm has the property of being probabilistically complete. That is,

given that a solution exists for a motion planning problem, the probability that RRT will

find a solution converges to 1 as the number of samples converges to infinity. It is intuitive

that this process of rejection sampling will preserve probabilistic completeness for RRT.

Following the original proof in [72], the existence of an attraction sequence of length K

between the start and goal positions is assumed. {A0,A1, . . . ,Ak},Ak ⊂ X is an attraction

sequence if ∀Ak, there exists a subset Bk ⊂ X such that

1. ∀x ∈ Ak−1,y ∈ Ak, z ∈ X\Bk, the distance d(x,y) < d(x, z)

2. ∀x ∈ Bk, it is possible for the EXTEND function (Algorithm 2) to extend into the set

Ak ⊂ Bk

The proof then shows that there is a minimum probability of transitioning from one

attraction set in the attraction sequence to the next. Treating the transition as a biased

2.3 learning implicit sampling distributions for planning 42

coinflip with success rate p, the question of whether a path is found in N steps turns into

a question of whether or not out of N coinflips, K are successful. In [72], p is given as

p = min
i

{ν(Ai)/ν(Xfree)} (2.17)

where Ai is the ith element in the attraction sequence. The rejection sampling modifies

ν(Ai) and not ν(Xfree). Setting a lower threshold for the probability of acceptance of a

sample as ε, we can write

µk(Ai) =

∫
Ai
π(aaccept|x)dν(x)∫

Ai
π(aaccept|x)dν(x) +

∫
X\Ai

π(aaccept|x)dν(x)
(2.18)

>

∫
Ai
εdν(x)∫

Ai
εdν(x) +

∫
X\Ai

1dν(x)
(2.19)

>

∫
Ai
εdν(x)∫

Ai
1dν(x) +

∫
X\Ai

1dν(x)
(2.20)

= εν(Ai) (2.21)

Thus, when evaluating the modified p for the learned distribution

p = min
i

{µk(Ai)/ν(Xfree)} > εmin
i

{ν(Ai)/ν(Xfree)}. (2.22)

One key difference between the original proof and our method is that the samples drawn

are no longer independent, as the acceptance or rejection of a sample can influence future

samples. However, the probability of drawing a sample from Ai some K number of times

is lower bounded by (εp)K since each sample has at least εν(Ai) probability of being

drawn. Thus, the probability that the modified distribution draws K successful samples

from N tries is lower bounded by the probability of drawing K successful independent

samples out of N from a biased coin flip with p′ = εp.

2.4 experiments 43

Figure 2.6: (Policy Network Architecture) Neural network architecture used for rejection sampling
policy. FC(N) stands for a Fully Connected Layer with N neurons.

Thus, this method simply scales the probability p of the original proof by a constant

factor, preserving probabilistic completeness.

2.4 experiments

This section will detail experiments to test the efficacy of our heuristic learning approach.

Experiments were performed in three sets of environments. First, we tested the algorithm

on three different planners in a simulated FlyTrap environment. This allowed us to analyze

the learned policies and behavior in detail in a relatively simple environment. Next,

the algorithm was tested on a pendulum environment to analyze its performance with

dynamical systems. Then, we applied the algorithm to a more complicated 7 degree of

freedom robotic arm to show performance on a real system.

2.4.1 Implementation Details

We begin by detailing the specific implementation details common to all experiments. This

includes the details of the reward function and the policy and value neural networks.

2.4 experiments 44

Reward Function

The reward function r(s,a) used is chosen to reflect the computation time of the planning

algorithm.

r(st,at) = −(λ11+ λ2nnode,t + λ3ncollision,t) (2.23)

λ1 is a small value that represents the cost of sampling. nnode,t is the number of nodes

added to the tree in iteration t and ncollision,t is the number of collisions checks performed

in iteration t. λ2, λ3 are simply scaling factors (the experiments use λ1 = 0.01, λ2 = λ3 = 1.).

Note that the total reward
∑T
t=0 r(st,at) will simply be the scaled total number of nodes

plus the scaled total number of collisions plus the scaled total number of samples drawn

from ν. The reward function is designed to reflect the operations that take the majority of

the time: extending the tree and collision checking. The reward function can be made more

elaborate, or be nonlinear, but this form is used for simplicity. In practice, this method

can be made more accurate by measuring the time of each operation (collision check,

node expansion, etc.) to compute the weighting factors λi. In addition, the rewards are

normalized by their running statistics so that all problem types can have similar reward

ranges.

Policy and Value Networks

In this work, the policy πθ is a neural network that outputs probabilities of acceptance

and rejection. The choice in using a neural network to represent the policy is due to

the flexibility of functions they can represent. Initial results showed that a simple model

like logistic regression can be insufficient in complicated environments. In addition, with

neural networks, there is no need to select basis functions to introduce nonlinearities.

The network used is a relatively small two layer perceptron network (the inference must

be fast as this function is run many times in the inner loop of the algorithm). For reference,

2.4 experiments 45

the network evaluated a sample in around 3.59 microseconds using only a laptop CPU

running at 3.5Ghz. The input φ(s) is passed through two hidden layers with 32 and 16

neurons and rectified linear activation. There is a batchnorm operation [51] after each

hidden layer. The second batchnorm layer is passed to a final fully connected layer with 2

outputs that represent the logit for accepting or rejecting the sample. The logit is fed into

a softmax operation to obtain the probabilities. Additionally, the logits are modified so

that all probabilities lie between 0.05 and 0.95. This is so that πθ(areject|s) < 1 in order

to guarantee that µk is a valid probability distribution. This also allows the policy to

always have a small chance of accepting or rejecting, which is useful for exploration in the

reinforcement learning algorithm. The policy network is shown in Figure 2.6.

The neural network for V(φ(s)) is similar to the policy network. The only difference is

that the output layer is a single neuron representing the value. All networks are trained

with the Adam optimizer [60] with a learning rate of 0.001.

During execution, multiple samples may be batched together to run in parallel through

the neural network. This slightly breaks assumptions of the heuristic learning algorithm

proposed as each sample might be dependent on the one before it. However, empirically,

batches of 64 samples do not meaningfully impact any metrics measured.

2.4.2 Flytrap Environments

The first experiment run is that of the 2D Flytrap. This environment is used as a benchmark

in [122] and [155] as an example of a hard planning problem. It is difficult to solve because

of the thin tunnel that must be sampled in order to find a path to the goal. The training

and testing environments are shown in Figure 2.7. Three different planners are tested on

the environment: RRT-Connect function with one tree [65], Bidirectional RRT-Connect

(BiRRT) [65], and EST [47].

2.4 experiments 46

(a) Train (b) Test (c) BallTree

Figure 2.7: (Various Flytrap Environments) The green dot is an example starting location and
the red dot is an example goal location. 2.7a is what the policy is trained on in the
experiment. 2.7b is what the policy is tested on for the experiment. 2.7c shows the
environment used by BallTree [122]

For RRT, the feature used is the distance to the nearest tree node minus the distance of

that tree node to its nearest obstacle. For BiRRT, the feature used is the distance to the

current tree being expanded minus the distance of that tree node to its nearest obstacle. For

EST, there are a few choices for how to modify the sampling. In this experiment, we chose

to modify the probability of picking nodes in the tree for expansion (the alternative being

modifying the probability of how to pick nodes to expand to) since the choice of node has

a larger effect on the algorithm’s performance. The features used are two dimensional: the

nearest obstacle to the node, as well as the number of nodes in a certain radius (this is the

same as w(x) used in the original EST work [47]).

For each planner, the original policy of always accepting samples is compared against

the policy trained on the environment shown in Figure 2.7a. The results in Figure 2.8 show

the statistics over 100 run. The average of each metric tracked for the planners is compared.

For all planners, the number of collision checks is reduced while the number of samples

drawn is increased. In RRT, it is reduced around five times. The trade off between collision

checks and number of samples saves overall execution time. In addition, the decreasing the

tree size and reducing collision checks does not decrease the quality of the paths found.

2.4 experiments 47

Figure 2.8: (Flytrap Experiment Results) Results of 100 runs of each planner on the test Flytrap
environment. Each bar shows the ratio of the learned planner’s metric to the unmodified
planner (over 100% means more than the original planner).

For each planner, the path found by the trained policy is equivalent in length or sometimes

shorter, despite not explicitly optimizing for path length.

Analysis

Figure 2.9: (Learned and Heuristic Rejection Policies) Comparison between learned policies and
BallTree and Dynamic Domain RRT.

Next, the policies learned for RRT are analyzed. The learned policy rejects samples

that are far away from the tree with higher probability. This is similar to the strategy

that is suggest by Dynamic Domain RRT [155], in which the ideal version of it rejects

all samples that are further away from the tree than the closest obstacle. However, for

2.4 experiments 48

Flytrap environments where the space outside of the Flytrap is not a large fraction of

the space, the strategy suggested by BallTree [122] is more effective. BallTree rejects all

samples that are closer to the tree than the nearest obstacle. It is curious that for very

similar types of environments, the policies that work better for each are almost complete

opposites! This shows a need for some environment types to use the data itself to tune

a rejection sampling policy. When training on the different sized environment shown in

Figure 2.7c, the policies learned to exhibit behavior similar to BallTree. The policy trained

in the larger environment rejects samples further from the tree, and the policy trained

in the smaller environment rejects samples that are closer to the tree as shown in Figure

2.9. The distributions encountered during the search process are visualized in Figure 2.10

by sampling a uniform grid in the state-space and using (2.12) to compute discretized

probabilities for sampling each point.

Figure 2.10: (Learned Sampling Distributions) Learned probability distributions for RRT. While
the policy is the same, the distributions change as the RRT search progresses. For each
figure, the bottom plane shows the environment with a green search tree, while the
blue dots show sampled points representing the learned distribution.

2.4.3 Simulated Pendulum

In addition to the flytrap environment, experiments were done on a planar pendulum

to test the effectiveness of it on a dynamical system. The pendulum starts at the bottom

2.4 experiments 49

and needs to reach the top. It is control limited so it must plan a path that increases its

energy until it can swing up. In this experiment, we used a steering function that randomly

samples control actions and time durations. This is a common steering function that may

be used in more complicated systems [78]. The results are shown in Figure 2.11. Number of

collision checks is not included as for this particular experiments as there are no obstacles

to collide with. The features used are 1) the difference between the goal angle and the

current angle and 2) the difference in angular velocities. The policy learns to reject samples

that are not likely to lead to the goal state, which saves the execution time otherwise spent

computing the steering function.

Figure 2.11: (Pendulum Results) Results of 100 runs of each planner on the Pendulum environ-
ment. Each bar shows the ratio of the learned planner’s metric to the unmodified
planner (over 100% means more than the original planner).

2.4.4 Real Robot Arm

The algorithm is also tested on the 7 degree of freedom arm of the Thor robot (Figure

2.12). This experiment is used to validate the method in a higher dimensional space and in

a realistic environment. Thor is given tasks to move its arm to various difficult to reach

2.4 experiments 50

Figure 2.12: The Thor robot in a test of the tabletop environment.

places in assorted tabletop environments. The environments consists of crevices for Thor

to reach into and obstacles to block passages. The base planner used is BiRRT, with a four

dimensional feature space (EST and RRT were not used as the planning took too long).

The first three features are the distances of various joints to the closest obstacle, and the

last feature is the distance of the current configuration to the goal. Two very different

environments were used for training, and a third environment distinct from the first two

was used for testing.

The results of the arm experiments are shown in Figure 2.13. The figure details the

statistics over successful plans over 100 runs of the planner. Our algorithm had 97% success

rate in finding a path, while the original had 96% when the number of samples drawn is

limited to 100,000 (this difference is too small to make any claims). Similar to the Flytrap

experiments, a policy is learned that trades off extra samples for a vastly reduced number

of collision checks and nodes in the tree. On the test environment, the number of nodes in

the tree is more than 5 times less and uses 2.7 times less collision checks. In addition, the

variance of the results is greatly reduced when using the learned distribution.

2.5 conclusions 51

Figure 2.13: (Robot Arm Results) Comparison of results of BiRRT in 7 degree of freedom robot
arm tabletop environments. Each bar shows the ratio of the learned planner’s metric
to the unmodified planner

Next, the policies learned for the Thor arm are examined to see what aspect of the

environment it is exploiting. A visualization is shown in Figure 2.14. We note that the

probability increases as 1) the distance of the configuration to the goal is lower, or 2) the

workspace distance of the later joints is closer to an obstacle. This policy makes a lot of

intuitive sense. Samples are concentrated near the surface of the table and objects, probing

the surface for a good configuration.

2.5 conclusions

This chapter described learning sampling distributions for sampling-based motion planners.

Sampling distributions in sampling-based motion planners are a vital component of the

algorithm that affects how many times computationally expensive subroutines such as

collision checks are run. While the method presented can improve planning times by

2.5 conclusions 52

Figure 2.14: (Learned Sampling Distribution) Visualization of the learned rejection policy for
the tabletop environment. On the bottom right is a point-cloud representation of a
test environment. A cleaning spray is hidden within an open box. Each colored dot
represents the position of the end effector for a configuration state. A yellow dot
represents a state with high rejection probability while a red one represents one with
low rejection probability.

modifying the sampling distribution, it is not the whole solution for all problem types.

In maps where the thin tunnel issue is more pronounced, rejection sampling does not

alleviate the main dilemma of how to sample the thin tunnel. However, this method can be

easily combined with existing techniques such as [161, 153, 23] to improve performance.

When an optimal-planner is not available to provide direct supervision for heuristic

learning, a Reinforcement Learning approach is feasible. The learned distributions can

coincide with human intuition for which samples are beneficial. For environments tested in

[122, 155], the learned distributions appeared to be soft approximations of human designed

heuristics which validates the effectiveness of the learning process. We presented a general

way to obtain good implicit sampling distributions in the absence of direct supervision.

The process can be seen as a way of encoding the prior knowledge of the environments

into the rejection policy by learning from previous searches in similar environments to

solve the Experienced Piano Mover’s Problem.

3 C O N S T R A I N E D M O D E L L E A R N I N G

Chapter 2 discussed learning heuristics from data to improve the computational efficiency

of motion planning algorithms. This section will discuss the other part of a motion planning

algorithm: the system model. Many motion planning methods perform admirably when the

models can approximate the dynamics of the system accurately. However, the performance

of these planners can be degraded with model inaccuracy. While some planners try to

explicitly account for model inaccuracy or uncertainty [44, 85, 126], they tend to yield

overly conservative motion plans. In the field of control theory, robust controllers [162] have

been developed to address the same problem. These methods often need to consider the

worst case scenarios at each state which can lead to undesirable or overly conservative

motion plans. Additionally, these methods have the assumption that user of the planning

algorithm has an idea and model of the kinds of errors that can occur. For example,

consider the problem of landing a quadrotor precisely at a target. There are complex

aerodynamic effects associated when nearby surfaces cause disturbances to the airflow.

This may result in large torques when the quadrotor is hovering close to the ground and

hamper precise landings. This is known as the ground effect [112]. These aerodynamic effects

can be hard to model from just prior knowledge and may show up as a highly correlated,

state dependent, non-zero mean noise. A common method that has been suggested to

model similar effects is to learn or adjust a dynamics model with real data taken from

running the system.

53

constrained model learning 54

In robotics, Gaussian Processes, Gaussian Mixture Models, or Neural Networks have

been used to learn models of dynamics [26, 94, 76, 91, 109]. A typical process for learning

these models involves selecting a parameterized model, such as a neural network with

a fixed number of layers and neurons, and choosing a loss function that penalizes the

output of the model for not matching the data gathered from running the real system.

Then, one optimizes the parameters by minimizing the empirical risk using, for instance,

stochastic gradient descent like algorithms. This formulation assumes that all transitions

are equally important since it penalizes the mismatch between model and data uniformly

on all portions of the collected data. While this formulation has shown success in some

applications, prior knowledge about the task and system can inform better learning

objectives. A control designer may know that a certain part of the state space requires a

certain accuracy for a robust controller to work well, or that some part of the state space is

more important and should have hard constraints on the model accuracy. For example,

to precisely land a quadrotor, a designer may note that the accuracy of modeling the

complex ground effect forces is more important near the landing site. Incorporating this

prior knowledge can lead to better performing motion planners.

To address the problem of incorporating prior knowledge into model learning, we

introduce the idea of sufficiently accurate model learning [159, 160]. This formulation is

based on the inclusion of constraints in the optimization problem whose role is to introduce

prior-knowledge about the importance of different state-control subsets. In the example of

the quadrotor, notice that when the quadrotor is away from the surfaces, the ground effect

is minor and thus, it is important to focus the learned model’s expressiveness in the region

of the state-space that is most heavily affected. This can be easily captured by a constraint

that the average error in the important state-space regions is smaller than a desired value.

These constraints will allow models with finite expressiveness concentrate on modeling

important aspects of a system. One point to note is that this constrained objective can be

constrained model learning 55

used orthogonally to many existing methods. For example, the constrained objective can

replace the unconstrained objective in [76, 91], and all other aspects of the methods can

remain the same.

In its most generic form, the problem of model learning is an infinite dimensional non-

convex optimization problem that involves the computation of expectations with respect

to an unknown distribution over the state-action space. In addition, the formulation

proposed here introduces constraints which seems to make the learning process even

more challenging. However, in this work we show that solving this problem accurately

is not more challenging than solving an unconstrained parametric learning problem.

To reach this conclusion we solve a relaxation of the problem of interest with three

common modifications: (i) function parameterization, (ii) empirical approximation, and (iii)

dual problem solving. Function parameterization turns the infinite dimensional problem

into one over finite function parameters. Empirical approximation allows for efficient

computation of approximate expectations, and solving the dual problem leads to a convex

unconstrained optimization problem. The three approximations introduced however may

not yield solutions that are good approximations of the original problem. To that end, we

establish a bound on the difference of the value of these solutions. This gap between the

original and approximate problem depends on the number of samples of data as well as

the expressiveness of the function approximation (Theorem 1). In particular, the bound

can be made arbitrarily small with sufficient number of samples and with the selection of

a rich enough function approximator. This implies that solving the functional constrained

problem is nearly equivalent to solving a sequence of unconstrained approximate problems

using primal-dual methods.

Section 3.1 will introduce the necessary background in model learning and Lagrangian

duality. Then, Section 3.2 presents the sufficiently accurate model learning framework.

Section 3.3 will examine the approximation error between the practical model learning

3.1 background 56

problem and the general idealized model learning problem. One such algorithm to solve

constrained problems is discussed in Section 3.4 and numerical experiments are presented

in Section 3.5.

3.1 background

3.1.1 Types of Models and Model Learning

Before discussing our method of Sufficiently Accurate Model Learning, we will examine the

types of models that are used as well as different model learning methods. We begin

with examples of system models. The system model is a function that models how the

configuration state of a robot changes under some control input. In this work, we will deal

mainly with fully observable systems. Even among fully observable systems, there are a

variety of ways to represent the dynamics. A natural way to model a system may be with

a differential equation f : X×U→ X

ẋ = f(x,u) (3.1)

where x ∈ X is a state from the configuration space, and u ∈ U is a control from the control

space. This is a natural way to describe a physical systems as differential equations are

at the core of Newton’s Laws of Motion or Lagrangian Mechanics. In fact, the standard

form to describe the dynamics of an open-chain robotic manipulator is a second order

differential equation [90, Chapter 3.2] of the form

M(x)ẍ+C(x, ẋ)ẋ+N(x, ẋ) = u (3.2)

3.1 background 57

which can be described by (3.1) by replacing the second order system of differential

equations with a first order system with a state space that contains both x as well as ẋ. For

some systems, the differential equation can also change with time

ẋ = f(x,u, t). (3.3)

A model changing over time can be used to model problems with dynamically moving

obstacles or other agents. Another type of system model would be a discrete-time model.

xt+1 = f(xt,ut) (3.4)

where xt and xt+1 are states at a time index t ∈ Z. This can more naturally fit some of

motion planning algorithms described in Section 1.2. Graph-based planners look at how

the state evolves at discrete time steps as well as many formulations of optimization-based

planners. This does not mean a continuous time differential model will not work as it is

possible to simply integrate the differential equation. In practice, the choice in model may

be decided by how easy it is to represent or learn each model.

The problem of model learning reduces to finding the function φ in the class Φ that

best fits the transition data. For example, Φ could be the space of all continuous functions.

The figure of merit is a loss function ` : S×Φ→ R. With these definitions, the problem of

interest can be written as the following stochastic optimization problem

φ∗ = arg min
φ∈Φ

Es∼SD [`(x,φ)] (3.5)

where s = (xt,ut, xt+1) are tuples of data samples from the sample space taken from

observing the real system and the expectation is taken over a distribution of real system

data SD with a sample space S = X×U×X. The goal is to minimize some loss function,

3.1 background 58

` : S×Φ, between the true observed next state xt+1 with the parameterized model’s output.

An example of a loss function is the p-norm,

`(s,φ) = ‖φ(xt,ut) − xt+1‖p . (3.6)

For p = 1, this reduces to a sum of absolute differences between each output dimension of

φ and the true next state, xt+1. When p = 2, we obtain the Euclidean loss. A combination

of both p = 1 and p = 2 losses is known as an Elastic net loss [164]. Other common losses

include the Huber loss [88] and, in discrete state settings, a 0-1 loss.

Often times a rough model f̂ of the dynamical system of interest can be obtained.

Depending on the complexity of the system, these models may be inaccurate since they

may ignore hard to model dynamics or higher order effects. For instance, one can derive a

model f̂ for a quadrotor from rigid body dynamics where forces and torques are functions

of each motor’s propeller speed. However, the accuracy of this model will depend on other

effects that are harder to model such as aerodynamic forces near the ground. In these

cases, the system model can decomposed as the sum of an analytic model f̂ and a residual

error model φ [5, 30, 157]

f(xt,ut) ≈ f̂(xt,ut) +φ(xt,ut). (3.7)

The residual model can be easily incorporated into the loss defined in (3.5). For instance,

the p norm loss can be modified to take the form

`(s,φ) =
∥∥φ(xt,ut) − (xt+1 − f̂(xt,ut))

∥∥
p

.

In general, many researchers fit a discrete-time model to collected data [91, 114, 50, 93, 115,

40, 31, 18, 147, 5, 30, 157, 52, 69] using a variation of optimization problem (3.5) . There has

also been work on learning a differential equation model. In practice, it is easier to measure

3.1 background 59

the state of a system rather than the time-derivative of the state. Thus, one approach has

been compose a supervised learning problem that penalizes an Euler integration of the

predicted derivative and the true next state [83, 108]. Neural ODE [21] looks at a loss that

depends on black box ODE solvers that can be more sophisticated than Euler integration.

In addition to the deterministic models shown in (3.1) and (3.4), there are also stochastic

models. Instead of directly modeling the next state, probabilistic models can represent a

distribution over next states. An example of simple probabilistic system model is a state

and control dependent Gaussian distribution

p(xt+1|xt,ut) = N(µ(xt,ut),Σ(xt,ut)) (3.8)

This type of model is usually used to represent aleatoric uncertainty or the intrinsic

stochasticity of the system. The actual dynamics can be probabilistic in nature. There can

be a philosophical argument whether or not systems can have aleatoric uncertainty, but

a practical example can be systems where the full state representation is not observable.

A car might have micro-abrasions on the tire which might hit tiny pebbles on the road.

Relative to the state that is measurable, the system can be seen as inherently stochastic.

There also exists epistemic uncertainty – the uncertainty in the model’s knowledge of the

system. This type of uncertainty can exist in deterministic system models as it refers not

to the underlying physical system but knowledge about how accurate the model is. This

is usually described by a distribution over models φ. This can be realized, for example,

by using a neural network with dropout to represent φθ as each parameter becomes a

Bernoulli random variable [33]. Other methods have used an ensemble [52, 69] such that

when multiple models closely agree, there is higher certainty in the model’s knowledge of

the system.

3.1 background 60

This work will primarily focus on deterministic, discrete-time residual models as shown

in (3.7). However, the constrained objective that will be introduced can be used with all

model types.

3.1.2 Lagrangian Duality

This section will briefly review the concept of Lagrangian duality that will be utilized

and referenced in Sections 3.2.1 and 3.3. A more detailed discussion is presented in [15,

Chapter 5]. We begin by defining a standard optimization problem

P? = min
x

l(x)

s.t. g(x) 6 0

(3.9)

where x ∈ Rn is a vector of variables to optimize over, l : Rn → R is the objective function

(or loss function) to minimize, and g : Rn → RK is a vector-valued constraint function.

(3.9) will be denoted as the primal problem.

Lagrangian duality explores the relationship between the primal problem and an alter-

native problem known as the dual problem. To define the dual problem, we first define a

quantity known as the Lagrangian

L(x, λ) = l(x) + λ>g(x), (3.10)

where the dual variable(or Lagrangian multipliers), λ ∈ RK is introduced. The kth element of

λ corresponds with the kth element of the constraint function g as they are multiplied and

3.1 background 61

summed with the other constraints indices. The Lagrangian is used in a function known as

the Lagrangian dual function

d(λ) = inf
x

L(x, λ). (3.11)

The Lagrangian dual function is used to define the dual problem

D? = max
λ>0

d(λ). (3.12)

The dual problem is extremely useful in the analysis of optimization problems. For many

optimization problems, the dual formulation can be more practical to solve than the primal.

The dual problem optimizes over the dual variable λ which exists in RK rather than

primal variable x which exists in Rn. For some problems where K � n, this can be a

benefit. Though, note that an infimum still exists in (3.11), so this benefit mainly applies to

problems where the dual problem can be reduced to an analytic form. Linear programs, for

example, have an analytic dual [15, Chapter 5.2.1]. Additionally, the constraints in the dual

formulation consist only of non-negativity constraints λ > 0 which can be easier to deal

with than the generic constraint function g. Another useful property of the dual function

is that (3.11) is concave without an assumption of convexity on the primal problem (3.9)

[15, Chapter 5.1.2].

While the dual formulation might be easier to solve for some optimization problems,

it may not have the same solution value as the optimal primal solution, P?. The dual

function d(λ) has an interesting feature in that for the domain considered, λ > 0, it is

upper bounded by the P∗ for all λ. This can be seen as for any given λ and feasible x,

l(x) + λ>g(x) 6 l(x) (3.13)

3.2 sufficiently accurate model learning 62

as a feasible x would fulfill the condition g(x) 6 0. Thus,

d(λ) = inf
x
[l(x) + λ>g(x)] 6 l(x?) + λ>g(x?) 6 l(x?) = P? (3.14)

where x? is a solution to (3.9). This implies that the solution to the dual problem (3.12),

D? = d(λ?) 6 P? (3.15)

is also upperbounded by the solution to the primal problem. The difference P? −D? is

known as the duality gap. There are optimization problems where the duality gap is zero.

The solution values to the primal and dual formulations are the same. When this happens,

the problem is said to have strong duality. Convex problems that fulfill Slater’s condition

are well known to have strong duality. Convex problems are a specific instance of (3.9)

where l and g are convex functions. Slater’s condition is fulfilled when there exists x such

that the constraint function is strictly satisfied, g(x) < 0. Convex problems are not the only

class of optimization problems that exhibit strong duality. A relevant class of problems

will that are strongly dual will be discussed in Section 3.3.1, Theorem 2.

3.2 sufficiently accurate model learning

We now present the framework of sufficiently accurate model learning. For clarity, we will

focus on the discrete-time deterministic system model presented in (3.4)

xt+1 = f(xt,ut).

3.2 sufficiently accurate model learning 63

We consider a Euclidean configuration state space X = Rn and Euclidean control space

U = Rp. A characteristic of the classic model learning problem defined in (3.5)

φ∗ = arg min
φ∈Φ

Es∼SD
[`(x,φ)]

is that errors are uniformly weighted across the sample distribution, SD. In principle, one

can craft the loss so to represent different properties on different subsets of the state-input

space by weighting the lossses from different regions of the state-control space. However,

this design is challenging, system dependent, and dependent on the the distribution of

the transition data. In contrast, our approach aims to exploit prior knowledge about the

errors and how they impact the control performance. For instance, based on the analysis

of robust controllers one can have bounds on the error required for successful control.

The model should be able to incorporate prior knowledge such as “The errors in this part

of the state-control space should be at least ε-accurate." This information can be used

to formulate the sufficiently accurate model learning problem, where we introduce the

prior information in the form of constraints. Formally, we encode the prior information

by introducing K ∈ N functions gk : S → R. Define in addition, a collection of subsets

of transition tuples where this prior information is relevant, Sk ⊂ S and corresponding

indicator functions Ik(s) : S → {0, 1} taking the value one if s ∈ Sk and zero otherwise.

With these definitions the sufficiently accurate model learning problem is defined as

P? = min
φ∈Φ

Es∼SD
[`(s,φ)I0(s)]

s.t. Es∼SD
[gk(s,φ)Ik(s)] 6 0,k = 1, 2, . . . ,K

(3.16)

Note that the sets Sk that define the indicator variables Ik(s) are not necessarily disjoint.

In fact, in practice, they are often not. The sets can be arbitrary and have no relation to

each other.

3.2 sufficiently accurate model learning 64

Notice that the (3.16) is an infinite dimensional problem since the optimization variable

is a function and it involves the computation of expectations with respect to a possibly

unknown distribution. An approximation to this problem is presented in Section 3.2.1. For

technical reasons, the functions gk and l should be expectation-wise Lipschitz continuous.

Assumption 3.1. The functions `0(s,φ) = `(s,φ)I0(s) and gk(s,φ) = gk(s,φ)Ik(s) are

L-expectation-wise Lipschitz continuous in Φ, i.e.,

Es ‖`0(s,φ1) − `0(s,φ2)‖∞ 6 LEs ‖φ1 −φ2‖∞ , ∀φ1,φ2 ∈ Φ (3.17)

for some L. Here, ‖φ1 −φ2‖∞ is the infinity norm for functions which is defined as ‖f‖∞ =

supx|f(x)|.

The expectation-wise Lipschitz assumption is a weaker assumption than Lipschitz-

continuity, as any Lipschitz-continuous function with a Lipschitz constant L is also

expectation-wise Lipschitz-continuous with a constant of L. In particular, the loss functions

in Example 3.1 and 3.2 are expectation-wise Lipschitz-continuous with some constant (cf.,

Appendix 6.1). There is no assumption that the functions should be convex or continuous.

Before we proceed, we present two examples of sufficiently accurate model learning. For

notational brevity, when an expectation does not have a subscript, it is always taken over

s ∼ SD.

Example 3.1. Selective Accuracy

min
φ∈Φ

E ‖φ(xt,ut) − xt+1‖2

s.t. E ‖φ(xt,ut) − xt+1‖2 IA(s) 6 εc

(3.18)

3.2 sufficiently accurate model learning 65

This problem is a simple modification of (3.5). It has the same objective, but adds a constraint

that a certain state-control subset, defined by a set A, should be within εc accuracy. The indicator

variable IA(s) will be 1 when s is in the set A. Here, g(s,φ) = ‖φ(xt,ut) − xt+1‖2 −
εc

EIA(s)
.

This formulation allows you to trade off the accuracy in one part of the state-control space with

everything else as it may be more important to a task. Another use case can be to provide an

error bound for robust controllers. This is the formulation used in the quadrotor precise landing

experiments detailed later in Section 3.5.3, where the set A is defined to be all states close to the

ground where the ground effect is more prominent.

Example 3.2. Normalized Objective

min
φ∈Φ

E
‖φ(xt,ut) − xt+1‖2

‖xt+1‖2
IA(s)

s.t. E ‖φ(xt,ut) − xt+1‖2 IAC(s) 6 εc

(3.19)

where IA is the indicator variable for the subset A = {s ∈ S : ‖xt+1‖2 > δc}, and AC is the

complement of the set A. This problem formulation looks at minimizing an objective such that the

error term is normalized by the size of the next state. This can be useful in cases where the states

can take values in a very large range. An error of 1 unit can be large if the true value is 0.1 units,

but it is a small error if the true value is 100 units. The set A contains all data samples where the

true next state is large enough for this to be significant. This can reduce numerical issues when the

denominator is small. For all small state values, the error is simply bounded by εc. From a practical

point of view, sensors will always have noise. When the state is small, the “true" measurement of

the state can be dominated by noise, and the model can be better off just bounding the error rather

than focusing on fitting the noise. This is the formulation used in the ball bouncing experiment in

Section 3.5.2, where the we would like the errors in velocity prediction to be scaled to the speed, and

all errors below a small speed can be constrained with a simple constant.

3.2 sufficiently accurate model learning 66

3.2.1 Problem Approximation

The unconstrained problem in (3.5) and the constrained problem in (3.16) are functional

optimization problems. In general, these are infinite dimensional and usually intractable.

This section will present common approximations of (3.16). Instead of optimizing over

the entire function space Φ, one may look at function spaces, Φθ ⊂ Φ, parameterized

by a d-dimensional vector θ ∈ Θ = Rd. Examples of these classes of functions are linear

functions of the form φθ(x,u) = θ>x x+ θ
>
uu where θ = [θx, θu] is a vector of weights

for the state and control input. More complex function approximators, such as neural

networks, may be used to express a richer class of functions [46, 91]. Restricting the

function space poses a problem in that the optimal solution to (3.16) may no longer exist in

the set Φθ. The goal under these circumstances should be to find the closest solution in Φθ

to the true optimal solution φ?. Additionally, the expectations of the loss and constraint

functions are in general intractable. The distributions can be unknown or hard to compute

in closed form. In practice, the expectation is approximated with a finite number of data

samples si ∼ SD with i = 1, . . . ,N. This yields the following empirical parameterized risk

minimization problem

P?N =min
θ∈Θ

1

N

N∑
i=1

l(si,φθ)I0(si) (3.20)

s.t.
1

N

N∑
i=1

gk(si,φθ)Ik(si) 6 0,k = 1, 2, . . . ,K

While both function and empirical approximations are common ways to simplify the

problem, the approximate problem (3.20) is still a constrained optimization problem and

can be difficult to solve in general as it can be nonconvex in the parameters θ. This is

the case for instance when the function approximator is a neural network. One approach

3.2 sufficiently accurate model learning 67

to solve this problem is to solve the dual problem associated with (3.20). To aid in the

definition of the dual problem, we define the Lagrangian associated with (3.20)

LN(θ, λ) =
1

N

N∑
i=1

`0(si,φθ) + λ>
1

N

N∑
i=1

g(si,φθ). (3.21)

where λ ∈ RK+ are the dual variables as discussed in Section 3.1.2.

Here, the symbol, `0(si,φθ), is defined as l(si,φθ)I0(s) to condense the notation.

Similarly, the bolded vector, g(si,φθ) is a vector where the kth entry is defined as

gk(si,φθ)Ik(s). Similar to Section 3.1.2, the dual problem is now defined as

D?
N = max

λ>0
min
θ∈Θ

LN(θ, λ) (3.22)

Notice that (3.22) is similar to a regularized form of (3.20) where each constraint is

penalized by a coefficient ωk

D?
N = min

θ∈Θ

1

N

N∑
i=1

`0(si,φθ) +ω>
1

N

N∑
i=1

g(si,φθ). (3.23)

Adding this type of regularization can weight certain state-action spaces more. In fact,

if ωk is chosen to be λ?N (the solution to (3.22)), solving (3.23) would be equivalent to

solving (3.22). However, arbitrary choices of ωk provide no guarantees on the constraint

function values. By defining the constraint functions directly, constraint function values

are determined independent of any tuning factor. For problems where strong guarantees

are required or easier to define, the sufficiently accurate framework will satisfy them by

design. An alternative interpretation is that (3.22) provides a principled way of selecting

the regularization coefficients. In Section 3.4, we discuss an implementation of a primal

dual algorithm to do so.

3.3 surrogate duality gap 68

3.3 surrogate duality gap

Section 3.2.1 introduces an approximation (3.22) to the original problem statement (3.16).

An important question to ask is whether solving the approximation will yield a good

solution to the original, We are interested in the difference between the primal problem

(3.16) and the (3.22).

|P? −D?
N|. (3.24)

This is not quite the duality gap introduced in Section 3.1.2 as it is the absolute value of

the difference between the primal and the dual of different but closely related problems.

Hence, the quantity we are interested in bounding will be denoted as a surrogate duality

gap.

To provide specific bounds for the difference in the previous expression (3.24), we

consider the family of function classes Φθ, termed ε-universal function approximators. We

define this notion next.

Definition 1. The function class Φθ is an ε-universal function approximator for Φ if, for

any φ ∈ Φ, there exists a φθ ∈ Φθ such that Es∼SD
‖φ(s) −φθ(s)‖∞ 6 ε.

To provide some intuition on the definition consider the case where Φ is the space of all

continuous function, the above property is satisfied by some neural network architecture.

That is, for any ε, there exists a class of neural network architectures, Φθ such that Φθ is

an ε-universal approximator for the set of continuous functions [46, Corollary 2.1]. Thus,

for any dynamical system with continuous dynamics, this assumption is mild. Other

parameterizations, such as Reproducing Kernel Hilbert Spaces, are ε-universal as well

[128]. Notice that the previous definition is an approximation on the total norm variation

and hence it is a milder assumption than the universal approximation property that fully

connected neural networks exhibit [46].

3.3 surrogate duality gap 69

Next, we define an intermediate problem on which the surrogate duality gap depends:

a perturbed version of problem (3.16) where the constraints are relaxed by Lε > 0 where L

is the constant defined in Assumption 3.1 and ε the universal approximation constant in

Definition 1

P?Lε = min
φ∈Φ

Es∼SD
[`0(s,φ)]

s.t. Es∼SD
[g(s,φ)] + 1Lε 6 0.

(3.25)

where 1 is a vector of ones. The perturbation results in a problem whose constraints are

tighter as compared to (3.16). The set of feasible solutions for the perturbed problem (3.25)

is a subset of the feasible solutions for the unperturbed problem (3.16) since Lε > 0. The

perturbed problem accounts for the approximation introduced by the parameterization. In

the worst case scenario, if the problem (3.25) is infeasible, the parameterized approximation

of (3.20) may turn infeasible as the number of samples increases. Let λ?Lε be the solution

to the dual of (3.25)

λ?Lε = arg max
λ>0

min
φ∈Φ

E[`0(s,φ)] + λ>(E[g(s,φ)] + 1Lε) (3.26)

With these definitions, we can present the main theorem that bounds the surrogate

duality gap.

Theorem 1. Let Φ be a compact class of functions over a compact space such that there exists

φ ∈ Φ for which (3.16) is feasible, and let Φθ be an ε-universal approximator of Φ as in Definition

1. Let the space of Lagrange multipliers, λ, be a compact set as in [92]. In addition, let Assumption

3.1 hold and let Φθ satisfy the following property

lim
N→∞

HΦθ(δ− εL(
∥∥λ?Lε∥∥1 + 1),N)

N
= 0 (3.27)

3.3 surrogate duality gap 70

where
∥∥λ?Lε∥∥1 is the optimal dual variable for the problem (3.26), L is the Lipschitz constant for the

loss function, and HΦθ is the random VC-entropy [143, section II.B]. Note that both arguments for

HΦθ must be positive. Then P? and D?
N, the values of (3.16) and (3.22) respectively, satisfy

lim
N→∞ P (|P? −D?

N| 6 δ) = 1, (3.28)

where the probability is over independent samples {s1, s2, . . . , sN} drawn from the distribution S as

defined in problem (3.20).

Proof. See Section 3.3.1

The intuition behind the theorem is that given some acceptable surrogate duality gap,

δ, there exists a neural network architecture, Φθ, and a number of samples, N such that

the probability that the solution to (3.22) is within δ to the solution to (3.16) is very

high. The choice of neural network will influence the value of ε and λ?Lε. These in turn

will decide the duality gap, δ, as the quantity δ− εL(
∥∥λ?Lε∥∥1 + 1) must be positive. A

larger neural network will correspond to a smaller ε which will also has an impact on

the perturbed problem (3.25). A smoother function and smaller ε will lead to smaller

perturbations. Smaller perturbations can lead to a smaller dual variable, λ?Lε. Thus, larger

neural networks and smoother dynamic systems will have smaller duality gaps. If Lε is

large, then the perturbed problem may be infeasible. In theses cases, λ?Lε will be infinite.

This corresponds to problems where the function approximation simply can not satisfy

the original constraint functions. For example, using constant functions to approximate

a complicated system may violate the constraint functions gk for all possible constant

functions. Thus, no δ exists to bound the solution as the parameterized empirical problem

(3.20) has no feasible solution. This theorem suggests that with a good enough function

approximation and large enough N, solving (3.22) is a good approximation to solving

(3.16) with large probability.

3.3 surrogate duality gap 71

There are some details to point out in Theorem 1. First, the function HΦθ a complicated

function that will usually scale with the size of the neural network. A larger neural network

will lead to a smaller ε, but may require a larger number of samples N to adequately

converge to an acceptable solution. The assumption on the limiting behavior of HΦθ is

fufilled by some neural network architectures [9], but the general behavior of this function

for all neural network architectures is still a topic of research. Additionally, we assume the

space of Lagrange multipliers is a compact set. This will imply, along with compact state-

action space, that L is bounded. A finite Lagrange multiplier is a reasonable assumption

as the problem (3.16) is required to be feasible [92].

The bound established in Theorem 1 depends on quantities that are in general difficult to

estimate, These include HΦθ ,
∥∥λ?Lε∥∥1, L, ε. Thus, while this theorem provides some insights

on how these quantities influence the gap between solutions, it is mainly a statement of

the existence of such values that can provide a desired result. In practice, this result can be

achieved by choosing increasing the sizes of neural networks as well as data samples until

the desired performance is reached. Note that the theorem follows our intuition that larger

neural networks and more data will give us more accurate result. However, this theorem

formalizes not only that it is more accurate, but that the error will tend to 0 as number of

samples and number of parameters increase.

3.3.1 Proof of Surrogate Duality Gap Bound

This section will provide a proof of Theorem 1. To begin, we define an intermediate

problem

P?θ =min
θ∈Θ

Es∼SD
[`0(s,φθ)]

s.t. Es∼SD
[g(s,φθ)] 6 0.

(3.29)

3.3 surrogate duality gap 72

Note that this is the unperturbed version of (3.25). As a reminder, this problem uses a class

of parameterized functions, but does not use data samples to approximate the expectation.

Thus, it can be seen as a step in between (3.16) and (3.20). As with the dual problem to

(3.20), we can define the Lagrangian associated with (3.29)

Lθ(θ, λ) = Es∼SD
[`0(s,φθ)] + λ>Es∼SD

[g(s,φθ)] (3.30)

and the dual problem

D?
θ = max

λ>0
min
θ∈Θ

Lθ(θ, λ). (3.31)

Using this intermediate problem, we can break the bound |P? −D?
N| into two compo-

nents.
|P? −D?

N| = |(P? −D?
θ) + (D?

θ −D
?
N)|

6 |P? −D?
θ|+ |D?

θ −D
?
N|

(3.32)

As a reminder, P? is the solution to the problem we want to solve in (3.16), D?
N is

the solution to the problem (3.22) we can feasibly solve, and D?
θ is the solution to an

intermediate problem (3.31). The first half of this bound, |P? −D?
θ|, is the error that arises

from using a parameterized function and dual approximation. The second half of this

bound, D?
θ −D

?
N, is the error that arises from using empirical data samples. It can be seen

as a kind of generalization error. The proof will now be split into two parts that will find a

bound for each of these errors.

Function Approximation Error

We first look at the quantity |P? −D?
θ|. This can be further split as follows

|P? −D?
θ| = |(P? −D?) + (D? −D?

θ)|

6 |P? −D?|+ |D? −D?
θ|

(3.33)

3.3 surrogate duality gap 73

where D? is the solution to the dual problem associated with (3.16). This is defined with

the Lagrangian

L(φ, λ) = Es∼SD
[`0(s,φ)] + λ>Es∼SD

[g(x,φ)] (3.34)

and the dual problem

D? = max
λ>0

min
φ∈Φ

L(φ, λ). (3.35)

We note that the quantity |P? −D?| is actually 0 due to a result from [110, Theorem 1].

The theorem is reproduced here using the notation of this work.

Theorem 2 ([110], Theorem 1). There is zero duality between the primal problem (3.16) and dual

problem (3.35), if

1. There exists a strictly feasible solution (φ, λ) to (3.35)

2. The distribution S is nonatomic.

While the problem defined in [110] is different from the sufficiently accurate problem

defined in 3.16, there is an equivalent problem formulation (see Appendix 6.2). Since

Theorem 1 fulfills the assumptions of Theorem 2, we get |P? −D?| = 0.

For the second half of this approximation error, |D? −D?
θ|, has also been previously

studied in [29, Theorem 1] in the context of a slightly different problem formulation. The

following theorem adapts [29, Theorem 1] to the Sufficiently Accurate problem formulation

(3.16).

Theorem 3. Given the primal problem (3.16) and the dual problem (3.31), along with the following

assumptions

1. Φθ is an ε-universal function approximator for Φ, and there exists a strictly feasible solution

φθ for (3.29).

2. The loss and constraint functions are expectation-wise Lipschitz-continuous with constant L.

3.3 surrogate duality gap 74

3. All assumptions of Theorem, 2

The dual value, D?
θ is bounded by

D? 6 D?
θ 6 D? + (‖λ?Lε‖1 + 1)Lε, (3.36)

where λ?Lε is the dual variable that achieves the optimal solution to (3.26).

Proof. See Appendix 6.3

Again, the assumptions of Theorem 1 fulfill the assumptions for Theorem 3. Due to

notational differences, as well as a different way of framing the optimization problem, the

proof has been adapted from [29] and is given in Appendix 6.3. With Theorem 2 and 3, the

following can be stated

|P? −D?
θ| 6 (‖λ?Lε‖1 + 1)Lε (3.37)

Empirical Error

We now look at the empirical error, |D?
θ −D

?
N|. We first observe the following Lemma.

Lemma 1. Let ∆L(θ, λ) = |Lθ(θ, λ) −LN(θ, λ)|. Then under the assumption of Theorem 1 it

follows that

|D?
θ −D

?
N| 6 sup

θ,λ
∆L(θ, λ). (3.38)

Proof. See Appendix 6.4

Probabilistic Bound

Substituting the parameterized bound (3.37) and the empirical bound (3.38) in (3.32) yields

the following implication

sup
θ,λ

∆L(θ, λ) 6 δ− εL(‖λ?Lε‖1 + 1)⇒ ‖P
? −D?

N‖ 6 δ. (3.39)

3.4 constrained solution via primal-dual method 75

Let P
(
|P? −D?

N| 6 δ
)

be a probability over samples {s1, s2, . . . , sN} that are drawn to

estimate the expectation in the primal problem (3.20). Using the implication (3.39) it

follows that

P (|P? −D?
N| 6 δ) > P

(
sup
θ,λ

∆L(θ, λ) 6 δ− εL(‖λ?Lε‖1 + 1)

)

= 1− P

(
sup
θ,λ

∆L(θ, λ) > δ− εL(‖λ?Lε‖1 + 1)

)
,

(3.40)

where the equality follows directly from the fact that for any event A, P(A) = 1−P(Ac).

The assumptions of Theorem 1 allows us to use the following result from Statistical

Learning Theory [143, (Section II.B)],

lim
N→∞ P

(
sup
θ,λ

∆L(θ, λ) > δ− εL(‖λ?Lε‖1 + 1)

)
= 0. (3.41)

Note that this theorem requires bounded loss functions. The assumptions for a bounded

dual variable, and compact state-action space in Theorem 1 satisfies this constraint. Thus,

this establishes that for any δ > 0, we have limN→∞ P
(
|P? −D?

N| 6 δ
)
= 1. This concludes

the proof of the theorem.

3.4 constrained solution via primal-dual method

Section 3.3 has shown that problem (3.22) can approximate (3.16) given a large enough

neural network and enough samples. This section will discuss how to compute a solution

(3.22). There are many primal-dual methods [37, 35, 36] in the literature to solve this exact

problem, and Algorithm 7 is an example of a simple primal-dual algorithm. One way to

3.4 constrained solution via primal-dual method 76

Figure 3.1: (Primal Dual Training Curve) Example of the evolution of the constraint, loss, and
dual variables during training. The red dotted line shows 0. The curves have been
scaled so that they fit on the same y-axis and they are of different magnitudes. The
constraint function is unfeasible, which leads to a growing dual variable. This can cause
the loss function to increase until the constraint is feasible again.

approach this problem is to consider the optimal dual variable, λ?N. Given knowledge of

λ?N, the problem reduces to the following unconstrained minimization

D∗N = min
θ∈Θ

LN(φ, λ?N) (3.42)

A possible solution method is to start with an estimate of λ?N, and solve the minimization

problem. Then holding the primal variables fixed, update the dual variables by solving the

outer maximization. This method can be seen as solving a sequence of unconstrained mini-

mization problems. This method can be further approximated; instead of fully minimizing

with respect to the primal variables, a gradient descent step can be taken. And instead of

fully maximizing with respect to the dual variables, a gradient ascent step can be taken.

This leads to Algorithm 7 where we iterate between the inner minimization step and the

outer maximization step. At each iteration, dual variables are projected onto the positive

orthant of RK, denoted by the projection operator, [λ]+. This is to ensure non-negativity of

the dual variables.

3.4 constrained solution via primal-dual method 77

Algorithm 7 Primal Dual

1: procedure PRIMAL-DUAL
2: Input:
3: Data Samples, S = {s1, s2, . . . , sN}
4: Initial Neural Network parameters, θ
5: Batch Size, M
6: Primal Learning rate, αθ
7: Dual Learning rate, αλ
8: λ = 0

9: while Not Converged do
10: Sample batch of data Ŝ = {si1 , . . . , siM} from S

11: Use Ŝ to compute estimates of ∇θLN(θ, λ) and ∇λLN(θ, λ) (See (3.43) and
(3.44))x

12: θ← θ−αθ∇θLN(θ, λ)
13: λ← λ+αλ∇λLN(θ, λ)
14: λ← [λ]+
15: end while
16: return θ
17: end procedure

In many cases, the full gradient of ∇θLN(θ, λ) and ∇λLN(θ, λ) can be too expensive to

compute. This is due to the possibly large number of samples N. An alternative is to take

stochastic gradient descent and ascent steps. The gradients can be approximated by taking

M random samples of the whole dataset S = s1, . . . , sN. The samples will be denoted as

Ŝ = si1 , . . . , siM where i1 is an integer index into whole dataset S. Using Ŝ, we obtain

∇θLN(θ, λ) = ∇θ[
1

N

N∑
i=1

`0(si,φθ) + λ>
1

N

N∑
i=1

g(si,φθ)]

≈ ∇θ[
1

M

M∑
j=1

`0(sij ,φθ) + λ
> 1

M

M∑
j=1

g(sij ,φθ)]

=
1

M

M∑
j=1

∇θ`0(sij ,φθ) + λ
> 1

M

M∑
j=1

∇θg(sij ,φθ).

(3.43)

3.5 experiments 78

The gradients ∇θ`0(sij ,φθ) and ∇θg(sij ,φθ) can be computed easily using backpropoga-

tion. Similarly, for ∇λLN(θ, λ),

∇λLN(θ, λ) ≈ ∇λ[
1

M

M∑
j=1

`0(sij ,φθ) + λ
> 1

M

M∑
j=1

g(sij ,φθ)]

=
1

M

M∑
j=1

g(sij ,φθ).

(3.44)

The dual gradient can be estimated as simply the average of the constraint functions over

the sampled dataset.

In the simplest form of the primal-dual algorithm, the variables are updated with simple

gradient ascent/descent steps. These updates can be replaced with more complicated

update schemes, such as using momentum [129] or adaptive learning rates [60]. Higher

order optimization methods such as Newton’s method can be used to replace the gradient

ascent and descent steps. For large neural networks, this can be unfeasible as it requires the

computation of Hessians with respect to neural network weights. The memory complexity

for the Hessian is quadratic with the number of neural network weights.

The primal-dual algorithm presented here is not guaranteed to converge to the global

optimum. With proper choice of learning rate, it can converge to a local optimum or saddle

point. This issue is present in unconstrained formulations like (3.5) as well. An example of

the evolution of the loss and constraint functions is shown in Figure 3.1.

3.5 experiments

This section shows examples of the sufficiently accurate model learning problem. First,

experiments are performed using a simple double integrator experiencing unknown

3.5 experiments 79

dynamic friction. The simplicity of this problem along with the small state space allows

us to explore and visualize some of the properties of the approximated solution. Next,

two more interesting examples are shown. One example learns how a ball bounces on a

paddle with unknown paddle orientation and coefficient of restitution. The other example

mitigates ground effects which can disturb the landing sequence of a quadrotor. The

experiments will compare the sufficiently accurate problem (3.16) with the unconstrained

problem (3.5) which will be denoted as the uniformly accurate problem. Each experimental

subsection will be broken down into three parts, 1) System and Task introduction, 2)

Experimental details, and 3) Results.

3.5.1 Double Integrator with Friction

Introduction

To analyze aspects of the Sufficiently Accurate model learning formulation, simple experi-

ments are performed on a simple double integrator system with dynamic friction. When

trying to control the system, a simple base model to use is that of a double integrator

without any friction pt+1
vt+1

 =

1 ∆t

0 1

pt
vt

+

 0
∆t

ut (3.45)

where p is the position of the system, v is the velocity, u is the control input, and ∆t is the

sampling time. The state of the system is x = [p, v].The true model of the system that is

unknown to the controller is

pt+1
vt+1

 =

1 ∆t

0 1

pt
vt

+

 0

(ut∆t) − c(vt,ut,b(pt))

 (3.46)

3.5 experiments 80

where b(pt) a position varying kinetic friction. c is a function that ensures that the

friction cannot reverse the the direction of the speed (it is an artifact of the discrete time

formulation)

c(vt,ut,b(pt)) =

vt + ut∆t, if

sign(vt + ut∆t) 6=

sign(vt + ut∆t+ b(pt))

b(pt), otherwise.

(3.47)

If within a single time step, the friction force will change the sign of the velocity, c will set

vt+1 to be 0. Otherwise, c will not modify the friction force in any way. The specific b(p)

used is shown in Figure 3.2 and the sampling time is set to ∆t = 0.1. The task is to drive

the system to the origin
[
p v

]
=

[
0 0

]
.

Experimental Details

Figure 3.2: (Double Integrator Friction Force) The magnitude of the acceleration due to the
position varying kinetic friction force.

The goal of model learning in this experiment is to learn φθ(x,u) such that f(x,u) ≈

f̂(x,u)+φθ(x,u) where f is (3.46) and f̂ is (3.45). A uniformly accurate model will be learned

using (3.5) along with a sufficiently accurate model using the problem defined in Example 3.1.

3.5 experiments 81

In the scenario defined by (3.18), I(s) is active in the region {(p, v) ∈ R2 :
∥∥[p, v]>

∥∥∞ 6 0.5}

and εc = 0.035. The constraint, therefore, enforces a high accuracy in the state space near

the origin.

The neural network, φθ, used to approximate the residual dynamics has two hidden

layers. The first hidden layer has four neurons, while the second has two. Both hidden

layers use a parametric rectified linear (PReLU) activation [43]. The input into the network

is a concatenated vector of [pt, vt,ut]. The output layer’s weights are initially set to zero

so before learning the residual error, the network will output zero. The dataset used

to train both the sufficiently and uniformly accurate models is generated by uniformly

sampling 15, 000 positions from [-2, 2], velocities from [-2.5, 2.5], and control inputs from

[-10, 10]. The real model (3.46) is then used to obtain the true next state. Instead of simple

gradient descent/ascent, ADAM [60] is used as an update rule with αθ = 1× 10−3 and

αλ = 1× 10−4. Both models were trained in 200 epochs.

The models are then evaluated on how well it performs within a MPC controller defined

in (3.48). This controller seeks to drive the system to the origin while obeying control

constraints. The controller is solved using a Sequential Quadratic Programming solver [64,

144] with a time horizon of T = 10. The models are evaluated in 200 different simulations

where xstart is drawn uniformly from [−2, 2].

min
{xt,ut}>t=1

>∑
t=1

|xt|

s.t. |ut| 6 10, t = 1, . . . , T

xt+1 = f̂(xt,ut) +φθ(xt,ut), t = 1, . . . , T − 1

x1 = xstart

ẋ1 = 0

(3.48)

3.5 experiments 82

Results

Figure 3.3: (Double Integrator Model Errors) The error in predicted velocity of the sufficiently
accurate and the uniformly accurate models. There is a constant control input of u = 1
used to generate these plots. The top row contains three different views of the error for
the sufficiently accurate model, while the bottom row contains the same three views
for the uniformly accurate model. The z-axis on each plot is the error in the velocity for
the difference |f(xt,ut) − (f̂(xt,ut) +φθ(xt,ut))|. Best viewed in color.

The sufficiently accurate formulation utilizes the prior knowledge that the model should

be more accurate near the goal in order to stop efficiently. While the system is far from the

origin, the control is simple, regardless of the friction; the controller only needs to know

what direction to push in. A plot of the accuracy of both models is shown in Figure 3.3

and summarized in Table 3.2. It is noticeable that the sufficiently accurate model has low

average error near the origin, but suffers from higher average error outside of the region

defined by I(s). This is the expected behavior.

The performance of the controllers are summarized in Table 3.1. Even though sufficiently

accurate model has higher error outside of the constraint region and lower error within, it

leads to lower costs when controlling the double integrator. The reason is shown in Figure

3.5 experiments 83

Figure 3.4: (Experimental Surrogate Duality Gaps) Duality gaps of learning the double integrator
problem with different neural networks and sample sizes (best viewed in color). The
y-axis shows the Lagrangian value at the end of training which approximates D?

N. The
models numbers indicate how large the neural network is with Model 0 being the
smallest network. For each N, 15 tests with each model were run, and a box plot is
shown that indicates the median as a solid bolded line. The ends of each box are the
1st and 3rd quartile, while the whiskers on the plot are the minimum and maximum
values. The red line is the optimal value to the original problem (3.16). Note that for
N = 10000, the median is not shown for Model 0 as it is very large (0.21).

3.5, where the sufficiently accurate model may get to steady state a bit slower but is able to

control the overshoot better and not have oscillations near the origin. This is because the

model is purposefully more accurate near the origin as it is more important for this task.

Convergence Experiments

The double integrator is a simple system. This enables running more comprehensive tests

to experimentally show some aspects of Theorem 1. For this particular system, we will

run one more experiment where 4 different neural network architectures were used. Each

network has two hidden layers with PReLU activation, where the only difference is in the

number of neurons in each layer. Denoting a network as (number of neurons in first layer,

number of neurons in second layer), the network sizes used are: (2, 1), (4, 2), (8, 4), (16, 8).

A set of values of the number of samples, N, are also chosen: {100, 1000, 5000, 10000, 15000}.

3.5 experiments 84

Figure 3.5: (Double Integrator Trajectory) This shows the evolution of the trajectory of the double
integrator when controlled using MPC with both a sufficiently accurate and uniformly
accurate model. ∑>

t=1 |xt|
∑>
t=1 |xt|/|xstart|

Uniformly Accurate 5.51± 3.46 5.66± 0.89
Sufficiently Accurate 4.73± 3.38 4.57± 0.73

Table 3.1: (Double Integrator Controller Performance) This table shows the results of 200 trials of
simulating the double integrator starting from different positions. Each entry shows the
mean and one standard deviation. The first column shows the raw cost function of the
MPC problem averaged over all trials. The second column shows an average normalized
cost where each cost is normalized by the absolute value of the starting position. This is
due to the fact that larger magnitude starting locations will have higher costs.

For each N, 15 random datasets are sampled, and each neural network is trained with each

dataset using the sufficiently accurate objective described in Section 3.5.1. There is one

minor difference in how the data is collected; a zero mean Gaussian noise with σ = 0.2 is

added to vt+1. With noisy observations of velocity, the optimal model that can be learned

for (3.16) will have an objective value of P? = 0.04. The results of training each neural

network model with each random dataset is shown in Figure 3.4. Each boxplot in the

figure shows the distribution of the final value of the Lagrangian, LN, at the ending of

training. This is an approximation of D?
N. The primal-dual algorithm may not be able to

solve for the optimal D?
N, but the expectation is that for a simple problem like double

3.5 experiments 85

All state space IK ICK

Uniform 0.110± 0.098 0.083± 0.054 0.113± 0.10

Sufficient 0.136± 0.126 0.048± 0.040 0.146± 0.13

Table 3.2: (Double Integrator Model Errors) The error is the absolute difference between the true
model and the learned models. Each entry shows the mean and one standard deviation.
The first column shows the average error for the whole state space. The second column
shows the average error for the state space near the origin, while the third column shows
the average error for the complement of that set (states far from the origin). The errors
are evaluated on a test set not seen during training.

integrator, the solution is somewhat close. In fact, Figure 3.4 shows that with increasing

model sizes and larger N, the distribution of the solutions appear to be converging to P?.

Note that the figure shows the value of the Lagrangian with training data. Thus for small

N, networks can over-fit and have a near zero Lagrangian value. When increasing N, the

networks have less of a chance to over-fit to the training data.

3.5.2 Ball Paddle System

Figure 3.6: (Ball Bouncing Simulation) The paddle seeks to bounce the orange ball above a target
position on the xy plane, represented by the red ball. This figure shows a time sequence
of a bounce from left to right.

3.5 experiments 86

Figure 3.7: (Model Errors vs. Velocity Magnitude) The scatter plot shows the distribution of model
errors versus the magnitude of the velocity of the true result. Both the sufficiently and
uniformly accurate models are evaluated using a validation set that is not used during
training. The blue dotted line represents the boundary of where the constraint set is
and the red dotted line represents the boundary of the constraint function.

Introduction

This experiment involves bouncing a ball on a paddle as in Figure 3.6. The ball has the

state space x = [pball, vball], where pball is the three-dimensional position of the ball,

vball is the three-dimensional velocity of the ball. The control input is u = [vpaddle,n]

where vpaddle is the velocity of the paddle at the moment of impact with the ball and n is

the normal vector of the paddle, representing its orientation. This control input is a high

level action and is realized by lower level controllers that attempt to match the velocity and

orientation desired for the paddle. A basic model of how the velocity of the ball changes

during collision is

v+ball = αr(v
−
rel − 2n(n · v

−
rel)) + vpaddle

v−rel = (v−ball − vpaddle)

(3.49)

where the superscript − refers to quantities before the paddle-ball collision and the

superscript + refers to quantities after the paddle-ball collision (the paddle velocity and

orientation are assumed to be unchanged during and directly after collision). αr is the

3.5 experiments 87

Figure 3.8: (Ball Bouncing Trajectory) The (x, y z) trajectory of the ball is plotted for both the base
model (with wrong parameters) and a learned model using the sufficiently accurate
objective. This plot shows that the base model is not sufficient by itself to bounce the
ball at a desired location.

coefficient of restitution. In this experiment, a neural network is tasked to learn the model

of how the ball velocity changes, i.e. (3.49).

Experimental Details

First, a neural network is trained without knowledge of any base model of how the ball

bounces. This will be denoted as learning a full model as opposed to a residual model.

This network is trained two ways, with the uniformly accurate problem (3.5) as well as the

sufficiently accurate problem realized in Example 3.2. The constants used in Example 3.2 are

defined here as εc = 0.1 and δc = 0.1.

A second neural network is trained for both the uniformly and sufficiently accurate

formulations that utilizes the base model, f̂(x,u) given in (3.49) to learn a residual error. In

the base model, the coefficient of restitution, αr, is wrong and the control n has a constant

bias where a rotation of 0.2 radians is applied to the y-axis. This is to simulate a robot

arm picking up the paddle and not observing the rotation from the hand to the paddle

correctly.

3.5 experiments 88

The neural network used for all models has 2 hidden layers with 128 neurons in each

using the PReLU activation. The input into the network is the the state of the ball and the

control input at time of collision, [x−,u], and it outputs the ball velocity after the collision,

v+ball. The network was trained using the ADAM optimizer with an initial learning rate

of 10−3 for both the primal and dual variables. The data used for all model training was

gathered by simulating random ball bounces in MuJoCo for the equivalent of 42 minutes

in real life.

All learned models are then evaluated with how well a controller utilizes them. The

controller will attempt to bounce the ball at a specific xy location. This is represented

through the following optimization problem that the controller solves

min
u

|loc(φθ(x,u)) − locdesired|

s.t. rollmin 6 roll 6 rollmax

pitchmin 6 pitch 6 pitchmax

vmin 6 |vrel| 6 vmax

(3.50)

where loc(·) is a function that maps the velocity of the ball to the xy location it will be in

when it falls back to its current height. roll and pitch are both derived from the paddle

normal n. [locdesired, rollmin, rollmax,pitchmin,pitchmax, vmin, vmax] are parameters

of the controller that can be chosen. The system and controller is then simulated in MuJoCo

[139] using libraries from the DeepMind Control Suite [136].

Each model is evaluated 500 different times for varying controller parameters. locdesired

is uniformly distributed in the region {(x,y)|− 1m 6 x 6 1m,−1m 6 y 6 1m}, vmin

uniformly sampled from the interval [3m/s, 4m/s), and vmax is selected to be above vmin

by between 1m/s to 2m/s.

3.5 experiments 89

Results

A plot of the model errors are shown in Figure 3.7. While the uniformly accurate model

has errors that are distributed more or less uniformly across all magnitudes of ball velocity,

the sufficiently accurate model has a clear linear relationship. This is expected from the

normalized objective that is used which penalizes errors based on large the velocity of the

ball is. Therefore, larger velocities can have larger errors with the same penalty as smaller

velocities with small errors.

The results of running each model with the controller 500 times is shown in Table

3.3. The error characteristics of the sufficiently accurate model (Figure 3.7) allow it to out

perform its uniformly accurate counterpart with both a full model and a residual model.

For the full model, the uniformly accurate problem yields a failure rate of over 20% while

the sufficiently accurate problem yields a failure rate of under 1%. Here, failure means

the paddle fails to keep the ball bouncing. For the residual model, neither model failed

because the base model provides a decent guess (though the base model by itself is not

good enough for control, see Figure 3.8). The sufficiently accurate model still provided

better mean errors.

We hypothesize that the large errors spread randomly across the uniform model leads

to high variance estimates of the output given small changes in the input. For optimizers

that use gradient information, this leads to a poor estimate of the gradient. For optimizers

that are gradient free, this still causes problems due to the high variance of the values

themselves.

3.5 experiments 90

Uniform Sufficient

Full Model
Failure 20.8% 0.8%

Mean error 0.3136 0.2124

Residual Model
Failure 0% 0%

Mean error 0.164 0.156

Table 3.3: (Ball Bouncing Controller Performance) Results of 500 trials of ball bouncing for each
model. There is a full and residual model trained for both the uniformly accurate and
sufficiently accurate model learning problems.

Figure 3.9: (3D Quadrotor Simulation) Trajectory of the Sufficiently Accurate and Uniformly
Accurate models used in a MPC controller (best viewed in color). The goal is to land at
a precise point represented by the red dot. Each plot is a different view of the same
data. The dotted lines represent the trajectory of the center of mass of the vehicle for 50

time steps. The state of the quadrotor at the last time step is drawn.

3.5.3 Quadrotor

Introduction

The last experiment deals landing a quadrotor while undergoing disturbances from ground

effect. This disturbance occurs when a quadrotor operates near surfaces which can change

the airflow [112]. The state for the quadrotor model is a 12 degree of freedom model

which consists of x = [p, v,q,ω] where p ∈ R3 is position of the center of mass, v ∈ R3 is

the center of mass velocity, q ∈ SO(3) is a quaternion that represents the orientation the

quadrotor, and w ∈ R3 is the angular velocity expressed in body frame. The control input

3.5 experiments 91

is u = [u(1),u(2),u(3),u(4)] where u(i) is the force from the ith motor. The base model of

the quadrotor, f̂(x,u) is as follows

pt+1

vt+1

qt+1

ωt+1

=

pt + ṗt∆t

vt + v̇t∆t

qt+q̇t∆t
‖qt+q̇t∆t‖2

ωt + ω̇t∆t

ṗ

v̇

q̇

ω̇

=

v

q⊗ [0, 0,
∑4
i=1 u

(i)/m]> ⊗q−1 − [0, 0, 9.81]>

1
2ω⊗q

I−1(T −ω× (Iω))

T =

u(4) − u(2)

u(3) − u(1)

(u(1) + u(3)) − (u(2) + u(4))

(3.51)

where m is the total mass of the quadrotor (set to be 1kg for all experiments) and I is

inertia matrix around the principle axis (set to be identity for all experiments). The ×

symbol represents cross product, and ⊗ represents quaternion multiplication. When using

⊗ between a vector and a quaternion, the vector components are treated as the imaginary

components of a quaternion with a real component of 0. The discrete model normalizes

the quaternion for each state update so that it remains a unit quaternion. The body frame

of the quadrotor is such that the x axis aligns with one of the quadrotor arms, and the z

axis points “up."

3.5 experiments 92

The true model used in simulation adds disturbances to the force on each propeller, but

is otherwise the same as the base model:

f(x,u) = f̂(x,h(x,u)) (3.52)

where h : Rn ×Rp → Rp is the ground effect model. In this experiment we provide a

simplified model of ground effects where each motor has independence disturbances. The

ith output of the ground effect model, hi(x,u) is

hi(x,u) = u(i)(1+Kground)

Kground = ([1−
hprop

hmax
]+)(

4[θground −
π
2]
2
+

π2
)α

(3.53)

where hprop is height of the propeller above the ground (not the height of the center of

mass), hmax is a constant that determines the height at which the ground effect is no

longer in effect. θground is the angle between the unit vector aligned with the negative

z axis of the quadrotor and the unit vector [0, 0,−1]. α is a number in the set [0, 1] that

represents the maximum fraction of the propeller’s generated force that can be added as a

result of ground effect. As a reminder, the [·]+ operator projects its arguments onto the

positive orthant. A visualization of Kground is shown in Figure 3.10. In the experiments,

hmax = 1.5, α = 0.5.

Figure 3.10: (Ground effect) A visualization of Kground as a function of θground and hprop.

3.5 experiments 93

Experimental Details

The Sufficiently Accurate model trained using the problem presented in Example 3.1, where

εc = 0.001 and the indicator I(s) is active when the height of the quadrotor is less than

1.5. A uniformly accurate and sufficiently accurate model are trained to learn the residual

error between f(x,u) and f̂(x,u). Both models use a neural network with 2 hidden layers

of 16 and 8 neurons each with PReLU activation. The update for primal and dual variables

used ADAM with αθ = 1× 10−3 and αλ = 1× 10−4, and both models trained using 3, 000

epochs. The training data consists of 10, 000 randomly sampled quadrotor states. The

(x,y) positions of the quadrotor were uniformly sampled from [−10, 10]. The z positions

of the quadrotor were uniformly sampled from [0.1, 5]. Linear velocities components were

uniformly sampled from [−6, 6]. Angular velocities components were uniformly sampled

from [−2.5, 2.5]. Control inputs for each motor are sampled from [0, 10]. Quaternions are

sampled by sampling random unit vectors along with a random angle in [−0.4rad, 0.4rad].

This angle-axis rotation is transformed into a quaternion.

Both models are tested by sampling a random starting location and asking the quadrotor

to land at the origin. The controller used for landing is an MPC controller that repeatedly

solves the following problem

min
{ut,xt}Tt=1

T∑
t=1

‖pt −ptarget‖2

s.t. 0 6 ut 6 10,∀t

xt+1 = f̂(xt,ut) +φθ(xt,ut), t = 1, . . . , T − 1

ht,com > 0.2, ∀t

|qw − 1| 6 0.05

(3.54)

3.5 experiments 94

Sufficiently Accurate Uniformly Accurate

MPC cost 4.21± 1.88 4.55± 1.90
E[l(s,φθ)] 6.52× 10−4 6.16× 10−4

E[g(s,φθ)I(s)] 1.00× 10−4 8.28× 10−4

Table 3.4: (Quadrotor Results) The first row shows the MPC cost average (3.54) and one standard
deviation over 5 runs. The second row shows the training loss, while the third row
shows the constraint function. The expected errors are evaluated on a test set not seen
during training.

where p is the position of the quadrotor, ht,com is the height of the center of mass, and

qw is the real component of the quaternion at the last time step. This problem encourages

reaching a target, subject to control and dynamics constraint. It also has a constraint on the

height of the quadrotor so it is always above a certain small altitude, and an orientation

constraint on the last time step so it is mostly upright when it lands.

Results

The results of running this controller over several different starting locations is shown in

Table 3.4. Similar to previous experiments, the sufficiently accurate model has a higher loss

overall, but better accuracy in the constrained area which is more important to the task.

This allows the controller to utilize the higher accuracy to land the quadrotor precisely. An

example of one of the landing trajectories is shown in Figure 3.9. It can be seen that the

sufficiently accurate model can more precisely land at the origin (0, 0). It also is able to

reach the ground faster, as it can more accurately compensate for the extra force caused by

the ground surface. The ground effect can also disturb roll and pitch maneuvers which

can offset the center of mass as well.

3.6 conclusion 95

3.6 conclusion

This chapter presented sufficiently accurate model learning as a way to incorporate prior

information about a system in the form of constraints. In addition, it proves that this

constrained learning formulation can have arbitrarily small duality gap. This means that

existing methods like primal-dual algorithms can find decent solutions to the problem.

With good constraints, the model and learning method can focus on important aspects

of the problem to improve the performance of the system even if the overall accuracy of

the model is lower. These constraints can come from robust control formulations or from

knowledge of sensor noise. Some important questions to consider when using this method

is how to choose good constraints. For some systems and tasks, it can be simple while for

others, it can be quite difficult. This objective is not useful for all tasks and systems but

rather for a subset of tasks and systems where prior knowledge is more easily expressed

as a constraint.

4
S E M I - A U TO M AT I C C O N S T R A I N T

G E N E R AT I O N

Chapter 3 introduced the idea of sufficiently accurate model learning where introducing

constraints in the model learning formulation can improve the performance of the planning

algorithms that utilize it. These constraints come from human prior knowledge and can

require expert insight. This chapter seeks to lower the barrier of entry for generating

constraints by introducing a method to semi-automatically generate them. Human prior

knowledge will still be required, but will not be in the form of specific model constraints.

Instead, the prior comes in the form of knowing when a system has failed or is close to

failure as well as how to create a constraint from a failure mode. Often times, this is easier

to define that explicit constraints.

There is a trade off between using expert knowledge and performance. If a human

expert is infinitely knowledgeable and had infinite time, they might be able to choose

the most optimal constraints for a model learning problem for a specific system. This can

result in great performance at the cost of large amount of human labor and expertise. On

the other hand, if an automatic constraint generation method uses very general principles

to learn constraints, it will not be able to exploit system specific information. This can lead

to inefficiency in the learning process and result in poor models, large data requirements,

or large training times but can save human labor. There is a spectrum that trades off

computational time, effort, and performance with human time and effort. For many

problems, a middle ground between purely human designed heuristics and no human

96

semi-automatic constraint generation 97

intervention exists, and a method for semi-automatic constraint generation provides a

method to find tradeoff point.

Another aspect to consider in purely human designed priors is the possibility of mistakes.

An invalid constraint can reduce performance of a system rather than enhance it. A semi-

automatic constraint learning system can require less knowledge which might in turn lead

to less mistakes.

An analogue to directly human created constraints for model learning are expert systems

[84], a framework for automatic decision making based on human given knowledge with

computer inference. The performance of the system is very dependent on the strength of the

expert human knowledge. On the other end of the spectrum, a completely unconstrained

model learning problem is akin to early fully connected neural networks. It had very

little prior knowledge about the task desired. All knowledge is derived from the data

observed. The goal of semi-automatic constraint learning is to provide a framework such

as a Convolutional Neural Network. This introduces some prior (convolutions) for tasks

like image categorization but still relies on data. This approach can outperform a purely

data driven approach [74] and may require less human effort than an expert system.

The method we propose requires a motion planning algorithm, the ability to test motion

plans with a learned model, and a variable amount of human knowledge. A learned model

will be trained from gathered data and tested on the real system. Human determined

failure points will stop the system and generate constraints with the failure data. Then,

this process will repeat. The iterative generation process allows constraints to be refined

with more data and adapted as the model itself changes.

Section 4.1 will discuss previous work in machine learning and robotics for constraint

learning. Section 4.2 will formulate the problem to be solved and Section 4.2.1 will present

a framework to solve it. Experiments on two types of systems will be presented in Section

4.3.

4.1 background 98

4.1 background

This section will review methods with a similar goal to semi-automatic constraint learning

for models. We will discuss constraint learning techniques in general machine learning

algorithms as well as more specific work in motion planning.

4.1.1 Constraint Learning

The underpinning of many machine learning algorithms utilizes constrained optimization.

Constrained problems can be formulated for classification [145], segmentation [96], regres-

sion [121] and appears in many classical machine learning techniques such as Support

Vector Machines [133]. It is of interest in many situations to learn the constraints in such

problems from a labeled dataset of inputs and outputs of an unknown optimization

problem. This is known as constraint learning [25] or inverse optimization [3, 19]. Constraints

can induce bias in the solution, and learning the constraints can hopefully introduce useful

biases that can lead to more general solutions [89]. The literature in this field generally

focuses on learning the parameters of an objective and constraint function [1, 135]. For

example, instead of the optimization problem presented in (3.16).

P? = min
φ∈Φ

Es∼SD
[`(s,φ)I0(s)]

s.t. Es∼SD
[gk(s,φ)Ik(s)] 6 0,k = 1, 2, . . . ,K,

the loss function ` and constraint functions gk might have additional parameters ω`,ωgk .

An example of a parameterized loss function is a Mahalanobis distance [86] `(s,φ,ω`) =

(xt+1 −φ(xt,ut))>Σω`(xt+1 −φ(xt,ut)). Then presented, with a set of N pairs of dis-

4.1 background 99

tributions and solution models, (SD,i,φi)Ni=1, the inverse optimization problem can be

written as the following bi-level optimization problem [135]

min
ωl,ωgk

1

N

N∑
i=1

L(φi,φ∗i)

s.t. ESD,i [gk(s,φi,ωgk)Ik(s)] 6 0,k = 1, 2, . . . K, i = 1, 2, . . . ,N

φ∗i =

arg minφEs∼SD,i [`(s,φ,ω`)I0(s)]

s.t. Es∼SD,i [gk(s,φ,ωgk)Ik(s)] 6 0,k = 1, 2, . . . ,K.

(4.1)

where L is a function that penalizes the case when φi 6= φ∗i . (4.1) describes a problem

to find the parameters ω`,ωgk such that the solution of the inner optimization problem

matches closely to the given dataset solutions, φi, while also ensuring that the dataset

solutions match the constraint functions that are optimized over. When the problem to

optimize over is a linear program, there are various solutions [3, 135]. [135] uses Sequential

Quadratic Programming to optimize the bi-level optimization. The inner optimization

problem is solved using any typical linear program solver, and the gradients are obtained

by differentiating through the Karush–Kuhn–Tucker (KKT) conditions [15] at the solution

[7]. A similar approach to learning general convex problems is given in [1].

4.1.2 Learning Trajectory Constraints

Section 4.1.1 discussed constraint learning in general machine learning context, however

there has also been work on constraint learning specifically for trajectory generation or

motion planning. [2, 8] uses the a similar approach as [7] but applies it to the specific

problem of Model Predictive Control. The goal is to be able to learn dynamic constraints

or cost functions with respect to some function of the MPC solution. This can be used,

4.2 constraint generation 100

for example, to learn the dynamics model of a robot given trajectories that follow some

presumable optimal path or to learn the parameters of cost and constraint functions to

match the style of some demonstrated motion.

[99] learns constraints for robotic arm grasping tasks by using a database of demonstra-

tions. Keyframes of the demonstrations are clustered, and human prior knowledge is used

to infer geometric constraints from the clustered keyframes. Constraints on pose or orienta-

tion are established based on human tuned heuristics that depend on geometric quantities

in a keyframe cluster. This allows certain tasks to learn constraints from a handful of

demonstrations which are then used for planning. The goal is that these constraints more

effectively capture the essential quantities of importance from the demonstrations. [22]

also learns constraints from a set of demonstrations. The method assumes the demonstra-

tions come from an optimal planner with some known constraints and hopes to discover

unknown constraints. A planner is then used to generate lower cost solutions than the

demonstrations. These low cost solutions are assumed to violate the unknown constraints

as the assumption is the demonstrations should obtain the lowest costs already. These low

cost solutions can be utilized to detect the unknown constraints.

4.2 constraint generation

The goal of semi-automatic constraint generation is given 1) a motion planner, 2) the ability

to test motion plans on the system, and 3) some human prior information, find constraints

gk : X×U→ R such that a model can perform well on a set of N planning tasks. This can

be expressed as a tri-level optimization problem

4.2 constraint generation 101

min
gk

1

N

N∑
i=1

ci

s.t. ci =

minu1:T planning_costi(x1:T ,u1:T)

s.t. planning_constraintsi(x1:T ,u1:T) 6 0

xt+1 = φθ(xt,ut), t = 1, . . . , T − 1

θ =

arg minθ Es∼SD

[`(s,φ)I0(s)]

s.t. Es∼SD
[gk(s,φ)Ik(s)] 6 0,k = 1, 2, . . . ,K

(4.2)

where planning_costi and planning_constraintsi are the cost function and constraints

for the ith planning task. The goal of this problem is to find good model constraints, gk such

that a sufficiently accurate model from Section 3.2 will do well on a set of tasks. This can be

seen as learning a set of useful biases for the model to improve its functionality and bears

some resemblance to the experienced piano mover’s problem discussed in Chapter 2. As with

Chapter 3, the constraints can empower resource constrained function approximators to

trade off where their expressive power can be utilized best for the set of tasks.

Consider the concrete example of planning and controlling a vehicle on an unevenly

icy surface. Learning a dynamics model in this environment can help predict the hard to

model friction. A set of tasks in this environment might take the form of traveling from

one corner of the map to the other from various starting and goal locations. The problem

of constraint generation is to identify constraints for model learning such that the task of

traveling across the map is better fulfilled.

While (4.2) looks similar to a inverse optimization problem (4.1), there are a few key

distinctions. First, there is an additional level of indirection. In (4.1), a planning problem

can be formulated, and the planning constraints are optimized [1–3, 8, 135]. In (4.2), a

4.2 constraint generation 102

model learning problem is formulated and model constraints are optimized to best suit

an inner set of planning problems. Second, the planning problems considered in [2] are

convex and known to have zero duality gap, thus the inner problems can be implicitly

differentiated through the KKT conditions. For general model learning, the convexity of

the inner problem does not hold.

4.2.1 Methodology

Figure 4.1: (Semi-automatic Constraint Generation) The semi-automatic constraint generation
process iteratively adds and updates constraints with new data collected.

Instead of directly solving (4.2), the approach will be to incorporate human heuristics

into finding good constraints. We incorporate these human heuristics into a standard

model learning pipeline.

Model learning in robotics is often done in an iterative way [149]. Data is collected from

the system, the a model is learned from the data, then the new model is used to collect

data. This iterates until a desired level of performance is achieved. The reason for this

iterative process rather than a one time data collection is due to distribution shift. Often

4.2 constraint generation 103

times, the distribution of states and actions that the loss function optimizes over, SD is

dependent on the model itself. SD can represent the distribution of state, action, next state

tuples induced by using the learned model to plan on a set of tasks. The objective is to

have low error on the dataset that is actually experienced by the model. Thus, a one time

data collection may not accurately reflect the real distribution of data that is dependent

on the model itself. A form of this problem is addressed by [111], which suggests that

adding new data to the dataset collected from the model can converge to a steady state

distribution. Thus, model learning for a robotic task generally appears in the form of

Algorithm 8 where the red lines are modified or added for the constrained version that

this work proposes.

Algorithm 8 Constrained Model Learning with Semi-automatic Constraint Generation

1: procedure LEARN-CONSTRAINED-MODEL
2: Initialize θ ∈ Θ
3: Initialize dataset D = ∅
4: while Not Converged do
5: Use model φθ to collect data tuples, Di = (xt,ut, xt+1)
6: D← D∪Di
7: GENERATE-CONSTRAINTS(Di,φθ) to formulate a sufficiently accurate model

learning problem (3.16).
8: θ← PRIMAL-DUAL(θ,D)
9: end while

10: end procedure

Algorithm 9 Constraint Generation

1: procedure GENERATE-CONSTRAINTS
2: for (xt,ut, xt+1) in D do
3: if FAILURE(φθ(xt,ut))or FAILURE(xt+1) then
4: CREATE-CONSTRAINTS()
5: UPDATE-CONSTRAINTS()
6: end if
7: end for
8: end procedure

4.2 constraint generation 104

This work proposes using the iteratively generated data to create task specific constraints

and then solve the constrained problem that arises as shown in Figure 4.1. Similar to how

the iterative data collection and training process can fix the distributional shift, the iterative

constraint generation can also adapt the constraints to be useful to the task at hand. As

the model is improved, constraints are added to only the areas that further improve the

planner’s capabilities. The GENERATE-CONSTRAINTS function is task specific and will

output both a constraint function, gk as well as a set over the state-action space denoted

by the indicator variable Ik. It is where human knowledge is brought in to heuristically

solve (4.2). In this work, the constraints considered are of the form

E[‖xt+1 −φθ(xt,ut)‖p Ik(xt,ut)] 6 εk (4.3)

which constrains the expected norm of the error in a region defined by Ik to be less than

εk. The two tunable parameters of this constraint will be Ik and εk. The constraints can

be created by Algorithm 9 which require several task and system specific functions to be

defined: FAILURE, CREATE-CONSTRAINTS, and UPDATE-CONSTRAINTS.

1. FAILURE(x) is a function that takes the state of a system and decides if it has failed

or is close to failure. This is what triggers a constraint region to be generated.

2. CREATE-CONSTRAINTS is a function that will generate the constraint based on

which state failed and any additional human knowledge that can be incorporated in.

3. UPDATE-CONSTRAINTS is a function that updates the constraints given new data.

For example, if a the planner keeps creating paths that go through a constraint

region, but the trajectory keeps failing, it could indicate that the constraint needs

to be tightened. This function may be less system specific but require choosing

4.2 constraint generation 105

the correct heuristics for the task at hand. Common heuristics will be discussed in

Section 4.2.2.

4.2.2 Update Constraint Heuristics

This section will discuss two heuristics that can be used in the UPDATE-CONSTRAINTS

function from Algorithm 9. The goal of this function is to adapt the constraint parameters

in (4.3) from already created constraint regions to new data.

Constraint Tightening

The first heuristic is simple. It relies on a counter for each constraint region. This counter

will be incremented whenever a path that goes through the constraint region ends

up triggering the FAILURE function later on. When the counter is high enough, the

counter will be reset and the error bound, εk will be scaled down to αεk,α ∈ (0, 1).

The goal of this heuristic is to tighten constraints that were initially decided by the

CREATE-CONSTRAINTS function if too many paths that go through the constraint region

ultimately end up failing. The scaling parameter α should be chosen conservatively as

decreasing the constraint bound too fast may give too much importance to some regions.

It should also be noted that the counter increment should take place only if the constraint

E[‖xt+1 −φθ(xt,ut)‖p Ik(xt,ut)] is close to the constraint bound, εk. The constraint

should not be adjusted if the model learning has not yet achieved the constraint desired,

as the failure counter does not properly reflect the status of current constraint parameters.

4.3 experiments 106

Region Merging

The second heuristic will merge constraint regions that are close. When two constraint

regions, Ik and Ik+1, have large overlap and similar constraint bounds, εk, a new region

that encompasses both can be created to replace them. The new region will use the lower

constraint bound. This process allows the number of constraints to remain low if a large

number of small constraint regions are created. Checking overlap between regions can be

a nontrivial computation. It depends on how the regions are defined. Thus, this heuristic

is only applicable in cases where computing region overlap and the new region shape is

computationally efficient.

4.3 experiments

This section will present results on experiments utilizing model learning with semi-

automatic constraint generation as described in Algorithm 8. All experiments will compare

the constrained model against a model learned without using any constraints. There are

two systems tested: a 2D simulated rocket and a kinematic bicycle model. All constraints

used will be of the form

‖xt+1 −φθ(xt,ut)‖22 Ik(xt,ut) 6 εk (4.4)

Each experimental section will consist of three components: a description of the system

and problem setup, a description of the experimental details including the system specific

functions as described in Section 4.2.1, and a description of the results and analysis.

4.3 experiments 107

4.3.1 Simple Rocket Model

System Description

Figure 4.2: (Rocket System) Simple 2D model of a rocket that has two thrusters and is buffeted by
winds that apply lateral force and torque.

This system simulates a simple rocket in a plane with two thrusters that allows the

rocket to control its lift and attitude as shown in Figure 4.2. There is also an external

disturbance of the wind which will cause a lateral force to the rocket as well as a torque.

The strength of the wind depends on the height of the rocket.

The state of the rocket system is a 6 dimensional vector x = [px,py, θ, ṗx, ṗy, θ̇]>, where

(px,py) represents the coordinates of the location of the rocket and θ is the heading. θ = 0

represents the rocket pointing straight up, and a positive theta corresponds with counter-

clockwise rotation. The two thrusters output forces u = [u1,u2]> as the control inputs in

4.3 experiments 108

the range [0, 1]. The dynamics model of the rocket with the external wind disturbance (in

red) is

ẋ = f̂(x,u) + disturbance(x,u)

=

ṗx

ṗy

θ̇

−u1+u2m sin(θ)

u1+u2
m cos(θ) − g

B(u2−u1)
Imoment

+

0

0

0

Fwind
m

0

Twind
Imoment

(4.5)

where m = 0.1 kg is the mass, B = 0.25 m is half the base width, and Imoment =

0.417kg m2 is the moment of inertia. A discretized model using Euler integration with

time step ∆t = 0.1 s is used for simulation. The disturbance functions, Fwind and Twind

are shown in Figure 4.3.

Figure 4.3: (Rocket Wind Disturbance) Force and Torque caused by wind disturbance as a function
of the height of the rocket.

4.3 experiments 109

The task for the rocket is to land safely despite the buffeting winds. A optimization

based controller is formulated

min
{xt}

T
t=1,{ut}T−1t=1

αgoal(xT − xgoal)
>C(xT − xgoal) +αcontrol

T−1∑
t=1

‖(‖ut)

s.t. ‖ut‖∞ 6 umax,∀t

pyt > 0,∀t

|θt| 6
π

4
− εθ,∀t

x1 = xstart, (pxT ,pyT) = pgoal

(4.6)

which tries to land the rocket at the goal with minimal control effort and avoid crashing or

tilting at too large an angle. pgoal is simply the location component of xgoal.

Experimental Details

The experiments compare two neural network models. Both are residual error models that

attempt to learn the disturbance component of the dynamics model in (4.5). One model

is learned using Algorithm 8, while the other learned using the same iterative process but

with no constraints. Both models are neural networks with two hidden layers of 16 and 8

neurons. Each hidden layer is followed by a PReLU activation [43]. All weights and biases

of the output layers are initialized to zeros. The models are all trained using the ADAM

optimizer with a learning rate of 1e− 4. The constrained model updated the dual variables

with ADAM as well with a learning rate of 5e− 4.

The system specific functions for the rocket system are as follows:

1. FAILURE: the system is in a failure mode if the height is below 0 or the absolute

value of angle of the rocket exceeds π/4

4.3 experiments 110

2. CREATE-CONSTRAINTS: A constraint region is generated around the failure state

that includes all (px, ṗx, ṗy) values. (py, θ, θ̇) values within a radius of (1.5,π/4, 3)

are included. The error bound εk is set to be half of the current error in that region.

3. UPDATE-CONSTRAINTS: The rocket system uses the constraint tightening heuristic

discussed in Section 4.2.2 with α = 0.5.

The training procedure for both the constrained and unconstrained models consists

of using an initial dataset of 60,000 data tuples to train an initial unconstrained model.

Then, 4 iterations of collecting data and training the model. Each data collection consisted

of obtaining 32 trajectories using a receding time horizon controller that solves (4.6)

with T = 30, xgoal = 0, C = diag(0.1, 0.1, 0.05, 1, 1, 1), αgoal = 1, αcontrol = 0.01,

umax = [1, 1]>. Each model is trained for 150 epochs between data gathering. After all the

constraints are gathered, the models are finetuned for a further 700 epochs to facilitate

constraint satisfaction.

Results and Analysis

The constraint generation procedure generated two constraints centered around a mean

with error εk shown in Table 4.1. Using a validation dataset, the results of the trained

model are shown in Table 4.2. The first three rows show the squared model error over the

entire dataset as well as on each constraint region. Notice that though the constrained

model has worse error overall, it is more accurate in the constraint regions. The error in

the constraint regions in Table 4.3 do not perfectly satisfy the constraints bounds given in

Table 4.1 because of two reasons: 1) a validation dataset is used to evaluate the errors and

2) the primal-dual training process does not guarantee convergence to a feasible solution.

After both a constrained and unconstrained model is trained, the models are tested by

running the planner described in (4.6) over 200 novel starting states. The planner is used

4.3 experiments 111

to generate controls in the style of a Model Predictive Controller; A plan is generated and

several time steps of the control are used, and then the planner replans. The starting x

location is uniformly sampled from [−4, 4], the starting y location is sampled from [4, 10],

and the starting angle is sampled from [−π/6,π/6]. The starting velocities are all set to 0.

The failure rate of the constrained and unconstrained model are shown in the last row

of Table 4.2. Despite having higher overall model error, the constrained model obtains a

slightly lower failure rate.

Mean (py, θ, θ̇) εk

Constraint 0 (2.312, 0.731, 0.359) 5.7244e-7

Constraint 1 (0.243, 0.918, 0.639) 2.5523e-7

Table 4.1: (Rocket Constraint Regions) The two constraint regions generated for the rocket system
through Algorithm 8. The second column shows the mean of constraint region, while
the third column shows the constraint bound.

Metric Unconstrained Model Constrained Model

Entire state-action space ` 2.534e-6 3.369e-6

Constraint 0: E[g0I0] 2.284e-6 5.995e-7

Constraint 1: E[g1I1] 2.084e-6 3.173e-7

Failure Rate 0.875 0.840

Table 4.2: (Rocket Experiment Results) This table records the error of the model in various subsets
of the dataset as well as the failure rate of running a closed loop planner 200 times on
problems with new starting states.

4.3.2 Bicycle Model

System Description

The kinematic bicycle model, as shown in Figure 4.4, is a common model used to simulate

higher fidelity car models as it can closely approximate them [105]. The state consists

4.3 experiments 112

of x = [px,py, θ, v]> where (px,py) is the location of the vehicle on a 2D plane, v is the

velocity, and θ is the heading. The control inputs are u = [a, δ] where a is an acceleration

and δ is a steering angle.

Figure 4.4: (Bicycle Model) Kinematic bicycle model that is commonly used for vehicle motion
planning.

This experiment deals with a vehicle traveling on an uneven icy surface. The differential

equation that governs the slippery bicycle model is

ẋ =

v cos(θ+β)

v sin(θ+β)

v
lr

sin(β)

a ∗ coeffa

,β = arctan(

lr

lr + lf
tan(δ))coeffδ (4.7)

where lr, lf is the distance from the center of the bike to the rear and front wheel

respectively. coeffa and coeffδ are slip coefficients in the range (0, 1] where 1 contains

no slip and corresponds to the normal bicycle model. A discrete system model is created

using Euler integration with a time step of ∆t = 0.1.

4.3 experiments 113

The task for the bicycle system is to navigate from a start state to a goal position while

avoiding circular obstacles. An receding horizon optimization based planner is formulated

as

min
{xt}

T
t=1,{ut}T−1t=1

∥∥∥[px,py]> − pgoal

∥∥∥2
2
+

T∑
t=1

K∑
k=1

[1.1 ∗ rk −
∥∥∥[px,py]> − ck

∥∥∥
2
]+

s.t. ‖ut‖∞ 6 umax, t = 1, . . . , T − 1

vmin 6 vt 6 vmax, t = 1, . . . , T∥∥∥[pxt,pyt]> − ck

∥∥∥
2
> rk, t = 1, . . . , T ,k = 1, . . . ,K,

(4.8)

where obstacles are represented as a set of circles, (ck, rk)
K
k=1, where ck is the circle center

and rk is the radius. This controller hopes to keep the vehicle away from the obstacles and

encourages the trajectory to keep a small safety margin.

Experimental Details

Figure 4.5: (Bicycle Slip Coefficient) The true map of the environment the bicycle system is
simulated in. The slip coefficients in (4.7) are shown as contour lines.

4.3 experiments 114

Figure 4.6: (Bicycle Square Errors) Squared errors in two constraint regions on a validation dataset.
The errors approximately follow a folded Gaussian distribution.

Similar to the rocket experiment, a constrained and unconstrained model is trained. Both

models try to learn the error between the real system model in (4.7) with slip coefficients

varying over location as shown in Figure 4.5. Both the acceleration and turning slip

coefficients are the same at any given location. Both models use neural networks identical

to those used in the rocket experiment (Section 4.3.1) except that the hidden layers have 8

and 4 neurons.

The system specific functions for the bicycle system are as follows:

1. FAILURE: the system is in a failure mode if the bicycle system crashes into an

obstacle

2. CREATE-CONSTRAINTS: A constraint region is generated around the state right

before a crash that includes all (θ, v) values. (px,py) values within a radius of 0.5 are

included. The (px,py) squared prediction error in a constraint region is modeled as

a folded normal distribution. This assumption is approximate and can be seen in Figure

4.6. To maintain safety, the squared prediction error can be constrained such the

distance from the predicted state to the nearest obstacles is greater than 3 standard

deviations.

4.3 experiments 115

3. UPDATE-CONSTRAINTS: The bicycle system uses the region merging heuristic

discussed in Section 4.2.2 when the overlap volume between two constraints is 40%

of any of the two separate constraints.

The training procedure for both the constrained and unconstrained models consists of

using an initial dataset of 40,000 data tuples to train an initial unconstrained model. Then

3 iterations of collecting data and training the model. Each data collection consisted of

obtaining 32 trajectories using a receding time horizon controller that solves (4.8) with

T = 60, umax = [1, 0.6]>, vmin = −1, vmax = 5. There are three circular obstacles in the

map shown in Figure 4.5. The starting (px,py) locations are sampled uniformly from

the range [−6,−4]× [−6,−4]. The goal (px,py) locations are sampled uniformly from the

range [4, 6]× [4, 6]. Each model is trained for 200 epochs between data gathering. After all

the constraints are gathered, the models are finetuned for a further 500 epochs to facilitate

constraint satisfaction.

Results and Analysis

Figure 4.7: (Bicycle Constraint Regions) The generated constraint regions are shown in blue.

The constraint generation process created 6 constraint regions. The errors for the final

constrained and unconstrained models are shown in Table 4.3 and their locations are

4.3 experiments 116

Figure 4.8: (Bicycle Trajectories and Failures) This plot shows the trajectories of 1000 test runs
of the unconstrained and constrained models using the planner described in (4.8).
The first row displays results for the unconstrained model in green. The second row
displays results for the constrained model in blue. The first column shows the actual
trajectories taken.

shown in Figure 4.7. The overall model error for both the constrained and unconstrained

model are similar. However, the constrained model has less error in its constraint regions.

This is traded off for worst accuracy elsewhere.

The last row of Table 4.3 displays the failure rate of the models when tested on 1000

validation start and goal locations for the planner (4.8) to navigate. Similar to the rocket

system, this planner is operated in a receding time horizon loop. The constrained model

obtains fails almost 3 times less than the unconstrained model. The 1000 trajectories and

the failure locations are shown in Figure 4.8. While the constrained model still occasionally

fails inside the constraint regions, the number is greatly reduced. There are 5 constraint

regions generated for the bottom right obstacles, and Figure 4.8 shows that the vast

4.3 experiments 117

majority of the collisions for the unconstrained model occurs in those constraint regions.

This is alleviated in the constrained model.

Metric Unconstrained Model Constrained Model

Entire state-action space 7.937e-4 7.460e-4

Constraint 0: E[g0I0] 3.966e-4 2.969e-4

Constraint 1: E[g1I1] 9.947e-4 7.322e-4

Constraint 2: E[g2I2] 5.269e-5 2.957e-5

Constraint 3: E[g3I3] 1.760e-3 1.011e-3

Constraint 4: E[g4I4] 3.672e-4 3.506e-4

Constraint 5: E[g5I5] 1.000e-3 7.786e-4

Failure Rate 0.133 0.050

Table 4.3: (Bicycle Experiment Results) This table records the error of the model in various subsets
of the dataset as well as the failure rate of running a closed loop planner 1000 times on
problems with random start and goal states.

4.3.3 Conclusion

This chapter provides a method to alleviate some of the human effort involved in creating

constraints for a sufficiently accurate model as presented in Chapter 3. By using an iterative

process that requires a few system specific functions that may be easier to define than

the constraints themselves, constraints may be automatically generated to improve the

planning model.

The constrained rocket model achieved small performance gains compared to the

unconstrained model, the constrained bicycle model improved upon its unconstrained

counterpart by a larger margin. We believe this is due to the nature of the CREATE-

CONSTRAINTS functions used. The rocket system used a fairly generic function. It simply

created constraints that were some fraction of the current models errors. The bicycle model

used a more principled approach that constrained the errors by a physically meaningful

4.3 experiments 118

value. One interpretation is that the constrained bicycle model required more human

effort to craft a more specific CREATE-CONSTRAINTS function. There is a trade off

between crafting more specialized functions to enable the model learning algorithms to

take advantage of human prior knowledge and performance and computational effort.

5 C O N C L U S I O N S

Incorporating machine learning algorithms into robot motion planning is about evaluating

tradeoffs. Machine learning by itself is a tool that can be extremely powerful to enable

pattern recognition across large datasets. However, it does not contain many of the human

heuristics that might be hard to infer from data alone.

Chapter 2 discussed learning heuristics for planning algorithms. In particular, one

experiment showed that learning a sampling distribution for a flytrap environment yields

extremely similar results to some human designed heuristics (Figure 2.9). This illustrates

the trade off on a small scale. Learning algorithms may be able to replace some human

expertise but at the cost the computational effort required to search for the solution.

Different problems may require a different mix of human expertise and machine learned

data processing.

Chapters 3 and 4 explored a constrained framework for model learning. The results

display a range of trade offs from explicitly designing constraints with human intuition

(Chapter 3) to using less human expertise but more computational power to search for

constraints (Chapter 4). Even within the semi-automatic process, there is a range of

solutions that can incorporate less human knowledge (the rocket system) or more human

knowledge (the bicycle system).

This work shows various methods that can shift the effort of finding efficient and low

cost motion plans between humans and computers. There is no free lunch as each method

comes with costs and benefits. At this time, specific robot systems and tasks should be

119

conclusions 120

evaluated on which aspects should be automated and which aspects should be designed

with human expertise. Currently, the intersection of machine learning and robot motion

planning is still in its infancy and we hope that future research can lessen the burden on

the human expertise required to utilize the algorithms in this space.

6 A P P E N D I X

6.1 expectation-wise lipschitz-continuity of loss func-

tions

This Appendix section shows that the loss functions in Examples 3.1 and 3.2 are expectation-

wise Lipschitz-continuous.

Selective Accuracy, Example 3.1

The loss function l(s,φ) = ‖φ(xt,ut) − xt+1‖2 is expectation-wise Lipschitz-continuous in

φ. Using the reverse triangle inequality, we get

‖l(s,φ1) − l(s,φ2)‖∞ = ‖‖φ1(xt,ut) − xt+1‖2 − ‖φ2(xt,ut) − xt+1‖2‖∞
6 ‖‖φ1(xt,ut) −φ2(xt,ut)‖2‖∞ .

(6.1)

By, the equivalence of norms, there exists L such that ‖φ1(x,u) −φ2(x,u)‖2 6 L|φ1(x,u)−

φ2(x,u)|, for all (x,u). Thus,

‖l(s,φ1) − l(s,φ2)‖∞ 6 L ‖φ1 −φ2‖∞ (6.2)

Since this is true for any s, it is also true in expectation.

Es ‖l(s,φ1) − l(s,φ2)‖∞ 6 LEs ‖φ1 −φ2‖∞ (6.3)

121

6.2 equivalent problem formulation 122

Normalized Objective, Example 3.2

The loss function l(s,φ) = ‖φ(xt,ut)−xt+1‖2
‖xt+1‖2

IA(s) is also expectation-wise Lipschitz-continuous

in φ. Following the same logic as for the euclidean norm, we get

‖l(s,φ1) − l(s,φ2)‖∞ 6 L

∥∥∥∥ IA(s)

‖xt+1‖2
(φ1 −φ2)

∥∥∥∥∞ (6.4)

This reduces to

‖l(s,φ1) − l(s,φ2)‖∞ 6 L

∥∥∥∥ 1

minxt+1 ‖xt+1‖2
(φ1 −φ2)

∥∥∥∥∞ (6.5)

when considering the case where s ∈ A. The largest that IA(s)
‖xt+1‖2

can be is 1 over the

smallest value of ‖xt+1‖2. If s 6∈ A, both sides reduce to 0, as the indicator variable is 0.

This leads to

‖l(s,φ1) − l(s,φ2)‖∞ 6 L

∥∥∥∥1ε(φ1 −φ2)
∥∥∥∥∞

E ‖l(s,φ1) − l(s,φ2)‖∞ 6
L

ε
E ‖φ1 −φ2‖∞

(6.6)

6.2 equivalent problem formulation

Using the notation from Section 3.2, the problem defined in [110] is

P? =max
x,φ

f0(x)

s.t. x 6 E[f1(s,φ(s))]

f2(x) > 0, x ∈ X,φ ∈ Φ

(6.7)

6.2 equivalent problem formulation 123

where f0, and f2 are concave functions. f1 is not necessarily convex with respect to φ. X is

a convex set and Φ is compact. Note that f0, f1, f2, x, and X are not directly present in the

Sufficiently Accurate problem.

To translate the problem, let us assume that x is K+ 1 dimensional, where K is the

number of constraints in (3.16). Let the last element of f1(s,φ) be equal to −l(s,φ)I0(s),

the negative of the objective function in the Sufficiently Accurate problem. Let the first kth

element of f1(s,φ) be equal to −gk(s,φ)Ik(s), the negative of a constraint function in

(3.16). Set the objective function to be f0(x) = xK+1, where xK+1 is the (K+ 1)th element

of x. f2 can be ignored by setting it to be the zero function. Under these assumptions, (6.7)

is equivalent to the following

P? =max
x,φ

xK+1

s.t. xk 6 −E[gk(s,φ)Ik(s)],k = 1, . . . ,K

xK+1 6 −E[l(s,φ)I0(s)]

x ∈ X,φ ∈ Φ.

(6.8)

Now, define the set X = {(x1, x2, . . . , xK+1) : xk = 0,k = 1, . . . ,K, xK+1 ∈ XK+1}, where

XK+1 is an arbitrary compact set in one dimension. This set of vectors, X, is a set that is 0

in the first K components, and is compact in the last component. This, will further simplify

(6.8) to the following

P? =max
φ

−E[l(s,φ)I0(s)]

s.t. 0 6 −E[gk(s,φ)Ik(s)],k = 1, . . . ,K

φ ∈ Φ

(6.9)

6.3 proof of theorem 3 124

as long as l takes on values in a compact set. Finally, flipping all the negatives in (6.9),

P? = − min
φ∈Φ

E[l(s,φ)I0(s)]

s.t. E[gk(s,φ)Ik(s)] 6 0,k = 1, . . . ,K
(6.10)

This completes the translation of problem (6.7) to (3.16).

6.3 proof of theorem 3

This proof follows some of the steps of the proof for [29, Theorem 1]. Let (φ?, λ?) be the

primal and dual variables that attains the solution value of P? = D? in problems (3.16)

and (3.35). Similarly, let (θ?, λ?θ) be the primal and dual variables that attain the solution

value D?
θ in problem (3.31). φθ? is the function that θ? induces. Note that the optimal dual

variables for (3.35), λ?, are not necessarily the same as the optimal dual variables for (3.31),

λ?θ.

Lower Bound

We first show the lower bound for D?
θ. Writing out the dual problem (3.35), we obtain

D? = max
λ>0

min
φ∈Φ

L(φ, λ) = L(φ?, λ?) (6.11)

Since λ? is the optimal dual variable that achieves the maximal value for the maximization

and minimization for the Lagrangian, it is true that

φ? = arg min
φ

L(φ, λ?). (6.12)

6.3 proof of theorem 3 125

Thus for any φ,

L(φ?, λ?) 6 L(φ, λ?),∀φ ∈ Φ. (6.13)

We now look at the parameterized dual problem (3.31).

D?
θ = max

λ>0
min
θ∈Θ

Lθ(θ, λ) = max
λ>0

min
θ∈Θ

L(φθ, λ) (6.14)

This simply redefines Lθ in terms of L as the only difference is that Lθ is only defined

for a subset of the primal variables that L is defined for. By definition, λ?θ maximizes the

minimization of Lθ over θ. That is to say for the dual solution (θ?, λ?θ), λ
?
θ minimizes

L(φθ? , ·)

λ?θ = arg max
λ>0

min
θ∈Θ

L(φθ, λ)

= arg max
λ>0

L(φθ? , λ).
(6.15)

Thus, for all λ, it is the case that

L(φθ? , λ?θ) > L(φθ? , λ) (6.16)

Putting together (6.13) and (6.16), we obtain

D?
θ = L(φθ? , λ?θ) > L(φθ? , λ?) > L(φ?, λ?) = D? (6.17)

Upper Bound

Next, we show the upper bound for D?
θ. We begin by writing the Lagrangian (3.30)

D?
θ = max

λ>0
min
φ∈Φθ

L(φθ, λ) (6.18)

6.3 proof of theorem 3 126

as previously written in (6.14). By adding and subtracting L(φ, λ), we obtain

D?
θ = max

λ>0
min
θ∈Θ

L(φ, λ) +L(φθ, λ) −L(φ, λ)

= max
λ>0

[L(φ, λ) + min
θ∈Θ

[L(φθ, λ) −L(φ, λ)]]

6 max
λ>0

[L(φ, λ) + min
θ∈Θ

|L(φθ, λ) −L(φ, λ)|]

(6.19)

where the last line comes from the fact that the absolute value of an expression is always

at least as large as the original expression, i.e. x 6 |x|. Looking just at the quantity

|L(φθ, λ) −L(φ, λ)|, we can expand it as

|L(φθ, λ) −L(φ, λ)| = |E[`0(s,φθ) + λ>g(s,φθ)]−

E[`0(s,φ) + λ>g(s,φ)]|
(6.20)

Using the triangle inequality, this is upper bounded as

|L(φθ, λ) −L(φ, λ)| 6 |E[`0(s,φθ) − `0(s,φ)]|+

|E[λ>(g(s,φθ) −g(s,φ))]|
(6.21)

Using Hölder’s inequality, we can create a further upper bound

|L(φθ, λ) −L(φ, λ)| 6 ‖E[`0(s,φθ) − `0(s,φ)]‖∞+

‖λ‖1 ‖E[g(s,φθ) −g(s,φ)]‖∞
(6.22)

where the infinity norm of the scalar value E[`0(s,φθ)− `0(s,φ)] is the same as its absolute

value. Using the fact that the infinity norm is convex and Jensen’s inequality, we can move

the norm inside of the expectation.

|L(φθ, λ) −L(φ, λ)| 6 E ‖`0(s,φθ) − `0(s,φ)‖∞ + ‖λ‖1E ‖g(s,φθ) −g(s,φ)‖∞ (6.23)

6.3 proof of theorem 3 127

By expectation-wise Lipschitz-continuity of both the loss and constraint functions,

|L(φθ, λ) −L(φ, λ)| 6 LE ‖φθ −φ‖∞ + ‖λ‖1 LE ‖φθ −φ‖∞
= (1+ ‖λ‖1)LE ‖φθ −φ‖∞ .

(6.24)

Combining (6.19) with (6.24), we obtain

D?
θ 6 = max

λ>0
[L(φ, λ) + (‖λ‖1 + 1)Lmin

θ∈Θ
E ‖φθ −φ‖∞] (6.25)

Since, Φθ is an ε-universal approximation for Φ, we can write minθ∈ΘE ‖φθ −φ‖∞ 6 ε.

This further reduces (6.25) to

D?
θ 6 max

λ>0
[L(φ, λ) + (‖λ‖1 + 1)Lε]. (6.26)

Note that (6.26) is true for all φ. In particular it must be also true for the λ that minimizes

the inner value, i.e.

D?
θ 6 max

λ>0
min
φ∈Φ

[L(φ, λ) + (‖λ‖1 + 1)Lε]

= Lε+ max
λ>0

min
φ∈Φ

[E[`0(s,φ)] + λ>(E[g(s,φ)] + 1Lε)]

(6.27)

The second half of (6.27) is actually the solution to the dual problem (3.26). The primal

problem is reproduced here for reference,

P?Lε = min
φ∈Φ

E[`0(s,φ)]

s.t. E[g(s,φ)] + 1Lε 6 0.

That is to say, D?
θ 6 Lε+D?

Lε. The primal problem (3.25) is a perturbed version of (3.16),

where all the constraints are tighter by Lε. There exists a relationship between the solution

6.4 proof of lemma 1 128

of (3.25) and (3.16) from [15, Eq. 5.57]. Treating (3.16) as the perturbed version of (3.25)

(that tightens the constraints by −Lε), the relationship between the two solutions is

P? > P?Lε − λ
?
Lε
>1Lε. (6.28)

Since both (3.16) and (3.25) have zero duality gap by Theorem 2, this is the same as

D? > D?
Lε − ‖λ?Lε‖1 Lε. (6.29)

Combining (6.29) with the fact that D?
θ 6 Lε+D?

Lε, the following bound is obtained.

D?
θ 6 D? + Lε(‖λ?Lε‖1 + 1) (6.30)

This gives us the desired upper bound.

6.4 proof of lemma 1

We start by establishing an upper bound on the difference |D?
θ −D

?
N|. By definition of

the Dual Problems (3.31) and (3.22), it follows that D?
θ = minθLθ(θ, λ?θ) and D?

N =

minθLN(θ, λ?N). Hence we have that

D?
θ −D

?
N = min

θ
Lθ(θ, λ?θ) − min

θ
LN(θ, λ?N)

6 min
θ

Lθ(θ, λ?θ) − min
θ

LN(θ, λ?θ), (6.31)

where the inequality follows from the fact that λ?N maximizes the function dN(λ) =

minθLN(θ, λ). Thus, any other λ, in particular λ?θ results in a value that is less than or

6.4 proof of lemma 1 129

equal to D?
N. Let θ?N(λ) = arg minθ∈ΘLN(θ, λ). Substituting by this definition and using

the definition of minimum, (6.31) can be further upper bounded by

D?
θ −D

?
N 6 Lθ(θ

?
N(λ

?
θ), λ

?
θ) −LN(θ

?
N(λ

?
θ), λ

?
θ). (6.32)

We set now to establish a similar lower bound. Analogous to the step for the upper bound,

we can use the definition of the Dual problem to lower bound D?
θ −D

?
N

D?
θ −D

?
N > min

θ
Lθ(θ, λ?N) − min

θ
LN(θ, λ?N). (6.33)

Likewise, define θ?(λ) = arg minθ∈ΘLθ(θ, λ) and further upper bound (6.33) as

D?
θ −D

?
N > Lθ(θ

?(λ?N), λ
?
N) −LN(θ

?(λ?N), λ
?
N). (6.34)

Using the upper and lower bounds for D?
θ −D

?
N derived in (6.32) and (6.34), we can

bound the absolute value of the difference by the maximum of the absolute values of the

lower and upper bounds

|D?
θ −D

?
N| 6 max

|Lθ(θ

?(λ?N), λ
?
N) −LN(θ

?(λ?N), λ
?
N)|

|Lθ(θ
?
N(λ

?
θ), λ

?
θ) −LN(θ

?
N(λ

?
θ), λ

?
θ)|

(6.35)

A conservative upper bound for the previous expression is

|D?
θ −D

?
N| 6 | sup

θ∈Θ,λ∈RK+

Lθ(θ, λ) −LN(θ, λ)| (6.36)

This completes the proof of the Lemma.

L I S T O F TA B L E S

Table 3.1 (Double Integrator Controller Performance) This table shows the
results of 200 trials of simulating the double integrator starting from
different positions. Each entry shows the mean and one standard
deviation. The first column shows the raw cost function of the
MPC problem averaged over all trials. The second column shows
an average normalized cost where each cost is normalized by the
absolute value of the starting position. This is due to the fact that
larger magnitude starting locations will have higher costs. 84

Table 3.2 (Double Integrator Model Errors) The error is the absolute differ-
ence between the true model and the learned models. Each entry
shows the mean and one standard deviation. The first column
shows the average error for the whole state space. The second col-
umn shows the average error for the state space near the origin,
while the third column shows the average error for the complement
of that set (states far from the origin). The errors are evaluated on a
test set not seen during training. 85

Table 3.3 (Ball Bouncing Controller Performance) Results of 500 trials of
ball bouncing for each model. There is a full and residual model
trained for both the uniformly accurate and sufficiently accurate
model learning problems. 90

Table 3.4 (Quadrotor Results) The first row shows the MPC cost average
(3.54) and one standard deviation over 5 runs. The second row
shows the training loss, while the third row shows the constraint
function. The expected errors are evaluated on a test set not seen
during training. 94

Table 4.1 (Rocket Constraint Regions) The two constraint regions generated
for the rocket system through Algorithm 8. The second column
shows the mean of constraint region, while the third column shows
the constraint bound. 111

Table 4.2 (Rocket Experiment Results) This table records the error of the
model in various subsets of the dataset as well as the failure rate
of running a closed loop planner 200 times on problems with new
starting states. 111

130

list of tables 131

Table 4.3 (Bicycle Experiment Results) This table records the error of the
model in various subsets of the dataset as well as the failure rate of
running a closed loop planner 1000 times on problems with random
start and goal states. 117

L I S T O F I L L U S T R AT I O N S

Figure 1.1 (Configuration and Task Space) Illustration of the configuration
space of a 3 link planar robot arm. On the left, the task space is
shown. The purple lines represent the physical links of the robot
arm. The red circle is an example of a circular obstacle in the plane.
On the right, the purple dot represents the configuration space
coordinates of robot arm configuration shown in the left. On the
right, the red shape represents the circle obstacle in configuration
space coordinates. 2

Figure 1.2 (Motion Planning Graph) Illustration of how a graph can model
vehicle movement on a road. 6

Figure 1.3 (Sampling-based vs Graph-based Planners) Comparison between
paths found by Rapidly-Exploring Random Trees (RRT) and Dijkstra
Graph Search on an empty 2D map with a holonomic robot. 10

Figure 2.1 (Cost-to-go) Example of a cost-to-go function on a 2D grid world
with rooms. The colorbar shows the cost-to-go normalized between
to the range [0, 1]. 18

Figure 2.2 (Rejection Sampling) An example of a learned distribution for the
task of a robot arm reaching for various objects on a tabletop. On
the left, samples from a uniform distribution of the configuration
space are displayed. Some of which may be rejected by a learned
rejection sampling policy to form a new learned distribution over
the configuration space. 19

Figure 2.3 (MDP Example) A simple example of a Markov Decision Process
with a robot traveling on a line. 30

Figure 2.4 (Rejection Sampling MDP) MDP representing rejection sampling
in a RRT. Blue circles represent nodes in the tree, while the lines
represent edges connecting nodes. At a state st, you can transition
to possible next states, st+1, by rejecting or accepting the random
sample xrand. 38

Figure 2.5 (Policy Gradient Reward Curve) Rewards while using the policy
gradient to update a rejection sampling policy for RRT. 41

Figure 2.6 (Policy Network Architecture) Neural network architecture used
for rejection sampling policy. FC(N) stands for a Fully Connected
Layer with N neurons. 43

132

list of illustrations 133

Figure 2.7 (Various Flytrap Environments) The green dot is an example start-
ing location and the red dot is an example goal location. 2.7a is
what the policy is trained on in the experiment. 2.7b is what the
policy is tested on for the experiment. 2.7c shows the environment
used by BallTree [122] 46

Figure 2.8 (Flytrap Experiment Results) Results of 100 runs of each planner
on the test Flytrap environment. Each bar shows the ratio of the
learned planner’s metric to the unmodified planner (over 100%
means more than the original planner). 47

Figure 2.9 (Learned and Heuristic Rejection Policies) Comparison between
learned policies and BallTree and Dynamic Domain RRT. 47

Figure 2.10 (Learned Sampling Distributions) Learned probability distribu-
tions for RRT. While the policy is the same, the distributions change
as the RRT search progresses. For each figure, the bottom plane
shows the environment with a green search tree, while the blue dots
show sampled points representing the learned distribution. 48

Figure 2.11 (Pendulum Results) Results of 100 runs of each planner on the
Pendulum environment. Each bar shows the ratio of the learned
planner’s metric to the unmodified planner (over 100% means more
than the original planner). 49

Figure 2.12 The Thor robot in a test of the tabletop environment. 50

Figure 2.13 (Robot Arm Results) Comparison of results of BiRRT in 7 degree of
freedom robot arm tabletop environments. Each bar shows the ratio
of the learned planner’s metric to the unmodified planner 51

Figure 2.14 (Learned Sampling Distribution) Visualization of the learned re-
jection policy for the tabletop environment. On the bottom right
is a point-cloud representation of a test environment. A cleaning
spray is hidden within an open box. Each colored dot represents
the position of the end effector for a configuration state. A yellow
dot represents a state with high rejection probability while a red
one represents one with low rejection probability. 52

Figure 3.1 (Primal Dual Training Curve) Example of the evolution of the
constraint, loss, and dual variables during training. The red dotted
line shows 0. The curves have been scaled so that they fit on the
same y-axis and they are of different magnitudes. The constraint
function is unfeasible, which leads to a growing dual variable. This
can cause the loss function to increase until the constraint is feasible
again. 76

Figure 3.2 (Double Integrator Friction Force) The magnitude of the accelera-
tion due to the position varying kinetic friction force. 80

list of illustrations 134

Figure 3.3 (Double Integrator Model Errors) The error in predicted velocity of
the sufficiently accurate and the uniformly accurate models. There
is a constant control input of u = 1 used to generate these plots. The
top row contains three different views of the error for the sufficiently
accurate model, while the bottom row contains the same three views
for the uniformly accurate model. The z-axis on each plot is the error
in the velocity for the difference |f(xt,ut) − (f̂(xt,ut) +φθ(xt,ut))|.
Best viewed in color. 82

Figure 3.4 (Experimental Surrogate Duality Gaps) Duality gaps of learning
the double integrator problem with different neural networks and
sample sizes (best viewed in color). The y-axis shows the Lagrangian
value at the end of training which approximates D?

N. The models
numbers indicate how large the neural network is with Model 0

being the smallest network. For each N, 15 tests with each model
were run, and a box plot is shown that indicates the median as a
solid bolded line. The ends of each box are the 1st and 3rd quartile,
while the whiskers on the plot are the minimum and maximum
values. The red line is the optimal value to the original problem
(3.16). Note that for N = 10000, the median is not shown for Model
0 as it is very large (0.21). 83

Figure 3.5 (Double Integrator Trajectory) This shows the evolution of the
trajectory of the double integrator when controlled using MPC with
both a sufficiently accurate and uniformly accurate model. 84

Figure 3.6 (Ball Bouncing Simulation) The paddle seeks to bounce the orange
ball above a target position on the xy plane, represented by the red
ball. This figure shows a time sequence of a bounce from left to
right. 85

Figure 3.7 (Model Errors vs. Velocity Magnitude) The scatter plot shows the
distribution of model errors versus the magnitude of the velocity
of the true result. Both the sufficiently and uniformly accurate
models are evaluated using a validation set that is not used during
training. The blue dotted line represents the boundary of where the
constraint set is and the red dotted line represents the boundary of
the constraint function. 86

Figure 3.8 (Ball Bouncing Trajectory) The (x, y z) trajectory of the ball is
plotted for both the base model (with wrong parameters) and a
learned model using the sufficiently accurate objective. This plot
shows that the base model is not sufficient by itself to bounce the
ball at a desired location. 87

list of illustrations 135

Figure 3.9 (3D Quadrotor Simulation) Trajectory of the Sufficiently Accurate
and Uniformly Accurate models used in a MPC controller (best
viewed in color). The goal is to land at a precise point represented
by the red dot. Each plot is a different view of the same data. The
dotted lines represent the trajectory of the center of mass of the
vehicle for 50 time steps. The state of the quadrotor at the last time
step is drawn. 90

Figure 3.10 (Ground effect) A visualization of Kground as a function of θground
and hprop. 92

Figure 4.1 (Semi-automatic Constraint Generation) The semi-automatic con-
straint generation process iteratively adds and updates constraints
with new data collected. 102

Figure 4.2 (Rocket System) Simple 2D model of a rocket that has two thrusters
and is buffeted by winds that apply lateral force and torque. 107

Figure 4.3 (Rocket Wind Disturbance) Force and Torque caused by wind
disturbance as a function of the height of the rocket. 108

Figure 4.4 (Bicycle Model) Kinematic bicycle model that is commonly used
for vehicle motion planning. 112

Figure 4.5 (Bicycle Slip Coefficient) The true map of the environment the
bicycle system is simulated in. The slip coefficients in (4.7) are
shown as contour lines. 113

Figure 4.6 (Bicycle Square Errors) Squared errors in two constraint regions
on a validation dataset. The errors approximately follow a folded
Gaussian distribution. 114

Figure 4.7 (Bicycle Constraint Regions) The generated constraint regions are
shown in blue. 115

Figure 4.8 (Bicycle Trajectories and Failures) This plot shows the trajectories
of 1000 test runs of the unconstrained and constrained models using
the planner described in (4.8). The first row displays results for the
unconstrained model in green. The second row displays results for
the constrained model in blue. The first column shows the actual
trajectories taken. 116

B I B L I O G R A P H Y

[1] Akshay Agrawal, Shane Barratt, and Stephen Boyd. “Learning Convex Optimization
Models.” In: arXiv preprint arXiv:2006.04248 (2020).

[2] Akshay Agrawal, Shane Barratt, Stephen Boyd, and Bartolomeo Stellato. “Learning
Convex Optimization Control Policies.” In: Learning for Dynamics and Control. PMLR.
2020, pp. 361–373.

[3] Ravindra K Ahuja and James B Orlin. “Inverse Optimization.” In: Operations Research
49.5 (2001), pp. 771–783.

[4] Zlatan Ajanovic, Halil Beglerovic, and Bakir Lacevic. “A Novel Approach to Model
Exploration for Value Function Learning.” In: arXiv preprint arXiv:1906.02789 (2019).

[5] Anurag Ajay, Maria Bauza, Jiajun Wu, Nima Fazeli, Joshua B. Tenenbaum, Alberto
Rodriguez, and Leslie P. Kaelbling. “Combining Physical Simulators and Object-
Based Networks for Control.” In: 2019 International Conference on Robotics and
Automation (ICRA). 2019, pp. 3217–3223. doi: 10.1109/ICRA.2019.8794358.

[6] Nancy M Amato and Guang Song. “Using motion planning to study protein folding
pathways.” In: Journal of Computational Biology 9.2 (2002), pp. 149–168.

[7] Brandon Amos and J Zico Kolter. “OptNet: Differentiable Optimization as a Layer
in Neural Networks.” In: International Conference on Machine Learning. PMLR. 2017,
pp. 136–145.

[8] Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and
J Zico Kolter. “Differentiable MPC for End-to-end Planning and Control.” In: arXiv
preprint arXiv:1810.13400 (2018).

[9] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. “Spectrally-normalized
margin bounds for neural networks.” In: Advances in Neural Information Processing
Systems. 2017, pp. 6240–6249.

[10] Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian Scherer. “Learning Heuristic
Search via Imitation.” In: Conference on Robot Learning. PMLR. 2017, pp. 271–280.

[11] Jonathan Binney, Andreas Krause, and Gaurav S. Sukhatme. “Informative path plan-
ning for an autonomous underwater vehicle.” In: 2010 IEEE International Conference
on Robotics and Automation. 2010, pp. 4791–4796. doi: 10.1109/ROBOT.2010.5509714.

[12] Lars Blackmore and Masahiro Ono. “Convex Chance Constrained Predictive Control
Without Sampling.” In: AIAA Guidance, Navigation, and Control Conference, p. 5876.

136

https://doi.org/10.1109/ICRA.2019.8794358
https://doi.org/10.1109/ROBOT.2010.5509714

bibliography 137

[13] V. Boor, M.H. Overmars, and A.F. van der Stappen. “The Gaussian sampling
strategy for probabilistic roadmap planners.” In: Proceedings 1999 IEEE International
Conference on Robotics and Automation (Cat. No.99CH36288C). Vol. 2. 1999, 1018–1023

vol.2. doi: 10.1109/ROBOT.1999.772447.

[14] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive Control for
Linear and Hybrid Systems. Cambridge University Press, 2017.

[15] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex Optimization.
Cambridge university press, 2004.

[16] Oliver Brock, Jeff Trinkle, and Fabio Ramos. “BiSpace Planning: Concurrent Multi-
Space Exploration.” In: Robotics: Science and Systems IV. 2009, pp. 159–166.

[17] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. “Openai Gym.” In: arXiv preprint arXiv:1606.01540
(2016).

[18] Arunkumar Byravan, Felix Leeb, Franziska Meier, and Dieter Fox. “SE3-Pose-
Nets: Structured Deep Dynamics Models for Visuomotor Control.” In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). 2018, pp. 3339–3346. doi:
10.1109/ICRA.2018.8461184.

[19] Timothy CY Chan, Taewoo Lee, and Daria Terekhov. “Inverse Optimization: Closed-
form Solutions, Geometry and Goodness of fit.” In: Management Science 65.3 (2019),
pp. 1115–1135.

[20] Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, and Le Song. “Learning to Plan
in High Dimensions via Neural Exploration-Exploitation Trees.” In: International
Conference on Learning Representations. 2019.

[21] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. “Neural
Ordinary Differential Equations.” In: Proceedings of the 32nd International Conference
on Neural Information Processing Systems. 2018, pp. 6572–6583.

[22] Glen Chou, Dmitry Berenson, and Necmiye Ozay. “Learning Constraints from
Demonstrations.” In: International Workshop on the Algorithmic Foundations of Robotics.
Springer. 2018, pp. 228–245.

[23] Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora, Ashish Kapoor, Gireeja
Ranade, Sebastian Scherer, and Debadeepta Dey. “Data-driven Planning via Im-
itation Learning.” In: The International Journal of Robotics Research 37.13-14 (2018),
pp. 1632–1672.

[24] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. “Theta*: Any-angle Path
Planning on Grids.” In: Journal of Artificial Intelligence Research 39 (2010), pp. 533–579.

[25] Luc De Raedt, Andrea Passerini, and Stefano Teso. “Learning Constraints from
Examples.” In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.
2018.

https://doi.org/10.1109/ROBOT.1999.772447
https://doi.org/10.1109/ICRA.2018.8461184

bibliography 138

[26] Marc Deisenroth and Carl E Rasmussen. “PILCO: A Model-based and Data-efficient
Approach to Policy Search.” In: Proceedings of the 28th International Conference on
Machine Learning (ICML-11). Citeseer. 2011, pp. 465–472.

[27] EW Dijkstra. “A Note on Two Problems in Connexion with Graphs.” In: Numerische
Mathematik. 1959, pp. 269–271.

[28] Carl Doersch. “Tutorial on Variational Autoencoders.” In: arXiv preprint arXiv:1606.05908
(2016).

[29] Mark Eisen, Clark Zhang, Luiz FO Chamon, Daniel D Lee, and Alejandro Ribeiro.
“Learning Optimal Resource Allocations in Wireless Systems.” In: arXiv preprint
arXiv:1807.08088 (2018).

[30] Nima Fazeli, Samuel Zapolsky, Evan Drumwright, and Alberto Rodriguez. “Learn-
ing Data-efficient Rigid-body Contact Models: Case Study of Planar Impact.” In:
Conference on Robot Learning. PMLR. 2017, pp. 388–397.

[31] Chelsea Finn and Sergey Levine. “Deep visual foresight for planning robot motion.”
In: 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017,
pp. 2786–2793. doi: 10.1109/ICRA.2017.7989324.

[32] RG Franks and CW Worley. “Quantitative Analysis of Cascade Control.” In: Indus-
trial & Engineering Chemistry 48.6 (1956), pp. 1074–1079.

[33] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation: Rep-
resenting Model Uncertainty in Deep Learning.” In: International Conference on
Machine Learning. PMLR. 2016, pp. 1050–1059.

[34] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. “Informed
RRT*: Optimal sampling-based path planning focused via direct sampling of an ad-
missible ellipsoidal heuristic.” In: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2014, pp. 2997–3004. doi: 10.1109/IROS.2014.6942976.

[35] David M Gay, Michael L Overton, and Margaret H Wright. “A Primal-dual Inte-
rior Method for Nonconvex Nonlinear Programming.” In: Advances in Nonlinear
Programming. Springer, 1998, pp. 31–56.

[36] Philip E Gill and Daniel P Robinson. “A primal-dual augmented Lagrangian.” In:
Computational Optimization and Applications 51.1 (2012), pp. 1–25.

[37] Tom Goldstein, Brendan O’Donoghue, Simon Setzer, and Richard Baraniuk. “Fast
Alternating Direction Optimization Methods.” In: SIAM Journal on Imaging Sciences
7.3 (2014), pp. 1588–1623.

[38] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. “Variance Reduction
Techniques for Gradient Estimates in Reinforcement Learning.” In: Journal of Machine
Learning Research 5.9 (2004).

https://doi.org/10.1109/ICRA.2017.7989324
https://doi.org/10.1109/IROS.2014.6942976

bibliography 139

[39] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. “Continuous
Deep Q-Learning with Model-based Acceleration.” In: International Conference on
Machine Learning. PMLR. 2016, pp. 2829–2838.

[40] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak
Lee, and James Davidson. “Learning Latent Dynamics for Planning from Pixels.”
In: International Conference on Machine Learning. PMLR. 2019, pp. 2555–2565.

[41] Daniel Harabor and Alban Grastien. “Online Graph Pruning for Pathfinding on
Grid Maps.” In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 25. 1.
2011.

[42] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths.” In: IEEE Transactions on Systems
Science and Cybernetics 4.2 (1968), pp. 100–107. doi: 10.1109/TSSC.1968.300136.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.” In:
2015 IEEE International Conference on Computer Vision (ICCV). 2015, pp. 1026–1034.
doi: 10.1109/ICCV.2015.123.

[44] Sylvia L. Herbert, Mo Chen, SooJean Han, Somil Bansal, Jaime F. Fisac, and Claire J.
Tomlin. “FaSTrack: A modular framework for fast and guaranteed safe motion
planning.” In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC). 2017,
pp. 1517–1522. doi: 10.1109/CDC.2017.8263867.

[45] Gabriel Hoffmann, Steven Waslander, and Claire Tomlin. “Quadrotor Helicopter
Trajectory Tracking Control.” In: AIAA Guidance, Navigation and Control Conference
and Exhibit. 2008, p. 7410.

[46] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer Feedforward
Networks are Universal Approximators.” In: Neural networks 2.5 (1989), pp. 359–366.

[47] D. Hsu, J.-C. Latombe, and R. Motwani. “Path planning in expansive configuration
spaces.” In: Proceedings of International Conference on Robotics and Automation. Vol. 3.
1997, 2719–2726 vol.3. doi: 10.1109/ROBOT.1997.619371.

[48] Jinwook Huh, Galen Xing, Ziyun Wang, Volkan Isler, and Daniel D Lee. “Learning
to Generate Cost-to-Go Functions for Efficient Motion Planning.” In: arXiv preprint
arXiv:2010.14597 (2020).

[49] Brian Ichter, James Harrison, and Marco Pavone. “Learning Sampling Distributions
for Robot Motion Planning.” In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). 2018, pp. 7087–7094. doi: 10.1109/ICRA.2018.8460730.

[50] Brian Ichter and Marco Pavone. “Robot Motion Planning in Learned Latent Spaces.”
In: IEEE Robotics and Automation Letters 4.3 (2019), pp. 2407–2414. doi: 10.1109/LRA.
2019.2901898.

https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CDC.2017.8263867
https://doi.org/10.1109/ROBOT.1997.619371
https://doi.org/10.1109/ICRA.2018.8460730
https://doi.org/10.1109/LRA.2019.2901898
https://doi.org/10.1109/LRA.2019.2901898

bibliography 140

[51] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift.” In: International Conference
on Machine Learning. 2015, pp. 448–456.

[52] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. “When to Trust
Your Model: Model-Based Policy Optimization.” In: Advances in Neural Information
Processing Systems. Vol. 32. Curran Associates, Inc., 2019.

[53] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. “Fast March-
ing Tree: a Fast Marching Sampling-based Method for Optimal Motion Planning
in Many Dimensions.” In: The International Journal of Robotics Research 34.7 (2015),
pp. 883–921.

[54] Leslie Pack Kaelbling and Tomás Lozano-Pérez. “Hierarchical task and motion plan-
ning in the now.” In: 2011 IEEE International Conference on Robotics and Automation.
2011, pp. 1470–1477. doi: 10.1109/ICRA.2011.5980391.

[55] Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Camp-
bell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey
Levine, Afroz Mohiuddin, Ryan Sepassi, George Tucker, and Henryk Michalewski.
“Model Based Reinforcement Learning for Atari.” In: International Conference on
Learning Representations. 2020.

[56] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan
Schaal. “STOMP: Stochastic trajectory optimization for motion planning.” In: 2011
IEEE International Conference on Robotics and Automation. 2011, pp. 4569–4574. doi:
10.1109/ICRA.2011.5980280.

[57] Sertac Karaman and Emilio Frazzoli. “Sampling-based Algorithms for Optimal Mo-
tion Planning.” In: The International Journal of Robotics Research 30.7 (2011), pp. 846–
894.

[58] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. “Probabilistic roadmaps
for path planning in high-dimensional configuration spaces.” In: IEEE Transactions
on Robotics and Automation 12.4 (1996), pp. 566–580. doi: 10.1109/70.508439.

[59] Karel J Keesman. System Identification: an Introduction. Springer Science & Business
Media, 2011.

[60] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.”
In: arXiv preprint arXiv:1412.6980 (2014).

[61] Donald E Kirk. Optimal Control Theory: An Introduction. Courier Corporation, 2004.

[62] Sven Koenig, Maxim Likhachev, and David Furcy. “Lifelong Planning A*.” In:
Artificial Intelligence 155.1-2 (2004), pp. 93–146.

[63] Vijay R Konda and John N Tsitsiklis. “Actor-Critic Algorithms.” In: Advances in
neural information processing systems. Citeseer. 2000, pp. 1008–1014.

https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA.2011.5980280
https://doi.org/10.1109/70.508439

bibliography 141

[64] Donald H. Kraft. “A Software Package for Sequential Quadratic Programming.” In:
1988.

[65] J.J. Kuffner and S.M. LaValle. “RRT-connect: An efficient approach to single-query
path planning.” In: Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
Vol. 2. 2000, 995–1001 vol.2. doi: 10.1109/ROBOT.2000.844730.

[66] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai Dai,
Frank Permenter, Twan Koolen, Pat Marion, and Russ Tedrake. “Optimization-
based locomotion planning, estimation, and control design for the atlas humanoid
robot.” In: Autonomous Robots 40.3 (2016), pp. 429–455.

[67] Tobias Kunz and Mike Stilman. “Kinodynamic RRTs with Fixed Time Step and Best-
Input Extension Are Not Probabilistically Complete.” In: Algorithmic Foundations of
Robotics XI. Springer, 2015, pp. 233–244.

[68] Tobias Kunz, Andrea Thomaz, and Henrik Christensen. “Hierarchical rejection
sampling for informed kinodynamic planning in high-dimensional spaces.” In:
2016 IEEE International Conference on Robotics and Automation (ICRA). 2016, pp. 89–96.
doi: 10.1109/ICRA.2016.7487120.

[69] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel.
“Model-Ensemble Trust-Region Policy Optimization.” In: International Conference on
Learning Representations. 2018.

[70] Yoshiaki Kuwata, Gaston A. Fiore, Justin Teo, Emilio Frazzoli, and Jonathan P. How.
“Motion planning for urban driving using RRT.” In: 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2008, pp. 1681–1686. doi: 10.1109/IROS.
2008.4651075.

[71] Steven M LaValle. Planning Algorithms. Cambridge university press, 2006.

[72] Steven M LaValle and James J Kuffner Jr. “Randomized Kinodynamic Planning.”
In: The International Journal of Robotics Research 20.5 (2001), pp. 378–400.

[73] Steven M LaValle et al. “Rapidly-exploring Random Trees: A New Tool for Path
Planning.” In: (1998).

[74] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi:
10.1109/5.726791.

[75] Yongho Lee, Sunwon Park, and Moonyong Lee. “PID Controller Tuning to Obtain
Desired Closed Loop Responses for Cascade Control Systems.” In: Industrial &
engineering chemistry research 37.5 (1998), pp. 1859–1865.

[76] Sergey Levine and Vladlen Koltun. “Guided Policy Search.” In: International confer-
ence on machine learning. PMLR. 2013, pp. 1–9.

https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1109/ICRA.2016.7487120
https://doi.org/10.1109/IROS.2008.4651075
https://doi.org/10.1109/IROS.2008.4651075
https://doi.org/10.1109/5.726791

bibliography 142

[77] Weiwei Li and Emanuel Todorov. “Iterative Linear Quadratic Regulator Design for
Nonlinear Biological Movement Systems.” In: Citeseer.

[78] Yanbo Li, Zakary Littlefield, and Kostas E Bekris. “Asymptotically Optimal Sampling-
based Kinodynamic Planning.” In: The International Journal of Robotics Research 35.5
(2016), pp. 528–564.

[79] Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen
Berseth, and Koushil Sreenath. “Reinforcement Learning for Robust Parameterized
Locomotion Control of Bipedal Robots.” In: arXiv preprint arXiv:2103.14295 (2021).

[80] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian
Thrun. “Anytime Search in Dynamic Graphs.” In: Artificial Intelligence 172.14 (2008),
pp. 1613–1643.

[81] Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. “ARA*: Anytime
A* with Provable Bounds on Sub-optimality.” In: Advances in Neural Information
Processing Systems 16 (2003), pp. 767–774.

[82] Chang Liu, Seungho Lee, Scott Varnhagen, and H. Eric Tseng. “Path planning
for autonomous vehicles using model predictive control.” In: 2017 IEEE Intelligent
Vehicles Symposium (IV). 2017, pp. 174–179. doi: 10.1109/IVS.2017.7995716.

[83] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. “PDE-Net: Learning PDEs
from Data.” In: International Conference on Machine Learning. PMLR. 2018, pp. 3208–
3216.

[84] Peter Lucas and Linda Van Der Gaag. “Principles of Expert Systems.” In: (1991).

[85] Brandon J Luders, Mangal Kothariyand, and Jonathan P How. “Chance Constrained
RRT for Probabilistic Robustness to Environmental Uncertainty.” In: Proceedings of
the AIAA Guidance, Navigation, and Control Conference. 2010.

[86] Prasanta Chandra Mahalanobis. “On the generalized distance in statistics.” In:
National Institute of Science of India. 1936.

[87] Daniel Mellinger and Vijay Kumar. “Minimum snap trajectory generation and con-
trol for quadrotors.” In: 2011 IEEE International Conference on Robotics and Automation.
2011, pp. 2520–2525. doi: 10.1109/ICRA.2011.5980409.

[88] Gregory P Meyer. “An Alternative Probabilistic Interpretation of the Huber Loss.”
In: arXiv preprint arXiv:1911.02088 (2019).

[89] Tom M Mitchell. The Need for Biases in Learning Generalizations. Department of
Computer Science, Laboratory for Computer Science Research . . ., 1980.

[90] Richard M Murray, Zexiang Li, and S Shankar Sastry. A Mathematical Introduction
to Robotic Manipulation. CRC press, 2017.

https://doi.org/10.1109/IVS.2017.7995716
https://doi.org/10.1109/ICRA.2011.5980409

bibliography 143

[91] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. “Neural
Network Dynamics for Model-Based Deep Reinforcement Learning with Model-
Free Fine-Tuning.” In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). 2018, pp. 7559–7566. doi: 10.1109/ICRA.2018.8463189.

[92] Angelia Nedić and Asuman Ozdaglar. “Subgradient Methods for Saddle-Point
Problems.” In: Journal of optimization theory and applications 142.1 (2009), pp. 205–228.

[93] Duy Nguyen-Tuong and Jan Peters. “Model Learning for Robot Control: A Survey.”
In: Cognitive processing 12.4 (2011), pp. 319–340.

[94] Duy Nguyen-Tuong, Jan Peters, and Matthias Seeger. “Local Gaussian Process
Regression for Real Time Online Model Learning and Control.” In: Proceedings
of the 21st International Conference on Neural Information Processing Systems. 2008,
pp. 1193–1200.

[95] Samet Oymak and Necmiye Ozay. “Non-asymptotic Identification of LTI Systems
from a Single Trajectory.” In: 2019 American Control Conference (ACC). 2019, pp. 5655–
5661. doi: 10.23919/ACC.2019.8814438.

[96] Deepak Pathak, Philipp Krähenbühl, and Trevor Darrell. “Constrained Convo-
lutional Neural Networks for Weakly Supervised Segmentation.” In: 2015 IEEE
International Conference on Computer Vision (ICCV). 2015, pp. 1796–1804. doi: 10.
1109/ICCV.2015.209.

[97] H.D. Patino, R. Carelli, and B.R. Kuchen. “Neural networks for advanced control of
robot manipulators.” In: IEEE Transactions on Neural Networks 13.2 (2002), pp. 343–
354. doi: 10.1109/72.991420.

[98] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. “Sim-
to-Real Transfer of Robotic Control with Dynamics Randomization.” In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). 2018, pp. 3803–3810. doi:
10.1109/ICRA.2018.8460528.

[99] Claudia Pérez-D’Arpino and Julie A Shah. “C-learn: Learning geometric constraints
from demonstrations for multi-step manipulation in shared autonomy.” In: 2017
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2017, pp. 4058–
4065.

[100] Alejandro Perez, Robert Platt, George Konidaris, Leslie Kaelbling, and Tomas
Lozano-Perez. “LQR-RRT*: Optimal sampling-based motion planning with auto-
matically derived extension heuristics.” In: 2012 IEEE International Conference on
Robotics and Automation. 2012, pp. 2537–2542. doi: 10.1109/ICRA.2012.6225177.

[101] Klaus Peternell, Wolfgang Scherrer, and Manfred Deistler. “Statistical Analysis of
Novel Subspace Identification Methods.” In: Signal Processing 52.2 (1996), pp. 161–
177.

https://doi.org/10.1109/ICRA.2018.8463189
https://doi.org/10.23919/ACC.2019.8814438
https://doi.org/10.1109/ICCV.2015.209
https://doi.org/10.1109/ICCV.2015.209
https://doi.org/10.1109/72.991420
https://doi.org/10.1109/ICRA.2018.8460528
https://doi.org/10.1109/ICRA.2012.6225177

bibliography 144

[102] Jan Peters and Stefan Schaal. “Policy Gradient Methods for Robotics.” In: 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006, pp. 2219–
2225. doi: 10.1109/IROS.2006.282564.

[103] Jan Peters and Stefan Schaal. “Natural Actor-Critic.” In: Neurocomputing 71.7-9
(2008), pp. 1180–1190.

[104] Gianluigi Pillonetto and Giuseppe De Nicolao. “A New Kernel-based Approach for
Linear System Identification.” In: Automatica 46.1 (2010), pp. 81–93.

[105] Philip Polack, Florent Altché, Brigitte d’Andréa Novel, and Arnaud de La Fortelle.
“The kinematic bicycle model: A consistent model for planning feasible trajectories
for autonomous vehicles?” In: 2017 IEEE Intelligent Vehicles Symposium (IV). 2017,
pp. 812–818. doi: 10.1109/IVS.2017.7995816.

[106] Michael Posa, Cecilia Cantu, and Russ Tedrake. “A Direct Method for Trajectory
Optimization of Rigid Bodies Through Contact.” In: The International Journal of
Robotics Research 33.1 (2014), pp. 69–81.

[107] Ahmed H. Qureshi, Anthony Simeonov, Mayur J. Bency, and Michael C. Yip. “Mo-
tion Planning Networks.” In: 2019 International Conference on Robotics and Automation
(ICRA). 2019, pp. 2118–2124. doi: 10.1109/ICRA.2019.8793889.

[108] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Multistep Neural
Networks for Data-driven Discovery of Nonlinear Dynamical Systems.” In: arXiv
preprint arXiv:1801.01236 (2018).

[109] Harish chaandar Ravichandar, Iman Salehi, Brian P. Baillie, George M. Bollas, and
Ashwin Dani. “Learning Stable Nonlinear Dynamical Systems with External Inputs
using Gaussian Mixture Models.” In: 2018 Annual American Control Conference (ACC).
2018, pp. 4825–4830. doi: 10.23919/ACC.2018.8431461.

[110] Alejandro Ribeiro. “Optimal Resource Allocation in Wireless Communication and
Networking.” In: EURASIP Journal on Wireless Communications and Networking 2012.1
(2012), p. 272.

[111] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning.” In: Proceedings
of the fourteenth international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings. 2011, pp. 627–635.

[112] Pedro Sanchez-Cuevas, Guillermo Heredia, and Anibal Ollero. “Characterization
of the Aerodynamic Ground Effect and its Influence in Multirotor Control.” In:
International Journal of Aerospace Engineering 2017 (2017).

[113] Riccardo Scattolini. “Architectures for Distributed and Hierarchical Model Predic-
tive Control–A Review.” In: Journal of Process Control 19.5 (2009), pp. 723–731.

https://doi.org/10.1109/IROS.2006.282564
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/ICRA.2019.8793889
https://doi.org/10.23919/ACC.2018.8431461

bibliography 145

[114] Stefan Schaal, Christopher G Atkeson, and Sethu Vijayakumar. “Scalable Techniques
from Nonparametric Statistics for Real Time Robot Learning.” In: Applied Intelligence
17.1 (2002), pp. 49–60.

[115] Karl Schmeckpeper, Annie Xie, Oleh Rybkin, Stephen Tian, Kostas Daniilidis,
Sergey Levine, and Chelsea Finn. “Learning Predictive Models from Observation
and Interaction.” In: arXiv preprint arXiv:1912.12773 (2019).

[116] Maarten Schoukens and Koen Tiels. “Identification of Block-oriented Nonlinear
Systems Starting from Linear Approximations: A Survey.” In: Automatica 85 (2017),
pp. 272–292.

[117] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and
Pieter Abbeel. “Finding Locally Optimal, Collision-free Trajectories with Sequential
Convex Optimization.” In: Robotics: Science and Systems. Vol. 9. 1. Citeseer. 2013,
pp. 1–10.

[118] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
“Trust Region Policy Optimization.” In: International Conference on Machine Learning.
PMLR. 2015, pp. 1889–1897.

[119] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
“Proximal Policy Optimization Algorithms.” In: arXiv preprint arXiv:1707.06347
(2017).

[120] Jacob T Schwartz, Micha Sharir, and John E Hopcroft. Planning, Geometry, and
Complexity of Robot Motion. NJ, United States: Ablex Publishing Corp., 1987.

[121] Xiaotong Shen, Wei Pan, Yunzhang Zhu, and Hui Zhou. “On constrained and
regularized high-dimensional regression.” In: Annals of the Institute of Statistical
Mathematics 65.5 (2013), pp. 807–832.

[122] Alexander Shkolnik and Russ Tedrake. “Sample-based Planning with Volumes in
Configuration Space.” In: arXiv preprint arXiv:1109.3145 (2011).

[123] Alexander Shkolnik, Matthew Walter, and Russ Tedrake. “Reachability-guided
sampling for planning under differential constraints.” In: 2009 IEEE International
Conference on Robotics and Automation. 2009, pp. 2859–2865. doi: 10.1109/ROBOT.
2009.5152874.

[124] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. “Deterministic Policy Gradient Algorithms.” In: International conference
on machine learning. PMLR. 2014, pp. 387–395.

[125] Satinder P Singh and Richard S Sutton. “Reinforcement Learning with Replacing
Eligibility Traces.” In: Machine learning 22.1 (1996), pp. 123–158.

https://doi.org/10.1109/ROBOT.2009.5152874
https://doi.org/10.1109/ROBOT.2009.5152874

bibliography 146

[126] Sumeet Singh, Mo Chen, Sylvia L Herbert, Claire J Tomlin, and Marco Pavone.
“Robust Tracking with Model Mismatch for Fast and Safe Planning: An SOS Op-
timization Approach.” In: International Workshop on the Algorithmic Foundations of
Robotics. Springer. 2018, pp. 545–564.

[127] Moshe Sniedovich. “Dijkstra’s Algorithm Revisited: The Dynamic Programming
Connexion.” In: Control and cybernetics 35.3 (2006), pp. 599–620.

[128] Bharath Sriperumbudur, Kenji Fukumizu, and Gert Lanckriet. “On the relation
between universality, characteristic kernels and RKHS embedding of measures.” In:
Proceedings of the thirteenth international conference on artificial intelligence and statistics.
2010, pp. 773–780.

[129] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. “On the impor-
tance of initialization and momentum in deep learning.” In: International Conference
on Machine Learning. 2013, pp. 1139–1147.

[130] Richard S Sutton. “Dyna, an Integrated Architecture for Learning, Planning, and
Reacting.” In: ACM Sigart Bulletin 2.4 (1991), pp. 160–163.

[131] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT
press, 2018.

[132] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al. “Pol-
icy Gradient Methods for Reinforcement Learning with Function Approximation.”
In: NIPs. Vol. 99. Citeseer. 1999, pp. 1057–1063.

[133] Johan AK Suykens and Joos Vandewalle. “Least Squares Support Vector Machine
Classifiers.” In: Neural Processing Letters 9.3 (1999), pp. 293–300.

[134] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner,
Steven Bohez, and Vincent Vanhoucke. “Sim-to-Real: Learning Agile Locomotion
For Quadruped Robots.” In: Robotics: Science and Systems. 2018.

[135] Yingcong Tan, Daria Terekhov, and Andrew Delong. “Learning Linear Programs
from Optimal Decisions.” In: arXiv preprint arXiv:2006.08923 (2020).

[136] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las
Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al.
“DeepMind Control Suite.” In: arXiv preprint arXiv:1801.00690 (2018).

[137] Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. “LQR-trees:
Feedback Motion Planning via Sums-of-Squares Verification.” In: The International
Journal of Robotics Research 29.8 (2010), pp. 1038–1052.

[138] Gerald Tesauro. “Temporal Difference Learning and TD-Gammon.” In: Communica-
tions of the ACM 38.3 (1995), pp. 58–68.

[139] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A Physics Engine for
Model-based Control.” In: 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2012, pp. 5026–5033.

bibliography 147

[140] Emanuel Todorov and Weiwei Li. “A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems.” In: Proceed-
ings of the 2005, American Control Conference, 2005. IEEE. 2005, pp. 300–306.

[141] C. Urmson and R. Simmons. “Approaches for heuristically biasing RRT growth.”
In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003) (Cat. No.03CH37453). Vol. 2. 2003, 1178–1183 vol.2. doi: 10.1109/IROS.
2003.1248805.

[142] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner, MN
Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al. “Autonomous
Driving in Urban Environments: Boss and the Urban Challenge.” In: Journal of Field
Robotics 25.8 (2008), pp. 425–466.

[143] V.N. Vapnik. “An overview of statistical learning theory.” In: IEEE Transactions on
Neural Networks 10.5 (1999), pp. 988–999. doi: 10.1109/72.788640.

[144] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne
M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy
1.0 Contributors. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python.” In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-
0686-2.

[145] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong
Gong. “Locality-constrained Linear Coding for image classification.” In: 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. 2010, pp. 3360–
3367. doi: 10.1109/CVPR.2010.5540018.

[146] Christopher JCH Watkins and Peter Dayan. “Q-learning.” In: Machine learning 8.3-4
(1992), pp. 279–292.

[147] Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller.
“Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw
Images.” In: arXiv preprint arXiv:1506.07365 (2015).

[148] Dustin J Webb and Jur van den Berg. “Kinodynamic RRT*: Optimal Motion Planning
for Systems with Linear Differential Constraints.” In: arXiv preprint arXiv:1205.5088
(2012).

[149] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg,
Byron Boots, and Evangelos A. Theodorou. “Information theoretic MPC for model-
based reinforcement learning.” In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). 2017, pp. 1714–1721. doi: 10.1109/ICRA.2017.7989202.

https://doi.org/10.1109/IROS.2003.1248805
https://doi.org/10.1109/IROS.2003.1248805
https://doi.org/10.1109/72.788640
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/CVPR.2010.5540018
https://doi.org/10.1109/ICRA.2017.7989202

bibliography 148

[150] Ronald J Williams. “Simple Statistical Gradient-following Algorithms for Connec-
tionist Reinforcement Learning.” In: Machine learning 8.3-4 (1992), pp. 229–256.

[151] S.A. Wilmarth, N.M. Amato, and P.F. Stiller. “MAPRM: a probabilistic roadmap
planner with sampling on the medial axis of the free space.” In: Proceedings 1999
IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C). Vol. 2.
1999, 1024–1031 vol.2. doi: 10.1109/ROBOT.1999.772448.

[152] Ian H Witten. “An Adaptive Optimal Controller for Discrete-time Markov Environ-
ments.” In: Information and control 34.4 (1977), pp. 286–295.

[153] Yuandong Yang and O. Brock. “Adapting the sampling distribution in PRM plan-
ners based on an approximated medial axis.” In: IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004. Vol. 5. 2004, 4405–4410

Vol.5. doi: 10.1109/ROBOT.2004.1302411.

[154] Georgios N. Yannakakis and Julian Togelius. “A Panorama of Artificial and Com-
putational Intelligence in Games.” In: IEEE Transactions on Computational Intelligence
and AI in Games 7.4 (2015), pp. 317–335. doi: 10.1109/TCIAIG.2014.2339221.

[155] A. Yershova, L. Jaillet, T. Simeon, and S.M. LaValle. “Dynamic-Domain RRTs:
Efficient Exploration by Controlling the Sampling Domain.” In: Proceedings of the
2005 IEEE International Conference on Robotics and Automation. 2005, pp. 3856–3861.
doi: 10.1109/ROBOT.2005.1570709.

[156] Daqing Yi, Rohan Thakker, Cole Gulino, Oren Salzman, and Siddhartha Srinivasa.
“Generalizing Informed Sampling for Asymptotically-Optimal Sampling-Based
Kinodynamic Planning via Markov Chain Monte Carlo.” In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). 2018, pp. 7063–7070. doi: 10.1109/
ICRA.2018.8460188.

[157] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser.
“TossingBot: Learning to Throw Arbitrary Objects With Residual Physics.” In: IEEE
Transactions on Robotics 36.4 (2020), pp. 1307–1319. doi: 10.1109/TRO.2020.2988642.

[158] Clark Zhang, Jinwook Huh, and Daniel D. Lee. “Learning Implicit Sampling
Distributions for Motion Planning.” In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2018, pp. 3654–3661. doi: 10.1109/IROS.2018.
8594028.

[159] Clark Zhang, Arbaaz Khan, Santiago Paternain, and Alejandro Ribeiro. “Sufficiently
Accurate Model Learning.” In: 2020 IEEE International Conference on Robotics and
Automation (ICRA). 2020, pp. 10991–10997. doi: 10.1109/ICRA40945.2020.9197502.

[160] Clark Zhang, Santiago Paternain, and Alejandro Ribeiro. “Sufficiently Accurate
Model Learning for Planning.” In: arXiv preprint arXiv:2102.06099 (2021).

[161] Liangjun Zhang and Dinesh Manocha. “An efficient retraction-based RRT planner.”
In: 2008 IEEE International Conference on Robotics and Automation. 2008, pp. 3743–3750.
doi: 10.1109/ROBOT.2008.4543785.

https://doi.org/10.1109/ROBOT.1999.772448
https://doi.org/10.1109/ROBOT.2004.1302411
https://doi.org/10.1109/TCIAIG.2014.2339221
https://doi.org/10.1109/ROBOT.2005.1570709
https://doi.org/10.1109/ICRA.2018.8460188
https://doi.org/10.1109/ICRA.2018.8460188
https://doi.org/10.1109/TRO.2020.2988642
https://doi.org/10.1109/IROS.2018.8594028
https://doi.org/10.1109/IROS.2018.8594028
https://doi.org/10.1109/ICRA40945.2020.9197502
https://doi.org/10.1109/ROBOT.2008.4543785

bibliography 149

[162] Kemin Zhou and John Comstock Doyle. Essentials of Robust Control. Vol. 104. Prentice
hall Upper Saddle River, NJ, 1998.

[163] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran
Tunyasuvunakool, János Kramár, Raia Hadsell, Nando de Freitas, et al. “Reinforce-
ment and Imitation Learning for Diverse Visuomotor Skills.” In: arXiv preprint
arXiv:1802.09564 (2018).

[164] Hui Zou and Trevor Hastie. “Regularization and Variable Selection via the Elastic
Net.” In: Journal of the royal statistical society: series B (statistical methodology) 67.2
(2005), pp. 301–320.

[165] Matt Zucker, James Kuffner, and J. Andrew Bagnell. “Adaptive workspace biasing
for sampling-based planners.” In: 2008 IEEE International Conference on Robotics and
Automation. 2008, pp. 3757–3762. doi: 10.1109/ROBOT.2008.4543787.

[166] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew Klin-
gensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S Srinivasa.
“Chomp: Covariant Hamiltonian Optimization for Motion Planning.” In: The Inter-
national Journal of Robotics Research 32.9-10 (2013), pp. 1164–1193.

https://doi.org/10.1109/ROBOT.2008.4543787

	Machine Learning For Robot Motion Planning
	Recommended Citation

	Machine Learning For Robot Motion Planning
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	1 Introduction
	1.1 Examples of Robot Motion Planning Problems
	1.2 Categories of Planning Algorithms
	1.2.1 Graph-based Planners
	1.2.2 Sampling-based Planners
	1.2.3 Optimization-based Planners

	1.3 Model Learning
	1.4 Reinforcement Learning and Planning
	1.5 Goals of this Work

	2 Learning Planning Heuristics
	2.1 Background
	2.1.1 Rapidly-Exploring Random Trees
	2.1.2 Heuristics and Heuristic Learning
	2.1.3 Reinforcement Learning

	2.2 An Experienced Piano Mover's Problem
	2.3 Learning Implicit Sampling Distributions for Planning
	2.3.1 Representing Distributions Implicitly
	2.3.2 Rejection Sampling as a Markov Decision Process
	2.3.3 Solving the Markov Decision Process
	2.3.4 Probabilistic Completeness

	2.4 Experiments
	2.4.1 Implementation Details
	2.4.2 Flytrap Environments
	2.4.3 Simulated Pendulum
	2.4.4 Real Robot Arm

	2.5 Conclusions

	3 Constrained Model Learning
	3.1 Background
	3.1.1 Types of Models and Model Learning
	3.1.2 Lagrangian Duality

	3.2 Sufficiently Accurate Model Learning
	3.2.1 Problem Approximation

	3.3 Surrogate Duality Gap
	3.3.1 Proof of Surrogate Duality Gap Bound

	3.4 Constrained Solution Via Primal-Dual Method
	3.5 Experiments
	3.5.1 Double Integrator with Friction
	3.5.2 Ball Paddle System
	3.5.3 Quadrotor

	3.6 Conclusion

	4 Semi-automatic Constraint Generation
	4.1 Background
	4.1.1 Constraint Learning
	4.1.2 Learning Trajectory Constraints

	4.2 Constraint Generation
	4.2.1 Methodology
	4.2.2 Update Constraint Heuristics

	4.3 Experiments
	4.3.1 Simple Rocket Model
	4.3.2 Bicycle Model
	4.3.3 Conclusion

	5 Conclusions
	6 Appendix
	6.1 Expectation-wise Lipschitz-Continuity of Loss functions
	6.2 Equivalent Problem Formulation
	6.3 Proof of Theorem 3
	6.4 Proof of Lemma 1

	List of Tables
	List of Illustrations
	Bibliography

