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Machine Learning For Robot Motion Planning

Abstract

Robot motion planning is a field that encompasses many different problems and algorithms. From the
traditional piano mover's problem to more complicated kinodynamic planning problems, motion planning
requires a broad breadth of human expertise and time to design well functioning algorithms. A traditional
motion planning pipeline consists of modeling a system and then designing a planner and planning
heuristics. Each part of this pipeline can incorporate machine learning. Planners and planning heuristics
can benefit from machine learned heuristics, while system modeling can benefit from model learning.
Each aspect of the motion planning pipeline comes with trade offs between computational effort and
human effort. This work explores algorithms that allow motion planning algorithms and frameworks to
find a compromise between the two. First, a framework for learning heuristics for sampling-based
planners is presented. The efficacy of the framework depends on human designed features and policy
architecture. Next, a framework for learning system models is presented that incorporates human
knowledge as constraints. The amount of human effort can be modulated by the quality of the
constraints given. Lastly, semi-automatic constraint generation is explored to enable a larger range of
trade-offs between human expert constraint generation and data driven constraint generation. We apply
these techniques and show results in a variety of robotic systems.
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ABSTRACT

MACHINE LEARNING FOR ROBOT MOTION PLANNING
Clark Zhang

Alejandro Ribeiro

Robot motion planning is a field that encompasses many different problems and algorithms.
From the traditional piano mover’s problem to more complicated kinodynamic planning
problems, motion planning requires a broad breadth of human expertise and time to
design well functioning algorithms. A traditional motion planning pipeline consists of
modeling a system and then designing a planner and planning heuristics. Each part of
this pipeline can incorporate machine learning. Planners and planning heuristics can
benefit from machine learned heuristics, while system modeling can benefit from model
learning. Each aspect of the motion planning pipeline comes with trade offs between
computational effort and human effort. This work explores algorithms that allow motion
planning algorithms and frameworks to find a compromise between the two. First, a
framework for learning heuristics for sampling-based planners is presented. The efficacy
of the framework depends on human designed features and policy architecture. Next, a
framework for learning system models is presented that incorporates human knowledge as
constraints. The amount of human effort can be modulated by the quality of the constraints
given. Lastly, semi-automatic constraint generation is explored to enable a larger range
of trade-offs between human expert constraint generation and data driven constraint

generation. We apply these techniques and show results in a variety of robotic systems.
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1 INTRODUCTION

Robot motion planning is a technology that enables autonomous behaviors in robot systems
as well as other fields. At its core, robot motion planning algorithms attempt to address
the general problem of “How can we find a plan for a robotic system to achieve a goal?"
These algorithms have seen success in autonomous cars [70, 142], humanoid robotics [66],
autonomous underwater vehicles [11], robotic arms [166], and many other robotics systems.
Additionally, robot motion planning has been applied in other fields such as video games
[154] and protein folding [6]. While robot motion planning algorithms have made great
strides, it is not a solved problem. The robot motion planning problems can often lead to
large computation times or a compromise on solution quality. Machine learning provides
many techniques that can provide heuristics to guide traditional planning problems to
increase their computational efficiency or solution quality.

Robot motion planning encompasses a variety of problems. The most basic form of a
motion planning problem can address finding a continuous path from one configuration
state to another for a holonomic system [120]. This is known as the Piano Mover’s Problem.
It is often described as the problem a piano mover must solve to find a path for a piano to
move in or out of a house. A motion planning algorithm designed to solve such problems
will typically used a model of the robotic system that relates how the state of robot
changes when actions are applied. This model then constrains how a search algorithm
or optimization procedure can chart a motion plan to achieve its goal. Beyond the basic

motion planning problem, there are many variations for different types of robotic systems
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or environmental scenarios. Motion planning problems can deal with deterministic systems
[120, 72, 77, 27, 42] or stochastic systems with both aleatoric and epistemic uncertainty [85,
12, 140, 26]. Problems can involve finding a set of open-loop controls [72, 42] or a set of
closed loop controllers [77, 26, 137]. Researchers can find the most optimal motion plan (in
terms of a defined cost function) [57, 27] or simply a feasible path to save on computational
time [81]. The robotic systems can be smooth and continuous [87] or contain discrete

elements [54] or discontinuities [106].

Configuration Space and Task Space
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Figure 1.1: (Configuration and Task Space) Illustration of the configuration space of a 3 link planar
robot arm. On the left, the task space is shown. The purple lines represent the physical
links of the robot arm. The red circle is an example of a circular obstacle in the plane.
On the right, the purple dot represents the configuration space coordinates of robot
arm configuration shown in the left. On the right, the red shape represents the circle
obstacle in configuration space coordinates.

Before discussing some of the specific problems that motion planning algorithms attempt
to solve, we will define the idea of a configuration space and a task space. A particular

configuration of a robotic system is the full description of the state of the robot relevant to
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planning. This is analogous to the state-space representation used in control theory [61,
Chapter 1.1]. The configuration space used for defining a planning problem depends on
the fidelity of planning that is required. For example, a simple model of a rocket might
have a configuration state consisting of a location, a velocity, an attitude, and an angular
velocity. For generating coarse motion plans, a simple model might be good enough. In
a higher fidelity model of a rocket, the configuration state might consist additionally
of the mass of the rocket fuel onboard and nozzle angles. A technical definition of the
configuration space is also presented in [71, Chapter 4].

The task space for a robotic system is simply the space in which obstacles and goals are
expressed. There exists a map from the configuration space to the task space, though this
map may not necessarily be injective or surjective. For illustrative purposes, we will look
at a 3 link planar robot arm (all three joints rotate around parallel axes). For this robot
arm, the configuration space might be the space of the 3 angles of the joints of the arm.
This is shown on the right in Figure 1.1. The task space can be the 2D euclidean plane in
which the robot arm moves. An obstacle, such as the circle on the left in Figure 1.1 can be
expressed as a set of 2D coordinates in the task space. This obstacle can be translated into
a configuration space obstacle by mapping which points in configuration space collide

with the obstacle.

1.1 EXAMPLES OF ROBOT MOTION PLANNING PROBLEMS

We are now ready to look at some concrete examples of motion planning problems.

Example 1.1. The basic Piano Mover’s Problem consists of a start, Xstart, and goal, Xgo a1 state
both defined in the configuration space, X. It also includes configuration space obstacles, Cops,

which is a set of configuration states for which the piano would be in collision with something in
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the house. The goal is to find a continuous path x(t) : [0,1] — X that avoids the obstacles and
travels from the start to the goal that minimizes some cost. The cost can be something as simple as
the length of path.
r){}ltr)l c(x(t))
s.t. x(0) = Xstart, X(1) = Xgoal (1.1)

X(t) % Cobs/Vt

Example 1.2. A common problem for robot arm manipulation will be to guide the robot arm
through a cluttered environment such that its end-effector will be at some pose. The robot arm starts
in a configuration Xsiqrt € R™ and the goal is expressed in the task space ygoa1 € SE(3) with
a mapping from configuration to task space T(x) : R™ — SE(3).Similar to the previous example,
there exists configuration space obstacles, Cops.
r){}ltr)l c(x(t))
st x(0) = Xstart, T(x(1)) = Ygoat (t.2)

X(t) ¢ CObS/v't

Example 1.3. For kinodynamic systems we might look at solving for a sequence of actions rather
than a continuous path. Given a discrete system model which involves elements of the configuration

space x¢ € X and the control space uy € U

Xe+1 = f(x¢, Ut), (1.3)

we might define a problem that optimizes the controls over an allowable control set Uqiiowed 45

follows
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-
min Z c(x, ug)
{ut}:[r:] t=1

1.
xt € Cobs, for t=1,...T (1.4)

Ut € Ugtlowed

Example 1.4. [85] describes an example of a probabilistic planning problem. A slight adaptation of

that problem is shown here. Given a stochastic linear system model

X1 = Axt —|—But + W
xo ~ N(Ro, Px,) (1.5)

Wi ~ N(O/ Pw )/

and a set of state space obstacles, Covs, 0ne goal can be to find a sequence of controls that obtains
the minimum average cost path that has at most an e chance of collision at every time-step The

random variable that denotes the distribution of the state at time t is denoted as X.

T
min Z Elc(X¢, ue)]
t=1

{ut}I:]

P(X¢t € Cobs) <€, for t=1,...T

1.2 CATEGORIES OF PLANNING ALGORITHMS

We have seen a selection of motion planning problems in Section 1.1, and many more
exist in literature. Because there are many types of motion planning problems, there have
also been a large number of motion planning algorithms that can be roughly grouped

into three categories: graph-based planners, sampling-based planners, and optimization-
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based planners. Each of these categories are suited to different types of motion planning
problems. There is not one algorithm that is superior to all others. Instead, each algorithm

takes advantage of certain aspects of the problem they are designed to solve.

1.2.1  Graph-based Planners

Figure 1.2: (Motion Planning Graph) Illustration of how a graph can model vehicle movement on
a road.

The first category of planning algorithms can be described as graph-based planners.
At their core, these algorithms take as input a graph G = (V, E) with a set of vertices V
and edges E, and perform a graph search. This type of motion planning algorithm may
have been the earliest to be developed, starting with what is now known as Dijkstra’s
algorithm [27], published in 1959. The vertices of the graph, V, represent configurations in
the configuration space while the edges, E, describe the cost of moving between them. For
example, a car traveling on a road may be described with a set of vertices that represent a

set of locations (longitude and latitude) and edges that describe the distance between those
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locations. In this graph context, many motion planning problems can now be described as

a search for the minimum cost path from a start vertex to a goal vertex.

Graph Search

The search graph of an environment and robotic system contains a lot of the intricacies
of the problem itself. Whether a system has dynamics or is holonomic will be realized
in how vertices are connected as well as the weight of the edges. The obstacles in the
environment are also represented by whether or not two vertices may be connected as
well as the weight of connected edges. With a lot of the system complexity hidden in
the graph itself, the algorithms can focus on searching the graph. Dijkstra’s algorithm
[27], finds the shortest path from a start vertex to a goal vertex by keeping track of a set
of currently expanded vertices. Initially, the list contains only the start vertex. The search
proceeds in iterations, and at each iteration, the set of all directly connected vertices to the
expanded set is considered, and the one with the lowest total path cost is added to the list.
When a vertex is added to the expanded list, the cost from the start vertex to that vertex is
recorded as well as which parent vertex it came from. Thus, all vertices in the expanded
set are guaranteed to have a lower cost from the start vertex than any vertex not in the
expanded set. Additionally, the recorded cost for each expanded vertex is the lowest cost
to reach it. The algorithm ends when the goal vertex is added to the expanded set.

An improvement to Dijkstra’s algorithm is the A* algorithm [42]. A* follows the same
principles of Dijkstra’s algorithm with one difference. Instead of choosing the lowest cost
(from the start) vertex to expand, the vertex with the lowest cost + heuristic is expanded.
The heuristic is an estimate of the cost-to-go (cost from the vertex to the goal). Thus,
cost+heuristic is an underestimate of the total cost of an optimal path from the start to
goal containing the vertex. A* maintains the same guarantee of finding the minimum

cost path, provided the heuristic is admissible (it never overestimates the true cost) and
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consistent (obeys the triangle inequality). The introduction of the heuristic can speed up
the computational time of the graph search as the heuristic can guide the search towards
more promising vertices first.

There are many different improvements to A* for different problems or systems with
specific structures. One variation of the common motion planning problem is being able to
provide a feasible path at any point during the computation. This is referred to as anytime
planning and is useful in the case of robotics as there may be instances a feasible path
is good enough. It is more important to execute a reasonable path than to spend extra
computational effort finding the most optimal path. An algorithm to solve this problem is
given by ARA* [81]. This algorithm works by running A* with different inflated heuristics.
Inflating the heuristics gives more weight to it and can find a path faster as it could
examine less vertices during the search. However, arbitrary inflation can cause the heuristic
to no longer be admissible, which means the solution found might not be optimal. ARA*
performs several searches by first using a high inflation value to find a possibly highly
sub-optimal path but in a short amount of time. It then performs subsequent searches
with lower and lower inflation values to find better paths. In this way, the algorithm can
be stopped at (almost) anytime and provide a feasible solution.

Another variation of simply finding the minimum cost path is to find the minimum cost
path given information about solutions of very similar graphs. The idea is when a robot is
moving around in a dynamic environment, it may be solving a series of very similar path
planning problems when small parts of the environment change. This idea is presented by
LPA* (Life Long Planning A*) [62]. By saving the cost-to-go, and propagating changes in
the graph only as needed, it can greatly reduce computational time on repeated runs of
the algorithm. The ideas of anytime search as well as lifelong planning are combined in

AD* [80].
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Both Theta* [24] and Jump Point Search [41] work in very specific environments. They
both assume uniform grids with uniform costs. This has applications in 2D navigation
for holonomic ground vehicles as well as in video games By leveraging knowledge about
the highly structured grid environment, both Theta® and Jump Point Search can provide
better or faster solutions.

The advantages of graph-based planners are the strong theoretical guarantees that come
with them. For many of the planners, optimal paths are guaranteed in finite time (for finite
graphs). Even the non-optimal graph-based planners such as ARA* come with strong
theoretical guarantees about the solution quality. There are, however, a few drawbacks to
graph-based planners. When the planning domain is naturally in a continuous domain
(which includes a large number of robot motion planning problems), using a graph-based
planner necessitates discretizing the space. This discretization process can introduce sub-
optimality in the continuous space, or turn feasible continuous problems into infeasible
discrete graph search problems. For example, if a robot needs to fit into a tight entrance,
but the discretization process is too coarse to contain a vertex in the small entrance, the
graph problem will be unsolvable despite the fact that the underlying problem has a
solution. Additionally, graph-based methods can suffer from the curse of dimensionality as
uniform discretization of a configuration space scales exponentially with the number of

dimensions.

1.2.2 Sampling-based Planners

Sampling-based planners are randomized algorithms that sample a continuous config-
uration space to obtain a discrete representation of it. Many popular sampling-based
planners attempt to address the problem of both coarse discretization and the curse of

dimensionality that plagues graph-based planners. In the case of a popular sampling-based
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Figure 1.3: (Sampling-based vs Graph-based Planners) Comparison between paths found by
Rapidly-Exploring Random Trees (RRT) and Dijkstra Graph Search on an empty 2D
map with a holonomic robot.

planner, Rapidly-Exploring Random Trees (RRT) [73], the algorithm iteratively samples and
searches the continuous configuration space, building a tree of connected configurations,
until a path is found. Each new sample attempts to connect to the closest configuration in
the existing tree. This allows the planner to operate in higher dimensions as the sampling
allows for possibly more efficient exploration of the configuration space (new samples have
a Voronoi Bias [73]). The planning process is not limited to exhaustively search through all
the nodes of a chosen discretization level. Additionally, small areas but important areas of
the configuration space which might be missed with a coarse predetermined discretization
will be sampled with high probability as the number of samples increase. More concrete
details about RRT will be given later in Section 2.1.1. Other popular sampling-based
planners include Probabilistic Roadmap (PRM) [58] and Expansive-Space Trees (EST) [47].
Both RRT and EST sample and grow trees for one time path planning. PRM solves a
slightly different problem of planning repeatedly in the same environment. It samples the
configuration space, and tries to connect nearby configuration space samples if possible

into a graph, and later performs graph search when a path in the environment is required.
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PRM can be seen as a way to discretize a continuous space using random sampling and
then running graph search algorithms. Because of the offline nature of PRM’s sampling
method, it does not address the issue of sampling coarseness.

While sampling-based planners do not have the strong theoretical guarantees of graph-
based planners, there still exist some weaker guarantees. In particular, RRT is known to be
probabilistically complete [65] in the case of holonomic systems. This is not always true for
kinodynamic systems [67]. Probabilistic completeness is the notion that the probability of
finding a feasible path converges to 1 as the number of samples goes to infinity. Note that
this does not provide any guarantee on what happens in a finite amount of time.

The RRT algorithm has been modified by many researchers to solve different problems.
RRT motion plans can be highly sub-optimal (see Figure 1.3), which the RRT* algorithm
[57] attempts to correct. RRT* will rewire the tree, changing edges between existing tree
nodes if new samples of the configuration space can provide more optimal paths. This
allows RRT* to refine paths over time, and the algorithm can be run for as long as desired
to obtain more cost efficient paths (in a similar method to ARA* [81]). It was also shown
that as the number of samples tends towards infinity, the probability of RRT* finding
the most optimal path converges almost surely to 1 [57, Theorem 38]. The asymptotic
optimality of RRT* comes at the cost of being more computationally expensive as each
iteration must find all the nearest neighbors in a radius (rather than the single nearest
neighbor) and check if they must be rewired. Additionally, the rewiring process may
not be easily extendable to non-holonomic systems. There exists some work to extend
RRT* to some kinodynamic systems [78, 148, 100] but they require strong assumptions
about properties of the system such as Chow’s condition or linearity or lose the hard
dynamics constraints between tree vertices. Another variation of RRT, denoted as Chance-
Constrained RRT (CC-RRT) [85], looks at extending the piano mover’s problem to linear

systems with additive noise. It is able to reason about collision probabilities and choose
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best cost paths subject to chance constraints by propagating process noise throughout the
tree.

Sampling-based planners are typically more efficient in high dimensional spaces and do
not require explicit discretization schemes. However, they lose many of the strong theoreti-
cal guarantees that graph-based planners have. In practice, sampling-based planners may
be used to find an initial solution and then smoothed or optimized over later (perhaps by

using a method that will be discussed in Section 1.2.3).

1.2.3 Optimization-based Planners

Another major class of motion planning algorithms are those that use optimization solvers
for specific types of optimization problems. The motion planning problem for a system is
formulated in some canonical optimization form and solved using specific or generic opti-
mization solvers. Quadratic Programs are solved in [87], Sequential Quadratic Programs
are utilized in [117], and Gradient descent is employed in [166]. A specific solver, iLQR, is
developed by [77] for nonlinear objectives with specific nonlinear dynamics constraints.
Many motion planning problems can be written as generic nonlinear programs [117, 166,
77, 561

The benefits of optimization-based planners are that they can find locally optimal
solutions in high dimensional, continuous configuration spaces with complex system
dynamics and without any discretization error or sampling artifacts. Additionally, they
typically can run an order of magnitude faster than competing sampling-based planners
in high dimensions [166]. The main disadvantage of optimization-based planners is that
both general solvers and specific solvers do not guarantee convergence to globally optimal
solution for generic nonlinear problems. In practice, many motion planning problems

solved with nonlinear solvers must have a good initial guess at the solution to converge
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to a reasonable motion plan. While this can be alleviated by restarting the optimization
problem with different initial conditions [166], problems with highly nonlinear dynamics
or very high dimensionality can require an exponentially large number of restarts.
Recently, the lines between the field of Control Theory and Motion Planning have
become more blurred. In older research works, when computational power was more
limited with respect to the system and planning algorithms were less efficient, planning
was seen as providing a one time input into a lower level controller [45, 87, 45]. Recently,
planning algorithms are more often to be run in a closed loop [82, 70, 149]. While lower
level controllers to track joint angles, velocities, robot attitude, etc. may still exist, planning
algorithms are run at higher frequencies than before. A robot system consisting of a
fast closed loop planner and an even faster low level controller stack appear similar to
hierarchical control stacks [113] or cascaded controllers [32, 75]. Many of these optimization-
based planners can be seen as doing Model Predictive Control (MPC) [14] when run in a

closed loop.

1.3 MODEL LEARNING

All the algorithms discussed in Section 1.2 require a model of the robotic system and its
environment. These models are commonly referred to as the system model or dynamics model.
Graph-based algorithms utilize these models to build the search graph itself. Sampling-
based algorithms use these models to check for valid samples and connections between
them. Optimization-based planning use the models as hard constraints or as soft penalties
in the objective function. Thus, the accuracy of a model is important to the performance of
a planning algorithm. If there is a large mismatch between the real system and the model

of the system, the computed motion plans can be useless. While certain algorithms try to
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account for model mismatch [44, 126], these methods cater to the worst case error and can
lead to overly conservative motion plans or simply fail if the mismatch is too high. Thus,
an accurate system model is still necessary for performance.

In control theory, the sub-field of System Identification [59] deals with using collected
data from a system to estimate its parameters. For linear systems, there exist results on
convergence along with the conditions in which convergence is possible [101, 95, 104]. For
generic nonlinear systems, such strong theoretical results do not exist, though there has
been work on nonlinear systems with specific structures [116].

In robotics, a variety of methods have been tested to learn nonlinear dynamics models
from data: Gaussian Processes Regression [94, 109, 26], Locally Weighted Projection
Regression [114], Gaussian Mixture Models [76], and Neural Networks [76, 91, 97, 159, 160].
The work by the robotics community has applied model learning to robot-arm trajectory

tracking [94], multi-legged robot locomotion [91], and many other tasks.

1.4 REINFORCEMENT LEARNING AND PLANNING

A field that is closely related to motion planning is Reinforcement Learning (RL) [131].
Reinforcement Learning deals with the problem of selecting actions for a system to
maximize the rewards (or minimize the costs). The problem setup is very similar to many
motion planning problems, except for the fact that in Reinforcement Learning, usually
the model and possibly the reward/cost function is unknown. There are two categories
of Reinforcement Learning algorithms, model-based and model-free. A more rigorous
introduction into this topic is given in Section 2.1.3.

Model-based Reinforcement Learning algorithms function much in the same way as

learning a dynamics model and then planning with it. Many modern day model-based



1.4 REINFORCEMENT LEARNING AND PLANNING 15

Reinforcement Learning algorithms are based off of the Dyna [130] framework, which
iterates between learning a dynamics model and using the model to plan. More modern
approaches such as [76, 31] function in similar ways with neural network models and
policies operating on more complicated state domains such as images. The DynaQ algo-
rithm interleaves model learning with learning the action-value function through Bellman
updates. Dijkstra’s algorithm can be seen as performing Bellman updates with a specific
known structure [127]. Thus, the Dyna framework is analogous to interleaving traditional
System Identification with motion planning.

Model-free Reinforcement Learning algorithms decide how to actuate a system by
trying actions many times and observing rewards to update a policy directly (or value
function from which a policy is derived). Model free methods such as Q-learning [146]
and REINFORCE [132, 102] as well as modern variations of them [39, 118, 119, 103] have
been applied to robotic system simulations including ones from a suite of benchmarks
know as the OpenAl gym [17]. When applying to robotic systems, a common strategy is
to use a simulation of the real robot and apply these algorithms in simulation. Then, the
control policy may be put on a real system, perhaps with some additional modifications
[79, 98]. This scenario of using a simulation to apply Reinforcement Learning algorithms
can be seen in the lens of a traditional motion planning algorithm. In this case, the system
model is the simulator, which is used with a motion planning algorithm to generate closed
loop controls. Just as in traditional motion planning, the difference between the model
of the system (the simulation) and the real world can cause many problems. This is well

known in the Reinforcement Learning community as the simulation-reality gap or reality gap

[98, 134, 163].
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1.5 GOALS OF THIS WORK

This work utilizes machine learning techniques to address some of the shortcomings of
classical planning algorithms. First, it will address the computational time of planning
in complicated domains. The basic Piano Mover’s Problem is demonstrated to be p-space
complete [120, Chapter 11] and the numerous changes in the problem can be even more
difficult to solve. Obtaining reasonable motion plans for problems can be accelerated by
relying on specific problem structure. This structure can come in the form of data. Learning
heuristics for common motion planning problems from data can provide a way to increase
the efficiency of motion planning algorithms in the face of p-space complete problems.
This will be discussed in Chapter 2.

Another aspect of this work will address the problem of model learning. The model of a
system is crucial to the functionality of motion planning algorithms. This work proposes
using machine learning techniques to combine both data and human intuition to obtain
models can provide better results during the planning process. This will be discussed in

Chapters 3 and 4.



2 LEARNING PLANNING HEURISTICS

This chapter will discuss using machine learning techniques to speed up the computational
time of motion planning algorithms. We will focus on developing methods to learn
heuristics for sampling-based planners. To aid in the discussion, the RRT [73] algorithm
will be used as the prototypical sampling-based planner, but the method works for all
sampling-based planners. We cover various existing heuristics in sampling-based planners,
and provide a unifying view in the form of rejection sampling. A reinforcement learning
algorithm is used to optimize the rejection sampler to provide heuristics that suit a set
of environments. It utilizes information from past searches in similar environments to
generate better heuristics in novel environments, thus reducing overall computational cost.

Heuristics play an important role in motion planning algorithms as they guide the
exploration of the configuration space. Without a heuristic, a brute force search will be
necessary that can result in a large increase in the computation time of the motion plans.
However, for complex problems, general purpose heuristics such as L1 or L2 distance can
still be relatively uninformative. When a robot operates in a set of similar environments,
say office spaces or warehouses, we can learn heuristics that are unique to that type of
environment. The problem discussed here is sometimes known as the Experienced Piano
Mover’s Problem. The idea being, unlike the regular Piano Mover’s Problem, the experienced
piano mover has seen many houses and many pianos and has a good idea of how to move
pianos in a new house they have never seen. They have developed a heuristic for moving

pianos around houses. The input into a motion planning algorithm for this problem is not

17



LEARNING PLANNING HEURISTICS 18

1.0
0.8
0.6
0.4
0.2
0.0

Figure 2.1: (Cost-to-go) Example of a cost-to-go function on a 2D grid world with rooms. The
colorbar shows the cost-to-go normalized between to the range [o, 1].

simply a description of the environment and a desired start and goal, but also a set of
previous problems and the solutions that were found. For a class of problems, it may be
possible to use previous experience finding motions plans to guide and improve future
instances of the motion planning problem.

The best heuristic for any motion planning problem environment is the true cost-to-go,
which is a function V(x) : X¢onfig — R that maps states in the configuration space to the
true optimal cost to reach the goal from that state (in Reinforcement Learning, this is also
called the value function). An example of such a function is shown in Figure 2.1. Finding the
cost-to-go is as difficult as solving the planning problem. Knowing the cost-to-go already
yields the solution to a motion planning problem. For each state, the optimal action will be
the one that minimizes the cost-to-go at the next state. Thus the goal of heuristic learning is
to try to estimate the cost-to-go while taking into account a description of the environment
and the goal state. A example of a heuristic that may work well in an office environments

can be one that encourages exploration near doors and the corners of hallways. Thus even
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Figure 2.2: (Rejection Sampling) An example of a learned distribution for the task of a robot
arm reaching for various objects on a tabletop. On the left, samples from a uniform
distribution of the configuration space are displayed. Some of which may be rejected
by a learned rejection sampling policy to form a new learned distribution over the
configuration space.

when confronted with a completely new office space, a robot might efficiently plan in it
knowning that good areas to explore during planning are doors and corners.

In sampling-based planners, the sampling distribution can be seen as a heuristic [158].
Traditionally, sampling-based planners draw random state samples from a uniform distri-
bution (many times with a slight goal bias). However, for many classes of environments, a
different probability distribution over the state space can speed up planning times. For
example, in environments with sparse obstacles, it can be useful to heavily bias the samples
towards the goal region as the path to the goal will be relatively straight. The natural
questions to ask are “How heavily should the goal be biased?” or more generally “What is
the best probability distribution to draw out of?” In previous literature, many researchers
have found good heuristics [155, 122] to modify the probability distributions for specific
environments. However, these heuristics do not work generally and may not apply to new
environment types. In fact, a heuristic can increase the planning time dramatically if it is

unsuited to the problem at hand.
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In this work, we present a systematic way to generate effective probability distributions
automatically for different types of environments. The first issue encountered is how to
choose a good representation for probability distributions. The sampling distributions can
be very complicated in shape and may not easily be representable as common distributions
such as Gaussians or Mixtures of Gaussians. Instead, the distribution is represented with
rejection sampling, a powerful method that can implicitly model intricate distributions.
The process of accepting or rejecting samples is formulated as a Markov Decision Process.
This way, policy gradient methods from traditional Reinforcement Learning literature can
be used to optimize the sampling distribution for any planning costs such as the number
of collision checks or the planning tree size. The method presented will use past searches
in similar environments to learn the characteristics of good planning distributions. Then,
the rejection sampling model will be applied to new instances of the environment. This
process is shown pictorially in Figure 2.2. Section 2.1 will discuss the necessary background
required for the learning method, Section 2.2 will formalize the problem of the experienced
piano mover, Section 2.3 will introduce the learning method, and Section 2.4 will present

experimental results and analysis.

2.1 BACKGROUND

Before discussing our method, we will present existing and relevant information and work.
Section 2.1.1 will go over in detail the RRT algorithm that will be used throughout for
explanation. Section 2.1.2 will discuss existing methods for heuristic learning. Section 2.1.3
will formally introduce the framework and algorithms of Reinforcement Learning as they

are a crucial part of the methodology.
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2.1.1 Rapidly-Exploring Random Trees

The RRT algorithm was first introduced in 1998 [73] and quickly gained popularity for its
simplicity, effectiveness, and probabilistic completeness. The base algorithm is detailed in

Algorithms 1 and 2.

Algorithm 1 RRT

1: procedure RRT(Xs¢art, Xgoal)

2. Initialize Empty(Directed) Graph G = (V, E)
3t V & VU {Xstart}

4 while xg0q1 ¢ V do

5 Xrand < SAMPLE()

6: EXTEND (Xrand, G)

7 end while

8: end procedure

Algorithm 2 EXTEND
1: procedure EXTEND(Xyqnd, G)

2: Xnear ¢ NEAREST (xrqna, G)
3: Xnew, Path — STEER(Xnear/ Xrand)
4 if COLLISION_FREE(path) then

6: E+~ EU {(Xnear, Xnew)}
7: end if

8: end procedure

Xstart 1S a start state, xgoq1 is the desired goal state. The algorithm starts with a tree

that contains only the start state. It then iteratively samples a random state and extends
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the tree towards it. The extension is performed by choosing the closest vertex in the tree
to the random state and then steering that vertex towards it, adding a new vertex. At the
end of the algorithm, the tree G will contain a path from Xstqrt to Xgoa1. This path can
be found simply by finding the goal vertex and recursively following the parents of each
vertex back to xsqrt. RRT is dependent on several robot specific functions. For any robotic

system to use RRT planning, there must exist
SAMPLE: Draws a random state from the state space, S.

NEAREST(x, G): Finds the node nearest to x in the graph G based on some metric, p.
For differentially constrained problems, p may not be a proper metric as it can be

asymmetric.

STEER(xo,x1): Applies a control to the system to generate a path (usually ignoring
obstacles) that goes from X t0 Xnew, Where p(xo,Xx1) > P(Xnew,x1) This can be
a nontrivial function for many systems. This function will return xn e, the state
the path ends with, and some representation of the path (usually a collection of
waypoints) taken. For general kinodynamic systems, a generic way to create this
STEER function can be to randomly sample controls and a period of time to apply

that control. Then, choose the control that moves the state closest to the x;.
COLLISION_FREE(path): Checks if the path is in collision with the environment.

A common modification to the RRT algorithm is the RRT-Connect algorithm [65]. The
RRT-Connect algorithm uses two trees, one rooted at the start and the other at the goal,
and attempts to extend each one. When extended, the algorithm will attempt to connect
the trees together by repeatedly extending one tree towards the other. This is detailed in

Algorithms 3, 4, and 5.
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Algorithm 3 RRT-CONNECT
1: procedure RRT-CONNECT (Xstart, Xgoal)

2: Initialize Empty(Directed) Graphs G1 = (V1,E1) and G, = (V3, E3)
3: Vi+V; U{Xstart}
4 Vy Vo U {Xgoal}

5: while xg0q1 ¢ V do

6: Xrand < SAMPLE()

7: if EXTEND(xqnd, G1) # Trapped then

8: if CONNECT (xnew, G2) = Reached then
o: Break

10: end if

11 end if

12 SWAP(G1, Gy)

13: end while

14: end procedure
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Algorithm 4 EXTEND (RRT-Connect)

1: procedure EXTEND(x;qn 4, G)

2:

3:

10:

11

128

13:

14:

Xnear < NEAREST (x;qna, G)
Xnew,path < STEER (Xnear, Xrand)
if COLLISION_FREE(path) then
V4~ VU{Xnew}
E < EU{(xnear, Xnew)}
if Xnew = Xrana then
Return Reached
else
Return Advanced
end if
else
Return Trapped

end if

15: end procedure

Algorithm 5 CONNECT

1. procedure CONNECT (X, qn g4, G)

2:

3:

4

5:

S < EXTEND(Xyqna, G)
while S # Advanced do
S <~ EXTEND(Xyqnd, G)

end while

6: end procedure
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2.1.2 Heuristics and Heuristic Learning

Heuristic Learning in Graph-based Planners

In graph-based planning, there has been work in directly trying to learn a cost-to-go
function as a heuristic. Since graph-based planners can find optimal paths, a supervised
learning problem may be posed for a function approximator like a neural network to
regress the cost-to-go values returned from an optimal planner [10, 23, 4]. While [10] uses
the (generally inadmissible) heuristic as the sole determining factor to do a greedy search,
[4] bounds the learned heuristic with an admissible heuristic and uses a traditional graph
search algorithm. Similar to ARA* as discussed in Section 1.2.1, the inadmissible heuristic
seems to provide large computational time improvements at the cost of optimality. The
heuristic that is learned in [4] utilizes a convolutional neural network takes as input the
start, goal, and a representation of all the obstacles. The heuristic is trained to regress the
cost-to-go. Thus, one interpretation is that the convolutional network itself is attempting to
solve the planning problem within the computational constraints of the network weights.
There may exist a convolutional neural network large enough with specific weights such
that all grid problems of a certain size might be fully solved by it without an explicit
planning algorithm. However, the trade off here is between using a planning algorithm that
is provably optimal versus a learned heuristic that may be more efficient at recognizing
patterns for cost-to-go computations. [48] uses a similar approach in a realistic robot arm

planning scenario in higher dimensions.

Sampling-based Planner Heuristics

While strong supervision exists for problems that can be solved with graph-based planners,

more difficult problems may not have an optimal planner available to provide supervised
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cost-to-go values. There is no guarantee that sampling-based planners such as RRT (or the
asymptotically optimal variants) will find an optimal path in any finite amount of time.
In fact, it has been shown that the probability of sampling-based algorithms finding the
optimal path in any finite time is zero [57] given some reasonable assumptions (optimal
paths have zero-measure). Thus, the approach used to learn heuristics from data in graph-
based planning algorithms are not easily translatable to sampling-based approaches.
Many researchers have used human intuition to develop heuristics that work for different
sets of environments. There is a number of methods that use rejection sampling to bias the
sampling distribution. [13] introduces a method to bias random samples towards obstacles
for the PRM planner. For every sampled state, an addition state is generated from a
Gaussian distribution around the first state. A sample is only accepted if exactly one point
is in collision. [141] proposed a method to compute lower cost RRT paths. Each node in
their tree is given a heuristic quality value that estimates how good a path passing through
that node will be. Rejection sampling is used to sample points near high quality nodes.
This method is mostly superseded by RRT* [57], but is a useful case of how rejection
sampling has been used to improve path quality. Dynamic-Domain RRT [155] rejects
samples that are too far from the tree. The idea is that drawing samples on the other side
of an obstacle is wasteful since it will lead to a collision, so sampling is restricted to an area
close to the tree. BallTree [122] uses a heuristic that is the opposite of Dynamic-Domain
RRT and rejects samples that are too close to the tree. The idea is that many nodes in
the tree are wasted in exploring areas that are close. [123] present a heuristic to improve
RRT performance for differentially constrained systems by rejecting samples where the
reachability region of the nearest neighbor is further from the random sample than the
nearest neighbor itself, so that extending towards the sample will not actually encourage
exploration. Informed RRT* [34] improves RRT* performance by restricting samples to

an ellipsoid that contains all samples that could possible improve the path length after
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an initial path is found. This technique does not improve the speed at which the first
path is found, but the speed at which the solution is further optimized. [68] improved the
informed sampling technique to improve efficiency in high dimensions while [156] has
extended the approach to kinodynamic systems.

There are also methods that do not utilize rejection sampling. [161] modifies random
samples by moving points in the obstacle space to the nearest point in free space. The effect
of this method is that small “tunnels” that are surrounded by obstacles will be sampled
more frequently. As noted, this is effective for environments that have narrow passages
which are particularly hard for traditional planners to solve due to the small probability of
sampling within the narrow passage. [16] grows a backward tree in the task space and
biases samples in the forward configuration space tree towards it. The backward task
space tree can be much more easily found in manipulation tasks and can effectively guide
the forward configuration space tree. [153] proposes a method to quickly compute an
approximation to the medial axis of a workspace. Their goal is to generate PRM samples
that are close to the medial axis, as it is a good heuristic to plan in environments with

narrow tunnels. This has also been explored in [151].

Heuristic Learning in Sampling-based Planners

While the previous work has yielded good results for certain environments, they are not
generally applicable. There has been some work in automating how to improve sampling
for different environments. [165] introduced a method to optimize workspace sampling.
The workspace is discretized and features such as visibility are computed for each discrete
cell. The workspace sampling is improved using the REINFORCE algorithm [150]. This
method performs well in the environment it is optimized in, but new environments can
potentially have a high preprocessing cost to compute the features. In addition, discretizing

the workspace may be infeasible for certain problem domains. More recently, [49] used
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a Conditional Variational Autoencoder [28] to learn an explicit sampling distribution for
FMT* [53] by maximizing the likelihood of generating samples from previous successful
motion plans or human demonstrations. Motion Planning Networks [107] also uses
supervision from human demonstrations or near-optimal plans to learn a network that
outputs a state sample which is used greedily. Neural Exploration-Exploitation Trees [20]
proposes a similar method that uses supervision from previous successful plans to suggest

samples which are used in combination with uniform random samples.

2.1.3 Reinforcement Learning

This section will provide a quick introduction into Reinforcement Learning (RL), which is
a vital component in our method of heuristic learning. For a more detailed introduction,
[131] is a good resource. Our method will formulate a rejection sampling process as a
Markov Decision Process (MDP) in Section 2.3.2 and provide the Reinforcement Learning
algorithm to solve it in Section 2.3.3. The relevant background to what will be discussed is

presented here.

Markov Decision Processes

Reinforcement Learning operates in the framework of a MDP. A MDP is a general frame-
work that can model fully observable systems with control inputs. Formally, a discrete

MDP consists of a tuple (8, A, P, r) where

1. 8 is a set of states that the system can be in. This is analogous to the configuration

space defined in Chapter 1.

2. A is a set of actions the system may take.
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3. P:8 x A x8 —1[0,1] is a transition function that is denoted as P(s¢1|st, at) where
st,8t+1 € 8 and ay € A. This function represents the probability of taking an
action ay at state sy and ending up in state st 1. This should be a valid probability

distribution such that ZSM Plseptlst, ar) =1,V(st, at).

4. 7:8 x A — R is a reward function that represents the immediate goodness of taking

an action at a specific state.

Often, the goal of solving a MDP is to find a policy to maximize the (possibly discounted)
sum of rewards from the initial state. A policy is a function that maps a state to a desired
action or distribution of actions. It is often denoted as 7(s), s € 8 for a deterministic policy
or m(als),a € A, s € 8 for a stochastic policy. Concretely, a common objective of solving a

MDP in a finite time horizon setting is to find 7t to optimize the following

-
max Ees, agT, [Z T(S¢, At)l (2.1)
t=0

where S; is a random variable that takes on values in § which represents the distribution
of states at time t when following a policy 7. Similarly, A; is a random variable that takes
on values in A which represents the distribution of actions at time t when following policy
7. Even in the case of a deterministic policy, A can still be a distribution if the state
transition function P is stochastic. The expectation is taken over all the states and actions
at all times. Thus, (2.1) is a problem to find 7t to maximize the average sum of rewards
over a finite time horizon.

Another common objective is to maximize the discounted sum of rewards over a infinite

time horizon

max Esoae, [Z Yr(Se, Ayl (2.2)
t=0
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where v € [0, 1) is the discount factor. y plays two roles: 1) it determines how much more
we value short term rewards over long term rewards and 2) it allows the infinite sum to
converge to a finite number (provided that the rewards are bounded) so policies can be
compared by a finite number. To see the latter point, consider a MDP where one action
at any state will always give a reward of 1, and another action will always give a reward
of 2. Without the discount factor, a policy that always chooses the action that obtains a
reward of 1 would look just as appealing as any other policy. We would like to be able
to formulate a problem where the action that chooses a reward of 2 is more preferable.
Depending on the literature, the discount factor, y, is sometimes included in the definition
of the MDP tuple. To illustrate how a MDP might be used to model a system, we will give

an example.

Qe ft h Aright
>

S1 S92 S3 S4

Figure 2.3: (MDP Example) A simple example of a Markov Decision Process with a robot traveling
on a line.

Example 2.1. We look at a lazy robot traveling on a line as shown in Figure 2.3. The state space
§={...,81,82,83,54,...} consists of the discrete locations that the robot can exist in. The action

space A = Qieft, Aright consists of the two actions that can be commanded to the robot. Since the
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robot is lazy, it will only do what it is commanded half the time, the other half it stays put. The

transition function P is defined as

05, if s=5¢

0.5, if sistotheleft of s’ and a = aright

P(s'ls,a) = 0 (2.3)
0.5, if sistotherightof s’ and a = aieft

0, otherwise

We can also define a reward function that rewards the robot if it is at state s3.

1, 1 =
(s, a) = hos=e (2.4)

0, otherwise

Note that there are multiple ways of defining a MDP in literature. Some use a reward
function that takes into account the state at the next timestep as well as the state and
action at the current timestep. Different definitions can be notationally useful in specific

circumstances.

Reinforcement Learning Algorithms

We have discussed the framework in which Reinforcement Learning algorithms are defined
in. If all the ingredients in the discrete MDP tuple, (8, A, P, 1), are known, then there exists
dynamic programming methods to find an optimal policy [131, Chapter 4]. Reinforcement
Learning deals with how to solve the MDP when certain ingredients are unknown — most
commonly the state transition function P and reward function r. While the exact functions

are unknown, it is possible to sample trajectories from the MDP. For example, the transition
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function may be unknown for a novel robotic platform, but controls can be applied and the
resulting states can be recorded. In these cases there are different categories of algorithms
to solve the MDP. There exist model-based methods that attempt to learn P and r from
data and use algorithms similar to dynamic programming to solve it [130, 91, 55]. There
are different model-free algorithms as well, ranging from value-based methods [146, 138,
125] to policy gradient methods [150, 132, 38, 124] to actor-critic methods [152, 63, 103].

For sake of brevity, we will briefly describe only policy gradient methods as they
are used in our heuristic learning method. The original policy gradient method, known
as REINFORCE, was introduced by Williams [150] and later extended into function
approximators by Sutton [132]. The idea behind policy gradient methods is to directly take
the gradient of the Reinforcement Learning objective defined in (2.1) and (2.2) with respect
to the parameters of a policy and apply gradient ascent to maximize it. The original policy
gradient methods utilize stochastic policies, 7t(als)

We look at the finite horizon case with a policy mg that is parameterized by a vector of

parameters 6, where the objective is

-
V7 (sg) = E{St,At}LO [Z T(S¢, At (2.5)
=0
which can be rewritten as
V7 (sg) = Z P, (TIR(T) (2.6)
T

where T = s9, ap, s1, a1, ... is a trajectory sample of states and actions. R(t) = ZLO T(s¢, at)

is the total discounted sum of rewards of that trajectory, and P, () is the probability of



2.1 BACKGROUND 33

that trajectory sample happening under a policy 7tg. The expected sum of rewards is the

same as the expected trajectory reward. We can now look at computing the gradient
VoV™(so0) VZ P (T

= ZR(T)VGPWQ(T) (2.7)

—ZR 1)V log(Pr, (1))

where the expected discounted sum of rewards of a single trajectory sample does not
depend on the policy parameters, thus it is constant with respect to 0. Additionally, the
last line comes from the fact that Vglog(f(0)) = fiave f(0). We can write the gradient of

the log probability of a trajectory sample as

Vo log Py, (1) = Ve log(IM{_yme (ailse)P(sts1lst, ar))

T T
Q(Zlogﬂe(at|3t) +Zlogfp(3t+1|3t, a)) (2.8)
t=0 t=0

I
B

Vo logmg (aglst)
0

-+
|

where P is the state transition probabilities and is constant with respect to policy parame-

ters. Thus, the entire policy gradient can be written as
VoV™(s0) Z R(T) Py (T) Vg l0g (P, (1))

=Ep_ (0)[R(7) Z Ve logmg(atlst)].
t=0

(2.9) is known as the Policy Gradient Theorem. It is useful, because the expectation on

the right hand side can be estimated by running multiple trajectories and averaging the
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expression in the inside of the expectation. The gradient of the log policy can be computed
analytically for most parameterized policies. Often, a baseline that is policy independent
(but can be state dependent), b(s) , can be introduced to decrease the variance of the policy

gradient [131, Chapter 13.4].

.
VoV™(s0) = Ep, ()[(R(T) =b(1)) ) Vo logmo(atlst)]. (2.10)
t=0

With the ability to compute the gradient of the Reinforcement Learning objective, a
stochastic gradient ascent algorithm can be formulated that iterates between 1) running
trajectories on the MDP to gather samples to estimate (2.10) and 2) computing the gradient
and applying gradient ascent to the policy parameters.

Policy gradient methods may not find the optimal policy, unlike many value-based
methods. However, the advantages are that is that they converge to a local optimum

speedily and have an explicit representation of the policy which can be fast to compute.

2.2 AN EXPERIENCED PIANO MOVER'S PROBLEM

Now that the appropriate background has been given, we mathematically define the
statement of the Experienced Piano Mover’s Problem that we seek to solve. We would like to
reduce the computational cost of sampling-based planners in certain types of environments
by modifying the sampling distributions. For clarity, let us consider planning trajectories
for a robotic arm in typical tabletop environments.

Following the notation from [57], a configuration space for a planning problem is
denoted as X. For a given environment, let X, denote the obstacle space, a subset of X

that the robot can not move in. Thus a map is uniquely defined by its X,,5. A specific
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environment type, E, is a probability distribution over possible obstacle spaces, X,. For
a 7DOF robotic arm, X is the 7 dimensional configuration space, and E will assign higher
probability to environments that look like scattered objects on a table.

Let Yy ~ px be a sequence of Random Variables that represents the i'" random sample
of the state space drawn during the planning process (Note that the random variables
do not need to be identical and can change during the planning process). In standard
sampling-based planners, Yy are independent and identically distributed. Now given a
specific map, X,ps, and a sequence of random state space samples, let Z(X,ps, Y1,Y2,...)
be a random variable representing the computation effort of the planner which can be
computed from number of collision checks, the size of the search tree, and the number of
random samples drawn during the planning process. Z is a random variable due to its
dependence on the random samples, Y;, that are drawn. The problem this work addresses

is the following optimization problem:

{ui} =argminEx . 1, [Z(Xovs, Y1,Y2,...)] (2.11)
{r}

(2.11) succinctly describes the following: Given a distribution of maps, E, find the
sequence of distributions {u}} that minimizes the expected computational cost of the
search, Z. These distributions can be a function of the map and planner. For a robotic
arm, this amounts to finding the probability distribution that will minimize the number
of collision checks, size of the search tree, and the number of random samples drawn in

common tabletop environments.
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2.3 LEARNING IMPLICIT SAMPLING DISTRIBUTIONS FOR PLAN-

NING

Unlike in previous work that assumes an optimal planner [4, 10, 23, 48], this work addresses
the problem when no such optimal planner is available. Thus, it is not possible to formulate
a supervised problem. Instead, a weaker Reinforcement Learning signal can be utilized.
While we can not assess the optimality of any given sample, we can attempt to assess
the local goodness of a sample based on metrics we care about such as computation time.
We will begin by introducing how to parameterize distributions and then discuss how to

apply the Reinforcement Learning framework to this problem.

2.3.1  Representing Distributions Implicitly

It is difficult to represent the sequence of distributions, py, from (2.11) explicitly. The distri-
bution may be very complicated and not easily representable with simple distributions. In
addition, for many problems, there may not be an easy explicit map available (often there
is just an oracle that returns whether a collision has occurred or not). A way to implicitly
represent a complicated distribution is with rejection sampling, similar to techniques
presented in [13, 155, 122, 123]. In our method, random samples will be drawn from some
explicitly given distribution, v (usually the uniform distribution with a peak at the goal).
For each random sample x € X drawn, a probability of rejection is computed. The sample
is then either passed to the planner or rejected. The end result is that unfavorable samples
are discarded with high probability so computation time is not wasted in attempting to
add the node into the tree or in checking it for collisions. This can improve performance

as the sampling operation is usually cheap, but collision checking and tree extension is
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much more expensive. For example, in the robotic arm experiments described later, the
policy has learned that samples with large distances between joints and obstacles are
unfavorable as it does not progress the search. The policy is learned offline, and is applied
to new environments that are similar in nature (for example, in a grasping task, a desk
with different objects in different locations).

More formally, the probability of rejecting a sample x € X is denoted as 7(areject/x)
where a;eject is the action of rejecting a sample. The function, 7t is learned offline (dis-
cussed in Section 2.3.3). Thus, 7 can implicitly represent a probability measure p, the

distribution that is effectively being sampled when applying rejection sampling.

_ Jxs (1= (@rejectlx))dv(x)
HXs < X) = .J‘X(] _ﬂ(are)'ect|x))d\/(x) (2.12)

This p is valid as long as [y (1 — 7(areject/x))dv(x) is some finite positive number. This

will be easily satisfied if 7(areject/x) < 1,Vx € X.

2.3.2 Rejection Sampling as a Markov Decision Process

The process of rejecting samples during the planning algorithm will be modeled as a
Markov Decision Process as defined in Section 2.1.3. In the setting of sampling-based
planners, a state s; € 8 consists of the environment, X,ps, the current state of the planner,
and a randomly generated random sample x; € X from the distribution v. The action space
is A = {@accepts Areject ). Upon taking action agccept, the sample x; € X will be passed to
the planner. Upon taking action dreject, the sample will be rejected. In both cases, a new
random sample, x¢41 € X will be included in the new state s 1. A reward, r(s¢, at) is
given based on Z(X,bs, Y1,Y2,...). The cost defined for Z will simply become the negative

reward. A MDP model of the rejection sampling applied to RRT is described pictorially in
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Figure 2.4: (Rejection Sampling MDP) MDP representing rejection sampling in a RRT. Blue circles
represent nodes in the tree, while the lines represent edges connecting nodes. At a state
S, you can transition to possible next states, s 1, by rejecting or accepting the random
sample Xraqnd.

Figure 2.4. Note that algorithms that may use batches of samples such as PRM or BIT* can
utilize this simply by drawing and rejecting samples until there is enough for a batch.
The policy will be defined as m(als), the probability of taking action a in state s.
Furthermore, 7 will be restricted to a class of functions with parameters 0 and take in
as input a feature vector ¢(s) instead of the raw state s. The policy will be referred to as
mg(ald(s)). In this work, the function is represented as a neural net where 0 represents the
weights in the network. By implicitly defining probabilities py in (2.12) with policy 7tg, px

can be written as a function of 6. The optimization problem in (2.11) can be rewritten as

0" =argminEx_, [Z(Xovs, Y1(0),Y2(0),...)]. (2.13)
0
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where all py share the same parameters 6 but may be different distributions due to the
different states the planner will be in. Furthermore, to keep notation with the reinforcement

learning literature, the planning cost, Z, will be redefined as

T
Z(XObSIP/Y1/YZ/'--) :_erobs(st/ at) (2'14)
t=0

where the rewards rx_, . (st, at) have been chosen to reflect the negative cost represented by
Z(Xobs, Y1,Y2,...). Specific reward functions for experiments are described in Section 2.4.
Finally, the expectation can be approximated with some samples of typical environments

that E contains.

. 1

0" =argmax— > EfqurmMXo. (51, ar). (2.15)
o el

obsEIE

where I is a set of X,ps that are representative of the environment E.

2.3.3 Solving the Markov Decision Process

There are many methods from reinforcement learning literature that has been developed
to solve the optimization problem posed in (2.15). This work utilizes policy gradient
methods as described in Section 2.1.3, specifically REINFORCE with a baseline. The
rationale for choosing policy gradient methods over value-based methods is that the
policy will have an explicit form that is fast to evaluate which is vital as the policy will
be used in the innerloop of sampling-based planners. The baseline V(¢ (s¢)) will provide
an estimate of the value function. Given an environment X,1s and policy 7g, policy

gradient can be estimated by running the planner N times with 7t and collecting samples



2.3 LEARNING IMPLICIT SAMPLING DISTRIBUTIONS FOR PLANNING 40

of (p(st), ar,Tx,,. (st,a¢), V(d(st))) tuples to calculate ZLO Vlog(ng(atld)(st)))(Rf"bs —
V(d(s¢))) for each rollout, then averaging over the N rollouts.

During training, another neural network is fitted to represent V,, (¢ (s¢)) with weights
w. Utilizing the samples ({p(s¢), at, Tx,,, (St,at), V($(s¢))) in each iteration of the policy

gradient ascent, an iteration of gradient descent is run on w to minimize the loss function

.
L= (V(d(se)) —Ry"™)2 (2.16)
t=0

to update the baseline V(¢ (s¢)). The steps of the algorithm are detailed in Algorithm 6.
One downside of policy gradient methods is that they are susceptible to local minima as
the objective function is not convex. To mitigate this, several different policies are initialized
and the best policy is chosen. Different features should also be tested. The performance
depends on what information is available. An example what the rewards might look like

while running the policy gradient algorithm is shown in Figure 2.5.

Algorithm 6 Learning Sample Distribution

1: procedure LEARN({X(()I};S M)

2. Initialize parameters 0y for policy mg,

3 Initialize parameters wy for value baseline, Vi,

4 Run planner with g, several times with each environment and collect data Dy =

(d(se), ae, (se, at), Vi, (P(st)))

5: Use Dy to fit V,,, by running gradient descent on the loss function in (2.16)
6: for i=1:Numlterations do
7 for each environment in I¢ do
8: Run 79, , N times and collect data Dy
9: Use (2.10) to compute gradient and update 6; = 0;_1 +1oVV(so)
100 Compute gradient of (2.16) and update w; = w;_1 —n,, VL
11 end for
12: end for

13: end procedure
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Figure 2.5: (Policy Gradient Reward Curve) Rewards while using the policy gradient to update a
rejection sampling policy for RRT.

2.3.4 Probabilistic Completeness

The original RRT algorithm has the property of being probabilistically complete. That is,
given that a solution exists for a motion planning problem, the probability that RRT will
find a solution converges to 1 as the number of samples converges to infinity. It is intuitive
that this process of rejection sampling will preserve probabilistic completeness for RRT.
Following the original proof in [72], the existence of an attraction sequence of length K
between the start and goal positions is assumed. {Ap, A1, ..., A}, Ax C X is an attraction

sequence if VAy, there exists a subset By C X such that
1. Vx € Ax_1,Y € Ay, z € X\By, the distance d(x,y) < d(x, z)

2. Vx € By, it is possible for the EXTEND function (Algorithm 2) to extend into the set
Ak C Bk

The proof then shows that there is a minimum probability of transitioning from one

attraction set in the attraction sequence to the next. Treating the transition as a biased
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coinflip with success rate p, the question of whether a path is found in N steps turns into

a question of whether or not out of N coinflips, K are successful. In [72], p is given as

P = H?H{V(Ai)/v(xfree)} (2.17)

where A; is the it element in the attraction sequence. The rejection sampling modifies
v(Ai) and not v(X¢ree). Setting a lower threshold for the probability of acceptance of a

sample as €, we can write

IAi 7T(aaccept|X)Cl\/(x)

Ai) = 2.18
Hie(Ad) fAi T(Qacceptx)dv(x) + jX\At T(Qaccept/x)dv(x) ( )
edv(x
> I, ) (2.19)
Ja, €dv(x) + [x\ 4, 1dV(x)
edv(x
> IAi (x) (2.20)
Ja, 1dv(x) + [y A, TdV(x)
=ev(Ay) (2.21)
Thus, when evaluating the modified p for the learned distribution
P= miin{uk(Ai)/V(Xfree)} =€ rniin{v(Ai)/V(Xfree)}- (2-22)

One key difference between the original proof and our method is that the samples drawn
are no longer independent, as the acceptance or rejection of a sample can influence future
samples. However, the probability of drawing a sample from A; some K number of times
is lower bounded by (ep)X since each sample has at least ev(A;) probability of being
drawn. Thus, the probability that the modified distribution draws K successful samples
from N tries is lower bounded by the probability of drawing K successful independent

samples out of N from a biased coin flip with p’ = ep.
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Figure 2.6: (Policy Network Architecture) Neural network architecture used for rejection sampling
policy. FC(N) stands for a Fully Connected Layer with N neurons.

Thus, this method simply scales the probability p of the original proof by a constant

factor, preserving probabilistic completeness.

2.4 EXPERIMENTS

This section will detail experiments to test the efficacy of our heuristic learning approach.
Experiments were performed in three sets of environments. First, we tested the algorithm
on three different planners in a simulated FlyTrap environment. This allowed us to analyze
the learned policies and behavior in detail in a relatively simple environment. Next,
the algorithm was tested on a pendulum environment to analyze its performance with
dynamical systems. Then, we applied the algorithm to a more complicated 7 degree of

freedom robotic arm to show performance on a real system.

2.4.1 Implementation Details

We begin by detailing the specific implementation details common to all experiments. This

includes the details of the reward function and the policy and value neural networks.
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Reward Function

The reward function r(s, a) used is chosen to reflect the computation time of the planning
algorithm.

T‘(St, at) = _(}\1 1 + )\Znnode,t + )\3ncollision,t) (2'23)

A1 is a small value that represents the cost of sampling. nnoge,t is the number of nodes
added to the tree in iteration t and n¢ottision,t i the number of collisions checks performed
in iteration t. A2, A3 are simply scaling factors (the experiments use A1 = 0.01, A; = A3 = 1.).
Note that the total reward ZLO 1(s¢, a) will simply be the scaled total number of nodes
plus the scaled total number of collisions plus the scaled total number of samples drawn
from v. The reward function is designed to reflect the operations that take the majority of
the time: extending the tree and collision checking. The reward function can be made more
elaborate, or be nonlinear, but this form is used for simplicity. In practice, this method
can be made more accurate by measuring the time of each operation (collision check,
node expansion, etc.) to compute the weighting factors A;. In addition, the rewards are
normalized by their running statistics so that all problem types can have similar reward

ranges.

Policy and Value Networks

In this work, the policy 7¢ is a neural network that outputs probabilities of acceptance
and rejection. The choice in using a neural network to represent the policy is due to
the flexibility of functions they can represent. Initial results showed that a simple model
like logistic regression can be insufficient in complicated environments. In addition, with
neural networks, there is no need to select basis functions to introduce nonlinearities.
The network used is a relatively small two layer perceptron network (the inference must

be fast as this function is run many times in the inner loop of the algorithm). For reference,
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the network evaluated a sample in around 3.59 microseconds using only a laptop CPU
running at 3.5Ghz. The input ¢(s) is passed through two hidden layers with 32 and 16
neurons and rectified linear activation. There is a batchnorm operation [51] after each
hidden layer. The second batchnorm layer is passed to a final fully connected layer with 2
outputs that represent the logit for accepting or rejecting the sample. The logit is fed into
a softmax operation to obtain the probabilities. Additionally, the logits are modified so
that all probabilities lie between 0.05 and 0.95. This is so that g (arejectls) < 1 in order
to guarantee that . is a valid probability distribution. This also allows the policy to
always have a small chance of accepting or rejecting, which is useful for exploration in the
reinforcement learning algorithm. The policy network is shown in Figure 2.6.

The neural network for V(¢ (s)) is similar to the policy network. The only difference is
that the output layer is a single neuron representing the value. All networks are trained
with the Adam optimizer [60] with a learning rate of 0.001.

During execution, multiple samples may be batched together to run in parallel through
the neural network. This slightly breaks assumptions of the heuristic learning algorithm
proposed as each sample might be dependent on the one before it. However, empirically,

batches of 64 samples do not meaningfully impact any metrics measured.

2.4.2 Flytrap Environments

The first experiment run is that of the 2D Flytrap. This environment is used as a benchmark
in [122] and [155] as an example of a hard planning problem. It is difficult to solve because
of the thin tunnel that must be sampled in order to find a path to the goal. The training
and testing environments are shown in Figure 2.7. Three different planners are tested on
the environment: RRT-Connect function with one tree [65], Bidirectional RRT-Connect

(BiRRT) [65], and EST [47].
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Figure 2.7: (Various Flytrap Environments) The green dot is an example starting location and
the red dot is an example goal location. 2.7a is what the policy is trained on in the
experiment. 2.7b is what the policy is tested on for the experiment. 2.7c shows the
environment used by BallTree [122]

For RRT, the feature used is the distance to the nearest tree node minus the distance of
that tree node to its nearest obstacle. For BiRRT, the feature used is the distance to the
current tree being expanded minus the distance of that tree node to its nearest obstacle. For
EST, there are a few choices for how to modify the sampling. In this experiment, we chose
to modify the probability of picking nodes in the tree for expansion (the alternative being
modifying the probability of how to pick nodes to expand to) since the choice of node has
a larger effect on the algorithm’s performance. The features used are two dimensional: the
nearest obstacle to the node, as well as the number of nodes in a certain radius (this is the
same as w(x) used in the original EST work [47]).

For each planner, the original policy of always accepting samples is compared against
the policy trained on the environment shown in Figure 2.7a. The results in Figure 2.8 show
the statistics over 100 run. The average of each metric tracked for the planners is compared.

For all planners, the number of collision checks is reduced while the number of samples
drawn is increased. In RRT, it is reduced around five times. The trade off between collision
checks and number of samples saves overall execution time. In addition, the decreasing the

tree size and reducing collision checks does not decrease the quality of the paths found.
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Figure 2.8: (Flytrap Experiment Results) Results of 100 runs of each planner on the test Flytrap
environment. Each bar shows the ratio of the learned planner’s metric to the unmodified
planner (over 100% means more than the original planner).

For each planner, the path found by the trained policy is equivalent in length or sometimes

shorter, despite not explicitly optimizing for path length.
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Figure 2.9: (Learned and Heuristic Rejection Policies) Comparison between learned policies and
BallTree and Dynamic Domain RRT.

Next, the policies learned for RRT are analyzed. The learned policy rejects samples

that are far away from the tree with higher probability. This is similar to the strategy

that is suggest by Dynamic Domain RRT [155], in which the ideal version of it rejects

all samples that are further away from the tree than the closest obstacle. However, for
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Flytrap environments where the space outside of the Flytrap is not a large fraction of
the space, the strategy suggested by BallTree [122] is more effective. BallTree rejects all
samples that are closer to the tree than the nearest obstacle. It is curious that for very
similar types of environments, the policies that work better for each are almost complete
opposites! This shows a need for some environment types to use the data itself to tune
a rejection sampling policy. When training on the different sized environment shown in
Figure 2.7c¢, the policies learned to exhibit behavior similar to BallTree. The policy trained
in the larger environment rejects samples further from the tree, and the policy trained
in the smaller environment rejects samples that are closer to the tree as shown in Figure
2.9. The distributions encountered during the search process are visualized in Figure 2.10
by sampling a uniform grid in the state-space and using (2.12) to compute discretized

probabilities for sampling each point.

Figure 2.10: (Learned Sampling Distributions) Learned probability distributions for RRT. While
the policy is the same, the distributions change as the RRT search progresses. For each
figure, the bottom plane shows the environment with a green search tree, while the
blue dots show sampled points representing the learned distribution.

2.4.3 Simulated Pendulum

In addition to the flytrap environment, experiments were done on a planar pendulum

to test the effectiveness of it on a dynamical system. The pendulum starts at the bottom
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and needs to reach the top. It is control limited so it must plan a path that increases its
energy until it can swing up. In this experiment, we used a steering function that randomly
samples control actions and time durations. This is a common steering function that may
be used in more complicated systems [78]. The results are shown in Figure 2.11. Number of
collision checks is not included as for this particular experiments as there are no obstacles
to collide with. The features used are 1) the difference between the goal angle and the
current angle and 2) the difference in angular velocities. The policy learns to reject samples
that are not likely to lead to the goal state, which saves the execution time otherwise spent
computing the steering function.

Pendulum RRT

269.6%

200% A

100% === mmmmm e cmm oo N e =

Execution Time Cost Number of Tree Nodes Number of Samples Path Length

Figure 2.11: (Pendulum Results) Results of 100 runs of each planner on the Pendulum environ-
ment. Each bar shows the ratio of the learned planner’s metric to the unmodified
planner (over 100% means more than the original planner).

2.4.4 Real Robot Arm

The algorithm is also tested on the 7 degree of freedom arm of the Thor robot (Figure
2.12). This experiment is used to validate the method in a higher dimensional space and in

a realistic environment. Thor is given tasks to move its arm to various difficult to reach
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Figure 2.12: The Thor robot in a test of the tabletop environment.

places in assorted tabletop environments. The environments consists of crevices for Thor
to reach into and obstacles to block passages. The base planner used is BiRRT, with a four
dimensional feature space (EST and RRT were not used as the planning took too long).
The first three features are the distances of various joints to the closest obstacle, and the
last feature is the distance of the current configuration to the goal. Two very different
environments were used for training, and a third environment distinct from the first two
was used for testing.

The results of the arm experiments are shown in Figure 2.13. The figure details the
statistics over successful plans over 100 runs of the planner. Our algorithm had 97% success
rate in finding a path, while the original had 96% when the number of samples drawn is
limited to 100,000 (this difference is too small to make any claims). Similar to the Flytrap
experiments, a policy is learned that trades off extra samples for a vastly reduced number
of collision checks and nodes in the tree. On the test environment, the number of nodes in
the tree is more than 5 times less and uses 2.7 times less collision checks. In addition, the

variance of the results is greatly reduced when using the learned distribution.
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Figure 2.13: (Robot Arm Results) Comparison of results of BiRRT in 7 degree of freedom robot
arm tabletop environments. Each bar shows the ratio of the learned planner’s metric
to the unmodified planner

Next, the policies learned for the Thor arm are examined to see what aspect of the
environment it is exploiting. A visualization is shown in Figure 2.14. We note that the
probability increases as 1) the distance of the configuration to the goal is lower, or 2) the
workspace distance of the later joints is closer to an obstacle. This policy makes a lot of
intuitive sense. Samples are concentrated near the surface of the table and objects, probing

the surface for a good configuration.

2.5 CONCLUSIONS

This chapter described learning sampling distributions for sampling-based motion planners.
Sampling distributions in sampling-based motion planners are a vital component of the
algorithm that affects how many times computationally expensive subroutines such as

collision checks are run. While the method presented can improve planning times by
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Figure 2.14: (Learned Sampling Distribution) Visualization of the learned rejection policy for
the tabletop environment. On the bottom right is a point-cloud representation of a
test environment. A cleaning spray is hidden within an open box. Each colored dot
represents the position of the end effector for a configuration state. A yellow dot
represents a state with high rejection probability while a red one represents one with
low rejection probability.

modifying the sampling distribution, it is not the whole solution for all problem types.
In maps where the thin tunnel issue is more pronounced, rejection sampling does not
alleviate the main dilemma of how to sample the thin tunnel. However, this method can be
easily combined with existing techniques such as [161, 153, 23] to improve performance.
When an optimal-planner is not available to provide direct supervision for heuristic
learning, a Reinforcement Learning approach is feasible. The learned distributions can
coincide with human intuition for which samples are beneficial. For environments tested in
[122, 155], the learned distributions appeared to be soft approximations of human designed
heuristics which validates the effectiveness of the learning process. We presented a general
way to obtain good implicit sampling distributions in the absence of direct supervision.
The process can be seen as a way of encoding the prior knowledge of the environments
into the rejection policy by learning from previous searches in similar environments to

solve the Experienced Piano Mover’s Problem.



3 CONSTRAINED MODEL LEARNING

Chapter 2 discussed learning heuristics from data to improve the computational efficiency
of motion planning algorithms. This section will discuss the other part of a motion planning
algorithm: the system model. Many motion planning methods perform admirably when the
models can approximate the dynamics of the system accurately. However, the performance
of these planners can be degraded with model inaccuracy. While some planners try to
explicitly account for model inaccuracy or uncertainty [44, 85, 126], they tend to yield
overly conservative motion plans. In the field of control theory, robust controllers [162] have
been developed to address the same problem. These methods often need to consider the
worst case scenarios at each state which can lead to undesirable or overly conservative
motion plans. Additionally, these methods have the assumption that user of the planning
algorithm has an idea and model of the kinds of errors that can occur. For example,
consider the problem of landing a quadrotor precisely at a target. There are complex
aerodynamic effects associated when nearby surfaces cause disturbances to the airflow.
This may result in large torques when the quadrotor is hovering close to the ground and
hamper precise landings. This is known as the ground effect [112]. These aerodynamic effects
can be hard to model from just prior knowledge and may show up as a highly correlated,
state dependent, non-zero mean noise. A common method that has been suggested to
model similar effects is to learn or adjust a dynamics model with real data taken from

running the system.

53
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In robotics, Gaussian Processes, Gaussian Mixture Models, or Neural Networks have
been used to learn models of dynamics [26, 94, 76, 91, 109]. A typical process for learning
these models involves selecting a parameterized model, such as a neural network with
a fixed number of layers and neurons, and choosing a loss function that penalizes the
output of the model for not matching the data gathered from running the real system.
Then, one optimizes the parameters by minimizing the empirical risk using, for instance,
stochastic gradient descent like algorithms. This formulation assumes that all transitions
are equally important since it penalizes the mismatch between model and data uniformly
on all portions of the collected data. While this formulation has shown success in some
applications, prior knowledge about the task and system can inform better learning
objectives. A control designer may know that a certain part of the state space requires a
certain accuracy for a robust controller to work well, or that some part of the state space is
more important and should have hard constraints on the model accuracy. For example,
to precisely land a quadrotor, a designer may note that the accuracy of modeling the
complex ground effect forces is more important near the landing site. Incorporating this
prior knowledge can lead to better performing motion planners.

To address the problem of incorporating prior knowledge into model learning, we
introduce the idea of sufficiently accurate model learning [159, 160]. This formulation is
based on the inclusion of constraints in the optimization problem whose role is to introduce
prior-knowledge about the importance of different state-control subsets. In the example of
the quadrotor, notice that when the quadrotor is away from the surfaces, the ground effect
is minor and thus, it is important to focus the learned model’s expressiveness in the region
of the state-space that is most heavily affected. This can be easily captured by a constraint
that the average error in the important state-space regions is smaller than a desired value.
These constraints will allow models with finite expressiveness concentrate on modeling

important aspects of a system. One point to note is that this constrained objective can be
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used orthogonally to many existing methods. For example, the constrained objective can
replace the unconstrained objective in [76, 91], and all other aspects of the methods can
remain the same.

In its most generic form, the problem of model learning is an infinite dimensional non-
convex optimization problem that involves the computation of expectations with respect
to an unknown distribution over the state-action space. In addition, the formulation
proposed here introduces constraints which seems to make the learning process even
more challenging. However, in this work we show that solving this problem accurately
is not more challenging than solving an unconstrained parametric learning problem.
To reach this conclusion we solve a relaxation of the problem of interest with three
common modifications: (i) function parameterization, (ii) empirical approximation, and (iii)
dual problem solving. Function parameterization turns the infinite dimensional problem
into one over finite function parameters. Empirical approximation allows for efficient
computation of approximate expectations, and solving the dual problem leads to a convex
unconstrained optimization problem. The three approximations introduced however may
not yield solutions that are good approximations of the original problem. To that end, we
establish a bound on the difference of the value of these solutions. This gap between the
original and approximate problem depends on the number of samples of data as well as
the expressiveness of the function approximation (Theorem 1). In particular, the bound
can be made arbitrarily small with sufficient number of samples and with the selection of
a rich enough function approximator. This implies that solving the functional constrained
problem is nearly equivalent to solving a sequence of unconstrained approximate problems
using primal-dual methods.

Section 3.1 will introduce the necessary background in model learning and Lagrangian
duality. Then, Section 3.2 presents the sufficiently accurate model learning framework.

Section 3.3 will examine the approximation error between the practical model learning
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problem and the general idealized model learning problem. One such algorithm to solve
constrained problems is discussed in Section 3.4 and numerical experiments are presented

in Section 3.5.

3.1 BACKGROUND

3.1.1  Types of Models and Model Learning

Before discussing our method of Sufficiently Accurate Model Learning, we will examine the
types of models that are used as well as different model learning methods. We begin
with examples of system models. The system model is a function that models how the
configuration state of a robot changes under some control input. In this work, we will deal
mainly with fully observable systems. Even among fully observable systems, there are a
variety of ways to represent the dynamics. A natural way to model a system may be with

a differential equation f : X x U — X

x = f(x,u) (3.1)

where x € X is a state from the configuration space, and u € U is a control from the control
space. This is a natural way to describe a physical systems as differential equations are
at the core of Newton’s Laws of Motion or Lagrangian Mechanics. In fact, the standard
form to describe the dynamics of an open-chain robotic manipulator is a second order

differential equation [go, Chapter 3.2] of the form

M(x)x + C(x, x)x+N(x,x) =u (3.2)
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which can be described by (3.1) by replacing the second order system of differential
equations with a first order system with a state space that contains both x as well as %. For

some systems, the differential equation can also change with time

x = f(x,u, t). (3-3)

A model changing over time can be used to model problems with dynamically moving

obstacles or other agents. Another type of system model would be a discrete-time model.

Xe+1 = f(xe, Ui) (3-4)

where x; and x{1 are states at a time index t € Z. This can more naturally fit some of
motion planning algorithms described in Section 1.2. Graph-based planners look at how
the state evolves at discrete time steps as well as many formulations of optimization-based
planners. This does not mean a continuous time differential model will not work as it is
possible to simply integrate the differential equation. In practice, the choice in model may
be decided by how easy it is to represent or learn each model.

The problem of model learning reduces to finding the function ¢ in the class @ that
best fits the transition data. For example, @ could be the space of all continuous functions.
The figure of merit is a loss function ¢ : § x ® — IR. With these definitions, the problem of

interest can be written as the following stochastic optimization problem

¢ =argminEs. s, [{(x, $)] (3-5)
bed

where s = (x¢,ut,x¢41) are tuples of data samples from the sample space taken from
observing the real system and the expectation is taken over a distribution of real system

data 8p with a sample space § = X x U x X. The goal is to minimize some loss function,
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£ : 8 x @, between the true observed next state x4 1 with the parameterized model’s output.

An example of a loss function is the p-norm,

Q(S,(b) = H¢)(thut)_xt+]Hp' (36)

For p =1, this reduces to a sum of absolute differences between each output dimension of
¢ and the true next state, x¢,1. When p = 2, we obtain the Euclidean loss. A combination
of both p =1 and p = 2 losses is known as an Elastic net loss [164]. Other common losses
include the Huber loss [88] and, in discrete state settings, a o-1 loss.

Often times a rough model f of the dynamical system of interest can be obtained.
Depending on the complexity of the system, these models may be inaccurate since they
may ignore hard to model dynamics or higher order effects. For instance, one can derive a
model f for a quadrotor from rigid body dynamics where forces and torques are functions
of each motor’s propeller speed. However, the accuracy of this model will depend on other
effects that are harder to model such as aerodynamic forces near the ground. In these
cases, the system model can decomposed as the sum of an analytic model f and a residual
error model ¢ [5, 30, 157]

fxe, u) & flxe, we) + b lxe,u). (3.7)
The residual model can be easily incorporated into the loss defined in (3.5). For instance,
the p norm loss can be modified to take the form

s, d) = Hd)(xtlut) — (Xt —f(Xt,ut))Hp .

In general, many researchers fit a discrete-time model to collected data [91, 114, 50, 93, 115,
40, 31, 18, 147, 5, 30, 157, 52, 69] using a variation of optimization problem (3.5) . There has

also been work on learning a differential equation model. In practice, it is easier to measure
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the state of a system rather than the time-derivative of the state. Thus, one approach has
been compose a supervised learning problem that penalizes an Euler integration of the
predicted derivative and the true next state [83, 108]. Neural ODE [21] looks at a loss that
depends on black box ODE solvers that can be more sophisticated than Euler integration.

In addition to the deterministic models shown in (3.1) and (3.4), there are also stochastic
models. Instead of directly modeling the next state, probabilistic models can represent a
distribution over next states. An example of simple probabilistic system model is a state

and control dependent Gaussian distribution

P(xe1lxe, we) = N{plxe, we), Zlxe, ue)) (3-8)

This type of model is usually used to represent aleatoric uncertainty or the intrinsic
stochasticity of the system. The actual dynamics can be probabilistic in nature. There can
be a philosophical argument whether or not systems can have aleatoric uncertainty, but
a practical example can be systems where the full state representation is not observable.
A car might have micro-abrasions on the tire which might hit tiny pebbles on the road.
Relative to the state that is measurable, the system can be seen as inherently stochastic.
There also exists epistemic uncertainty — the uncertainty in the model’s knowledge of the
system. This type of uncertainty can exist in deterministic system models as it refers not
to the underlying physical system but knowledge about how accurate the model is. This
is usually described by a distribution over models ¢. This can be realized, for example,
by using a neural network with dropout to represent ¢g as each parameter becomes a
Bernoulli random variable [33]. Other methods have used an ensemble [52, 69] such that
when multiple models closely agree, there is higher certainty in the model’s knowledge of

the system.
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This work will primarily focus on deterministic, discrete-time residual models as shown
in (3.7). However, the constrained objective that will be introduced can be used with all

model types.

3.1.2 Lagrangian Duality

This section will briefly review the concept of Lagrangian duality that will be utilized
and referenced in Sections 3.2.1 and 3.3. A more detailed discussion is presented in [15,
Chapter 5]. We begin by defining a standard optimization problem

P* =min 1(x)

X

(3.9)
s.t. g(x) <0
where x € R™ is a vector of variables to optimize over, 1 : R™ — IR is the objective function
(or loss function) to minimize, and g : R™ — RX is a vector-valued constraint function.
(3.9) will be denoted as the primal problem.
Lagrangian duality explores the relationship between the primal problem and an alter-
native problem known as the dual problem. To define the dual problem, we first define a

quantity known as the Lagrangian

L) =1x) +ATg(x), (3.10)

where the dual variable(or Lagrangian multipliers), A € R¥ is introduced. The k' element of

A corresponds with the k™ element of the constraint function g as they are multiplied and
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summed with the other constraints indices. The Lagrangian is used in a function known as
the Lagrangian dual function

d(A) = iQfL(x,?\). (3.11)

The Lagrangian dual function is used to define the dual problem

D* = max d(A). (3.12)

The dual problem is extremely useful in the analysis of optimization problems. For many
optimization problems, the dual formulation can be more practical to solve than the primal.
The dual problem optimizes over the dual variable A which exists in R rather than
primal variable x which exists in IR™. For some problems where K < n, this can be a
benefit. Though, note that an infimum still exists in (3.11), so this benefit mainly applies to
problems where the dual problem can be reduced to an analytic form. Linear programs, for
example, have an analytic dual [15, Chapter 5.2.1]. Additionally, the constraints in the dual
formulation consist only of non-negativity constraints A > 0 which can be easier to deal
with than the generic constraint function g. Another useful property of the dual function
is that (3.11) is concave without an assumption of convexity on the primal problem (3.9)
[15, Chapter 5.1.2].

While the dual formulation might be easier to solve for some optimization problems,
it may not have the same solution value as the optimal primal solution, P*. The dual
function d(A) has an interesting feature in that for the domain considered, A > 0, it is

upper bounded by the P* for all A. This can be seen as for any given A and feasible x,

L) +ATglx) < Ux) (3.13)
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as a feasible x would fulfill the condition g(x) < 0. Thus,
d(A) = inflL(x) + ATg(0)] < Ux") +AT g(x") < 1x") = P* (3.14)
where x* is a solution to (3.9). This implies that the solution to the dual problem (3.12),
D* = d(A*) < P*¥ (3.15)

is also upperbounded by the solution to the primal problem. The difference P* — D* is
known as the duality gap. There are optimization problems where the duality gap is zero.
The solution values to the primal and dual formulations are the same. When this happens,
the problem is said to have strong duality. Convex problems that fulfill Slater’s condition
are well known to have strong duality. Convex problems are a specific instance of (3.9)
where | and g are convex functions. Slater’s condition is fulfilled when there exists x such
that the constraint function is strictly satisfied, g(x) < 0. Convex problems are not the only
class of optimization problems that exhibit strong duality. A relevant class of problems

will that are strongly dual will be discussed in Section 3.3.1, Theorem 2.

3.2 SUFFICIENTLY ACCURATE MODEL LEARNING

We now present the framework of sufficiently accurate model learning. For clarity, we will

focus on the discrete-time deterministic system model presented in (3.4)

Xt41 = (X, U ).
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We consider a Euclidean configuration state space X = R™ and Euclidean control space

U = RP. A characteristic of the classic model learning problem defined in (3.5)

d)* = arg min ]ES'\’S:D [Q(X, d))]
$ed

is that errors are uniformly weighted across the sample distribution, 8$¢. In principle, one
can craft the loss so to represent different properties on different subsets of the state-input
space by weighting the lossses from different regions of the state-control space. However,
this design is challenging, system dependent, and dependent on the the distribution of
the transition data. In contrast, our approach aims to exploit prior knowledge about the
errors and how they impact the control performance. For instance, based on the analysis
of robust controllers one can have bounds on the error required for successful control.
The model should be able to incorporate prior knowledge such as “The errors in this part
of the state-control space should be at least e-accurate." This information can be used
to formulate the sufficiently accurate model learning problem, where we introduce the
prior information in the form of constraints. Formally, we encode the prior information
by introducing K € IN functions gy : § — R. Define in addition, a collection of subsets
of transition tuples where this prior information is relevant, §y C & and corresponding
indicator functions Iy (s) : 8 — {0, 1} taking the value one if s € 8¢ and zero otherwise.

With these definitions the sufficiently accurate model learning problem is defined as

P* =min Es_s, [{(s, $)Lo(s)]
be® (3.16)
s.t. Ess, [gk(s, d)Ix(s)] <0,k =1,2,...,K

Note that the sets Sy that define the indicator variables I (s) are not necessarily disjoint.
In fact, in practice, they are often not. The sets can be arbitrary and have no relation to

each other.
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Notice that the (3.16) is an infinite dimensional problem since the optimization variable
is a function and it involves the computation of expectations with respect to a possibly
unknown distribution. An approximation to this problem is presented in Section 3.2.1. For

technical reasons, the functions gy and 1 should be expectation-wise Lipschitz continuous.

Assumption 3.1. The functions €o(s, d) = (s, d)Io(s) and gi(s,d) = gx(s, &)Lk (s) are

L-expectation-wise Lipschitz continuous in @, i.e.,

Es [[to(s, d1) — Lols, d2)llo < LEs [[d1 — b2l , Y1, $2 € @ (3.17)

for some L. Here, ||[b1 — 2|, is the infinity norm for functions which is defined as ||f||, =

sup, [f(x)].

The expectation-wise Lipschitz assumption is a weaker assumption than Lipschitz-
continuity, as any Lipschitz-continuous function with a Lipschitz constant L is also
expectation-wise Lipschitz-continuous with a constant of L. In particular, the loss functions
in Example 3.1 and 3.2 are expectation-wise Lipschitz-continuous with some constant (cf.,
Appendix 6.1). There is no assumption that the functions should be convex or continuous.
Before we proceed, we present two examples of sufficiently accurate model learning. For
notational brevity, when an expectation does not have a subscript, it is always taken over

S~Sj).

Example 3.1. Selective Accuracy

min E || (x¢, ut) —x¢41])
beD (3.18)

s.t. E||d(xe, we) — X4 ||z Ia(s) < ec
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This problem is a simple modification of (3.5). It has the same objective, but adds a constraint
that a certain state-control subset, defined by a set A, should be within €. accuracy. The indicator
variable T A (s) will be 1 when s is in the set A. Here, g(s, d) = ||d(x¢, wt) —Xe41]], — ﬁ.
This formulation allows you to trade off the accuracy in one part of the state-control space with
everything else as it may be more important to a task. Another use case can be to provide an
error bound for robust controllers. This is the formulation used in the quadrotor precise landing
experiments detailed later in Section 3.5.3, where the set A is defined to be all states close to the

ground where the ground effect is more prominent.

Example 3.2. Normalized Objective

min E Hd)(Xt/Ut) — Xt41 HZ]IA(S)
bed [xe111l2

(3-19)
s.t. E || (xe, we) —xeq1]l, Tac(s) < ec

where 5 is the indicator variable for the subset A = {s € 8 : ||[x¢y1]l, = 8¢}, and AC is the
complement of the set A. This problem formulation looks at minimizing an objective such that the
error term is normalized by the size of the next state. This can be useful in cases where the states
can take values in a very large range. An error of 1 unit can be large if the true value is 0.1 units,
but it is a small error if the true value is 100 units. The set A contains all data samples where the
true next state is large enough for this to be significant. This can reduce numerical issues when the
denominator is small. For all small state values, the error is simply bounded by e.. From a practical
point of view, sensors will always have noise. When the state is small, the “true” measurement of
the state can be dominated by noise, and the model can be better off just bounding the error rather
than focusing on fitting the noise. This is the formulation used in the ball bouncing experiment in
Section 3.5.2, where the we would like the errors in velocity prediction to be scaled to the speed, and

all errors below a small speed can be constrained with a simple constant.
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3.2.1  Problem Approximation

The unconstrained problem in (3.5) and the constrained problem in (3.16) are functional
optimization problems. In general, these are infinite dimensional and usually intractable.
This section will present common approximations of (3.16). Instead of optimizing over
the entire function space ®, one may look at function spaces, ®g C @, parameterized
by a d-dimensional vector 8 € © = IR9. Examples of these classes of functions are linear
functions of the form ¢g(x,u) = 0] x + 0,1 where 0 = [04,0,] is a vector of weights
for the state and control input. More complex function approximators, such as neural
networks, may be used to express a richer class of functions [46, 91]. Restricting the
function space poses a problem in that the optimal solution to (3.16) may no longer exist in
the set ®g. The goal under these circumstances should be to find the closest solution in ®g
to the true optimal solution ¢*. Additionally, the expectations of the loss and constraint
functions are in general intractable. The distributions can be unknown or hard to compute
in closed form. In practice, the expectation is approximated with a finite number of data
samples s; ~8p withi=1,...,N. This yields the following empirical parameterized risk

minimization problem

N
X 1
N =min Z L(si, do)llo(si) (3.20)
i=
1 N
s.t. ng(si/d)e)ﬂk(si) <O/k:1/2/'--lK

While both function and empirical approximations are common ways to simplify the
problem, the approximate problem (3.20) is still a constrained optimization problem and
can be difficult to solve in general as it can be nonconvex in the parameters 0. This is

the case for instance when the function approximator is a neural network. One approach
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to solve this problem is to solve the dual problem associated with (3.20). To aid in the

definition of the dual problem, we define the Lagrangian associated with (3.20)

z

Z| =
I

(55, o) + AT — Z (51, do)- (3.21)

where A € R are the dual variables as discussed in Section 3.1.2.
Here, the symbol, {o(si, $g), is defined as 1(si, dg)Ip(s) to condense the notation.
Similarly, the bolded vector, g(si, dg) is a vector where the Kkth entry is defined as

gk (si, o)k (s). Similar to Section 3.1.2, the dual problem is now defined as

D% = in £n (0, A .
N = maxmin N(6,A) (3-22)

Notice that (3.22) is similar to a regularized form of (3.20) where each constraint is

penalized by a coefficient wy

ece N

N
D} _mm—Zﬂo si, Po) + Z (si, do). (3.23)
NS

Adding this type of regularization can weight certain state-action spaces more. In fact,
if wy is chosen to be A}, (the solution to (3.22)), solving (3.23) would be equivalent to
solving (3.22). However, arbitrary choices of wy provide no guarantees on the constraint
function values. By defining the constraint functions directly, constraint function values
are determined independent of any tuning factor. For problems where strong guarantees
are required or easier to define, the sufficiently accurate framework will satisfy them by
design. An alternative interpretation is that (3.22) provides a principled way of selecting
the regularization coefficients. In Section 3.4, we discuss an implementation of a primal

dual algorithm to do so.
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3.3 SURROGATE DUALITY GAP

Section 3.2.1 introduces an approximation (3.22) to the original problem statement (3.16).
An important question to ask is whether solving the approximation will yield a good
solution to the original, We are interested in the difference between the primal problem

(3.16) and the (3.22).

[P* — DY\l (3-24)

This is not quite the duality gap introduced in Section 3.1.2 as it is the absolute value of
the difference between the primal and the dual of different but closely related problems.
Hence, the quantity we are interested in bounding will be denoted as a surrogate duality
gap.

To provide specific bounds for the difference in the previous expression (3.24), we
consider the family of function classes ®g, termed e-universal function approximators. We

define this notion next.

Definition 1. The function class ®@g is an e-universal function approximator for @ if, for

any ¢ € O, there exists a ¢pg € g such that Eq_g., [|[d(s) — Po(s)], < €.

To provide some intuition on the definition consider the case where @ is the space of all
continuous function, the above property is satistied by some neural network architecture.
That is, for any e, there exists a class of neural network architectures, ®g such that @g is
an e-universal approximator for the set of continuous functions [46, Corollary 2.1]. Thus,
for any dynamical system with continuous dynamics, this assumption is mild. Other
parameterizations, such as Reproducing Kernel Hilbert Spaces, are e-universal as well
[128]. Notice that the previous definition is an approximation on the total norm variation
and hence it is a milder assumption than the universal approximation property that fully

connected neural networks exhibit [46].
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Next, we define an intermediate problem on which the surrogate duality gap depends:
a perturbed version of problem (3.16) where the constraints are relaxed by Le > 0 where L
is the constant defined in Assumption 3.1 and e the universal approximation constant in

Definition 1

Ple =minEg g, [lo(s, d)]
geo = (3.25)
s.t. Es~s,,[g(s, ¢)] + 1Le < 0.

where 1 is a vector of ones. The perturbation results in a problem whose constraints are
tighter as compared to (3.16). The set of feasible solutions for the perturbed problem (3.25)
is a subset of the feasible solutions for the unperturbed problem (3.16) since Le > 0. The
perturbed problem accounts for the approximation introduced by the parameterization. In
the worst case scenario, if the problem (3.25) is infeasible, the parameterized approximation
of (3.20) may turn infeasible as the number of samples increases. Let A} . be the solution

to the dual of (3.25)

A} = argmax min E[lo(s, d)] + AT (Elg(s, $)] + 1Le) (3.26)
A0 $e@

With these definitions, we can present the main theorem that bounds the surrogate

duality gap.

Theorem 1. Let @ be a compact class of functions over a compact space such that there exists
¢ € @ for which (3.16) is feasible, and let ®g be an e-universal approximator of @ as in Definition
1. Let the space of Lagrange multipliers, A, be a compact set as in [92]. In addition, let Assumption
3.1 hold and let ®g satisfy the following property

i HPo (5 — eL(||Afc |, + 1, N)
N—o0 N

=0 (3-27)
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where || .||, is the optimal dual variable for the problem (3.26), L is the Lipschitz constant for the
loss function, and HPe is the random VC-entropy [143, section I1.B]. Note that both arguments for

H®e must be positive. Then P* and DY, the values of (3.16) and (3.22) respectively, satisfy
lim P(P* —DyI<8) =1, (3.28)
N—o0

where the probability is over independent samples {s1,s2,...,sN} drawn from the distribution 8 as

defined in problem (3.20).
Proof. See Section 3.3.1 O

The intuition behind the theorem is that given some acceptable surrogate duality gap,
d, there exists a neural network architecture, ®g, and a number of samples, N such that
the probability that the solution to (3.22) is within § to the solution to (3.16) is very
high. The choice of neural network will influence the value of € and A} .. These in turn
will decide the duality gap, 8, as the quantity & — eL(||Af .||, + 1) must be positive. A
larger neural network will correspond to a smaller € which will also has an impact on
the perturbed problem (3.25). A smoother function and smaller e will lead to smaller
perturbations. Smaller perturbations can lead to a smaller dual variable, A} .. Thus, larger
neural networks and smoother dynamic systems will have smaller duality gaps. If Le is
large, then the perturbed problem may be infeasible. In theses cases, A7 . will be infinite.
This corresponds to problems where the function approximation simply can not satisfy
the original constraint functions. For example, using constant functions to approximate
a complicated system may violate the constraint functions gy for all possible constant
functions. Thus, no 6 exists to bound the solution as the parameterized empirical problem
(3.20) has no feasible solution. This theorem suggests that with a good enough function
approximation and large enough N, solving (3.22) is a good approximation to solving

(3.16) with large probability.
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There are some details to point out in Theorem 1. First, the function H®¢ a complicated
function that will usually scale with the size of the neural network. A larger neural network
will lead to a smaller €, but may require a larger number of samples N to adequately
converge to an acceptable solution. The assumption on the limiting behavior of H®? is
tufilled by some neural network architectures [9], but the general behavior of this function
for all neural network architectures is still a topic of research. Additionally, we assume the
space of Lagrange multipliers is a compact set. This will imply, along with compact state-
action space, that £ is bounded. A finite Lagrange multiplier is a reasonable assumption
as the problem (3.16) is required to be feasible [92].

The bound established in Theorem 1 depends on quantities that are in general difficult to

estimate, These include H®e,

el 1+ L, €. Thus, while this theorem provides some insights
on how these quantities influence the gap between solutions, it is mainly a statement of
the existence of such values that can provide a desired result. In practice, this result can be
achieved by choosing increasing the sizes of neural networks as well as data samples until
the desired performance is reached. Note that the theorem follows our intuition that larger
neural networks and more data will give us more accurate result. However, this theorem

formalizes not only that it is more accurate, but that the error will tend to o as number of

samples and number of parameters increase.

3.3.1  Proof of Surrogate Duality Gap Bound

This section will provide a proof of Theorem 1. To begin, we define an intermediate
problem

Py =min E.s,, [{o(s, do)]
°ee (3-29)
s.t. Bs-s,[g(s, de)] <O.
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Note that this is the unperturbed version of (3.25). As a reminder, this problem uses a class
of parameterized functions, but does not use data samples to approximate the expectation.
Thus, it can be seen as a step in between (3.16) and (3.20). As with the dual problem to

(3.20), we can define the Lagrangian associated with (3.29)

L’G (e/ 7\) — IESNS'D [eo (S/ d)e)] + }\TIESNSD [9 (S/ d)e)] (330)
and the dual problem
Dg = rgi())(gggﬁe(e,?\). (3.31)

Using this intermediate problem, we can break the bound [P* — DY,| into two compo-

nents.

[P* — Dyl =(P* —Dg) + (Dg — DY)
(3-32)
< |[P*—Dgl +|D§ — DY

As a reminder, P* is the solution to the problem we want to solve in (3.16), DY, is
the solution to the problem (3.22) we can feasibly solve, and Dj is the solution to an
intermediate problem (3.31). The first half of this bound, [P* — D3], is the error that arises
from using a parameterized function and dual approximation. The second half of this
bound, D§ — Dy, is the error that arises from using empirical data samples. It can be seen
as a kind of generalization error. The proof will now be split into two parts that will find a

bound for each of these errors.

Function Approximation Error

We first look at the quantity [P* — Dg|. This can be further split as follows

[P* —Djl = |(P* —D*) + (D* — Dp)|
(3-33)
< [P*—D*|+|D* — D
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where D* is the solution to the dual problem associated with (3.16). This is defined with

the Lagrangian

L(b,A) =Egs,[lo(s, )] +ATEss, [g(x, $)] (334)

and the dual problem

D* = in £(d,A). .
max min (b, A) (3-35)

We note that the quantity [P* — D*| is actually o due to a result from [110, Theorem 1].

The theorem is reproduced here using the notation of this work.

Theorem 2 ([110], Theorem 1). There is zero duality between the primal problem (3.16) and dual

problem (3.35), if

1. There exists a strictly feasible solution (b, A) to (3.35)
2. The distribution S is nonatomic.

While the problem defined in [110] is different from the sufficiently accurate problem
defined in 3.16, there is an equivalent problem formulation (see Appendix 6.2). Since
Theorem 1 fulfills the assumptions of Theorem 2, we get [P* —D*| = 0.

For the second half of this approximation error, |D* — Dj|, has also been previously
studied in [29, Theorem 1] in the context of a slightly different problem formulation. The

following theorem adapts [29, Theorem 1] to the Sufficiently Accurate problem formulation

(3.16).

Theorem 3. Given the primal problem (3.16) and the dual problem (3.31), along with the following

assumptions

1. Qg is an e-universal function approximator for ©, and there exists a strictly feasible solution

bo for (3.29).

2. The loss and constraint functions are expectation-wise Lipschitz-continuous with constant L.



3.3 SURROGATE DUALITY GAP 74

3. All assumptions of Theorem, 2

The dual value, D is bounded by

D* < Dy < D*+ (AL, +1)Le, (3-36)

where A} _ is the dual variable that achieves the optimal solution to (3.26).

Proof. See Appendix 6.3 O

Again, the assumptions of Theorem 1 fulfill the assumptions for Theorem 3. Due to
notational differences, as well as a different way of framing the optimization problem, the
proof has been adapted from [29] and is given in Appendix 6.3. With Theorem 2 and 3, the
following can be stated

[P* —Dal < ([IALelly +1)Le (3-37)

Empirical Error

We now look at the empirical error, [Dj — DY |. We first observe the following Lemma.

Lemma 1. Let AL(O,A) = [Lg(0,A) — LN (6, A)|. Then under the assumption of Theorem 1 it
follows that

Dy — DX | < supAL(D,A). (3.38)
oA

Proof. See Appendix 6.4 O

Probabilistic Bound

Substituting the parameterized bound (3.37) and the empirical bound (3.38) in (3.32) yields

the following implication

sup AL(6,A) < & —eL([]Afelly +1) = [[P*—DX |l < 8. (3-39)
0,A
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Let IP (IP* —D3I < 6) be a probability over samples {s1,s2,...,sn} that are drawn to
estimate the expectation in the primal problem (3.20). Using the implication (3.39) it

follows that

P(P*—DJl<8) =P (supAL(e,A) <0 —eL([[A{elly ‘H))
0.

(3.40)

=1-P (supAL(e,)\) > 86— €eL(|Af |l + 1)) ,
0,

where the equality follows directly from the fact that for any event A, P(A) =1—P(A°).

The assumptions of Theorem 1 allows us to use the following result from Statistical

Learning Theory [143, (Section II.B)],

lim P (sup AL(O,N) > 6 —€eL(||Afelly + 1)) =0. (3-41)
N—o0 0,A

Note that this theorem requires bounded loss functions. The assumptions for a bounded
dual variable, and compact state-action space in Theorem 1 satisfies this constraint. Thus,
this establishes that for any § > 0, we have limn_,o P (|P* — DX /| < 8) = 1. This concludes

the proof of the theorem.

3-4 CONSTRAINED SOLUTION VIA PRIMAL-DUAL METHOD

Section 3.3 has shown that problem (3.22) can approximate (3.16) given a large enough
neural network and enough samples. This section will discuss how to compute a solution
(3.22). There are many primal-dual methods [37, 35, 36] in the literature to solve this exact

problem, and Algorithm 7 is an example of a simple primal-dual algorithm. One way to
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Figure 3.1: (Primal Dual Training Curve) Example of the evolution of the constraint, loss, and
dual variables during training. The red dotted line shows o. The curves have been
scaled so that they fit on the same y-axis and they are of different magnitudes. The
constraint function is unfeasible, which leads to a growing dual variable. This can cause
the loss function to increase until the constraint is feasible again.

approach this problem is to consider the optimal dual variable, AY;. Given knowledge of

Ay, the problem reduces to the following unconstrained minimization

* . *
D\ = gggLN(cb,?\N) (3-42)

A possible solution method is to start with an estimate of A}, and solve the minimization
problem. Then holding the primal variables fixed, update the dual variables by solving the
outer maximization. This method can be seen as solving a sequence of unconstrained mini-
mization problems. This method can be further approximated; instead of fully minimizing
with respect to the primal variables, a gradient descent step can be taken. And instead of
fully maximizing with respect to the dual variables, a gradient ascent step can be taken.
This leads to Algorithm 7 where we iterate between the inner minimization step and the
outer maximization step. At each iteration, dual variables are projected onto the positive
orthant of R¥, denoted by the projection operator, [A];. This is to ensure non-negativity of

the dual variables.
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Algorithm 7 Primal Dual

: procedure PRIMAL-DUAL
Input:

1

2

3 Data Samples, S ={s1,s2,...,sN}

4 Initial Neural Network parameters, 6
5: Batch Size, M

6 Primal Learning rate, g

7 Dual Learning rate,

8

9

A=0
while Not Converged do
10: Sample batch of data S = {Si,, .., 81y from S
11: Use S to compute estimates of VoLn(0,A) and VLN (0,A) (See (3.43) and
(3-44))x
12: 9<—9—0€9V9LN(9,)\)
13: A=A+ o\ VaLn(0,A)
14: A< Al
15: end while

16: return O
17: end procedure

In many cases, the full gradient of Vg Ln(0,A) and VaALN(0,A) can be too expensive to
compute. This is due to the possibly large number of samples N. An alternative is to take
stochastic gradient descent and ascent steps. The gradients can be approximated by taking
M random samples of the whole dataset S = s3,...,sn. The samples will be denoted as

S = S$i,,...,Siy, Where ij is an integer index into whole dataset S. Using S, we obtain

Voln(6,7) Zfo St,bo) + AT Zg si, Go)l

Zﬂo i, o) +AT— Zg si;, do)] (3-43)

] 1

M
Zveeo si;, o) +7\T g(si;, do).

n[\/]z
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The gradients Volo(si;, ¢o) and Veg(si;, do) can be computed easily using backpropoga-
tion. Similarly, for VaLn(6,A),

1

M
VaLn(0,2) > tolsi;, o) +>\T

n[\/]g

sl]/ d)e
j=1

VA
1 M
Z 9 31]/ (be

121

(3.44)

The dual gradient can be estimated as simply the average of the constraint functions over
the sampled dataset.

In the simplest form of the primal-dual algorithm, the variables are updated with simple
gradient ascent/descent steps. These updates can be replaced with more complicated
update schemes, such as using momentum [129] or adaptive learning rates [60]. Higher
order optimization methods such as Newton’s method can be used to replace the gradient
ascent and descent steps. For large neural networks, this can be unfeasible as it requires the
computation of Hessians with respect to neural network weights. The memory complexity
for the Hessian is quadratic with the number of neural network weights.

The primal-dual algorithm presented here is not guaranteed to converge to the global
optimum. With proper choice of learning rate, it can converge to a local optimum or saddle
point. This issue is present in unconstrained formulations like (3.5) as well. An example of

the evolution of the loss and constraint functions is shown in Figure 3.1.

3.5 EXPERIMENTS

This section shows examples of the sufficiently accurate model learning problem. First,

experiments are performed using a simple double integrator experiencing unknown
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dynamic friction. The simplicity of this problem along with the small state space allows
us to explore and visualize some of the properties of the approximated solution. Next,
two more interesting examples are shown. One example learns how a ball bounces on a
paddle with unknown paddle orientation and coefficient of restitution. The other example
mitigates ground effects which can disturb the landing sequence of a quadrotor. The
experiments will compare the sufficiently accurate problem (3.16) with the unconstrained
problem (3.5) which will be denoted as the uniformly accurate problem. Each experimental
subsection will be broken down into three parts, 1) System and Task introduction, 2)

Experimental details, and 3) Results.

3.5.1 Double Integrator with Friction

Introduction

To analyze aspects of the Sufficiently Accurate model learning formulation, simple experi-
ments are performed on a simple double integrator system with dynamic friction. When
trying to control the system, a simple base model to use is that of a double integrator

without any friction

Pt+1 1 At Pt 0
= + Ut (3-45)

Vi 0 1 Vi At

where p is the position of the system, v is the velocity, u is the control input, and At is the
sampling time. The state of the system is x = [p,v].The true model of the system that is

unknown to the controller is

Pt+1 1 At Pt 0
= + (3.46)

Vit 0 1 Vi (uAt) —c(ve, ue, b(pi))
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where b(p¢) a position varying kinetic friction. ¢ is a function that ensures that the
friction cannot reverse the the direction of the speed (it is an artifact of the discrete time

formulation)

vy + uiAt, if

sign(vy + uiAt) #
c(ve, ut, b(pe)) = (3-47)
sign(vy + uiAt + b(py))

b(pi), otherwise.

If within a single time step, the friction force will change the sign of the velocity, ¢ will set
Vi1 to be 0. Otherwise, ¢ will not modify the friction force in any way. The specific b(p)

used is shown in Figure 3.2 and the sampling time is set to At = 0.1. The task is to drive

the system to the origin {p v] = [0 0}.

Experimental Details

e o
[ -

o
IS

o
N

o
S

Friction Acceleration (m/s/s)
o
w

o
=}

-2 -1 0 1 2
Position (m)

Figure 3.2: (Double Integrator Friction Force) The magnitude of the acceleration due to the
position varying kinetic friction force.

The goal of model learning in this experiment is to learn ¢g(x, u) such that f(x,u) ~

f(x, 1) + do(x, 1) where f is (3.46) and f is (3.45). A uniformly accurate model will be learned

using (3.5) along with a sufficiently accurate model using the problem defined in Example 3.1.
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In the scenario defined by (3.18), I(s) is active in the region {(p,v) € R? : H [p,v] T HOO < 0.5}
and e. = 0.035. The constraint, therefore, enforces a high accuracy in the state space near
the origin.

The neural network, ¢g, used to approximate the residual dynamics has two hidden
layers. The first hidden layer has four neurons, while the second has two. Both hidden
layers use a parametric rectified linear (PReLU) activation [43]. The input into the network
is a concatenated vector of [p¢, v, ut]. The output layer’s weights are initially set to zero
so before learning the residual error, the network will output zero. The dataset used
to train both the sufficiently and uniformly accurate models is generated by uniformly
sampling 15,000 positions from [-2, 2], velocities from [-2.5, 2.5], and control inputs from
[-10, 10]. The real model (3.46) is then used to obtain the true next state. Instead of simple
gradient descent/ascent, ADAM [60] is used as an update rule with ag =1 x 1073 and
o = 1 x 1074, Both models were trained in 200 epochs.

The models are then evaluated on how well it performs within a MPC controller defined
in (3.48). This controller seeks to drive the system to the origin while obeying control
constraints. The controller is solved using a Sequential Quadratic Programming solver [64,
144] with a time horizon of T = 10. The models are evaluated in 200 different simulations

where Xstqrt is drawn uniformly from [-2,2].

-
min Z [xtl

{Xtrut};r:] t:1

s.t.jugl <10,t=1,...,T
. (3.48)
Xt+1 = f(Xt,U,t) + (be(xt/ut)/t = ]I .. '/T —1

X1 = Xstart

x1 =0
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Results
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Figure 3.3: (Double Integrator Model Errors) The error in predicted velocity of the sufficiently
accurate and the uniformly accurate models. There is a constant control input of u =1
used to generate these plots. The top row contains three different views of the error for
the sufficiently accurate model, while the bottom row contains the same three views
for the uniformly accurate model. The z-axis on each plot is the error in the velocity for
the difference |f(xt, ut) — (f(x¢,ut) + &g (xt,ut))|. Best viewed in color.

The sufficiently accurate formulation utilizes the prior knowledge that the model should
be more accurate near the goal in order to stop efficiently. While the system is far from the
origin, the control is simple, regardless of the friction; the controller only needs to know
what direction to push in. A plot of the accuracy of both models is shown in Figure 3.3
and summarized in Table 3.2. It is noticeable that the sufficiently accurate model has low
average error near the origin, but suffers from higher average error outside of the region
defined by I(s). This is the expected behavior.

The performance of the controllers are summarized in Table 3.1. Even though sufficiently

accurate model has higher error outside of the constraint region and lower error within, it

leads to lower costs when controlling the double integrator. The reason is shown in Figure
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Figure 3.4: (Experimental Surrogate Duality Gaps) Duality gaps of learning the double integrator
problem with different neural networks and sample sizes (best viewed in color). The
y-axis shows the Lagrangian value at the end of training which approximates DY,. The
models numbers indicate how large the neural network is with Model o being the
smallest network. For each N, 15 tests with each model were run, and a box plot is
shown that indicates the median as a solid bolded line. The ends of each box are the
1st and 3rd quartile, while the whiskers on the plot are the minimum and maximum
values. The red line is the optimal value to the original problem (3.16). Note that for
N = 10000, the median is not shown for Model o as it is very large (0.21).

3.5, where the sufficiently accurate model may get to steady state a bit slower but is able to
control the overshoot better and not have oscillations near the origin. This is because the

model is purposefully more accurate near the origin as it is more important for this task.

Convergence Experiments

The double integrator is a simple system. This enables running more comprehensive tests
to experimentally show some aspects of Theorem 1. For this particular system, we will
run one more experiment where 4 different neural network architectures were used. Each
network has two hidden layers with PReLU activation, where the only difference is in the
number of neurons in each layer. Denoting a network as (number of neurons in first layer,
number of neurons in second layer), the network sizes used are: (2, 1), (4, 2), (8, 4), (16, 8).

A set of values of the number of samples, N, are also chosen: {100, 1000, 5000, 10000, 15000}.
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Figure 3.5: (Double Integrator Trajectory) This shows the evolution of the trajectory of the double
integrator when controlled using MPC with both a sufficiently accurate and uniformly
accurate model.

i kel | 3y il/Xstartl
Uniformly Accurate | 5.51 4+ 3.46 5.66 +0.89
Sufficiently Accurate | 4.73 + 3.38 4.57 +£0.73

Table 3.1: (Double Integrator Controller Performance) This table shows the results of 200 trials of
simulating the double integrator starting from different positions. Each entry shows the
mean and one standard deviation. The first column shows the raw cost function of the
MPC problem averaged over all trials. The second column shows an average normalized
cost where each cost is normalized by the absolute value of the starting position. This is
due to the fact that larger magnitude starting locations will have higher costs.

For each N, 15 random datasets are sampled, and each neural network is trained with each
dataset using the sufficiently accurate objective described in Section 3.5.1. There is one
minor difference in how the data is collected; a zero mean Gaussian noise with o = 0.2 is
added to v¢ 1. With noisy observations of velocity, the optimal model that can be learned
for (3.16) will have an objective value of P* = 0.04. The results of training each neural
network model with each random dataset is shown in Figure 3.4. Each boxplot in the
figure shows the distribution of the final value of the Lagrangian, £y, at the ending of
training. This is an approximation of Dy,. The primal-dual algorithm may not be able to

solve for the optimal DY, but the expectation is that for a simple problem like double
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All state space Ix ¢
Uniform | 0.110£0.098 | 0.083+0.054 | 0.113+0.10
Sufficient | 0.136 £0.126 | 0.048 £0.040 | 0.146+0.13

Table 3.2: (Double Integrator Model Errors) The error is the absolute difference between the true
model and the learned models. Each entry shows the mean and one standard deviation.
The first column shows the average error for the whole state space. The second column
shows the average error for the state space near the origin, while the third column shows
the average error for the complement of that set (states far from the origin). The errors
are evaluated on a test set not seen during training.

integrator, the solution is somewhat close. In fact, Figure 3.4 shows that with increasing
model sizes and larger N, the distribution of the solutions appear to be converging to P*.
Note that the figure shows the value of the Lagrangian with training data. Thus for small
N, networks can over-fit and have a near zero Lagrangian value. When increasing N, the

networks have less of a chance to over-fit to the training data.

3.5.2 Ball Paddle System

Figure 3.6: (Ball Bouncing Simulation) The paddle seeks to bounce the orange ball above a target
position on the xy plane, represented by the red ball. This figure shows a time sequence
of a bounce from left to right.
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Figure 3.7: (Model Errors vs. Velocity Magnitude) The scatter plot shows the distribution of model
errors versus the magnitude of the velocity of the true result. Both the sufficiently and
uniformly accurate models are evaluated using a validation set that is not used during
training. The blue dotted line represents the boundary of where the constraint set is
and the red dotted line represents the boundary of the constraint function.

Introduction

This experiment involves bouncing a ball on a paddle as in Figure 3.6. The ball has the
state space X = [Pball, Vballl, where pypq11 is the three-dimensional position of the ball,
Vpau is the three-dimensional velocity of the ball. The control input is u = [V qadte, N
where v, qqate is the velocity of the paddle at the moment of impact with the ball and n is
the normal vector of the paddle, representing its orientation. This control input is a high
level action and is realized by lower level controllers that attempt to match the velocity and
orientation desired for the paddle. A basic model of how the velocity of the ball changes
during collision is

Viau = o (v nm-v 1)) +Vpaddte

rel
(3-49)

Viel = (Vgau _Vpaddle)
where the superscript — refers to quantities before the paddle-ball collision and the
superscript + refers to quantities after the paddle-ball collision (the paddle velocity and

orientation are assumed to be unchanged during and directly after collision). «, is the
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Figure 3.8: (Ball Bouncing Trajectory) The (x, y z) trajectory of the ball is plotted for both the base
model (with wrong parameters) and a learned model using the sufficiently accurate
objective. This plot shows that the base model is not sufficient by itself to bounce the
ball at a desired location.

coefficient of restitution. In this experiment, a neural network is tasked to learn the model

of how the ball velocity changes, i.e. (3.49).

Experimental Details

First, a neural network is trained without knowledge of any base model of how the ball
bounces. This will be denoted as learning a full model as opposed to a residual model.
This network is trained two ways, with the uniformly accurate problem (3.5) as well as the
sufficiently accurate problem realized in Example 3.2. The constants used in Example 3.2 are
defined here as ¢, = 0.1 and 6. = 0.1.

A second neural network is trained for both the uniformly and sufficiently accurate
formulations that utilizes the base model, f(x, u) given in (3.49) to learn a residual error. In
the base model, the coefficient of restitution, o, is wrong and the control n has a constant
bias where a rotation of 0.2 radians is applied to the y-axis. This is to simulate a robot
arm picking up the paddle and not observing the rotation from the hand to the paddle

correctly.
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The neural network used for all models has 2 hidden layers with 128 neurons in each
using the PReLU activation. The input into the network is the the state of the ball and the
control input at time of collision, [x~,u], and it outputs the ball velocity after the collision,
v{ 11~ The network was trained using the ADAM optimizer with an initial learning rate
of 1073 for both the primal and dual variables. The data used for all model training was
gathered by simulating random ball bounces in MuJoCo for the equivalent of 42 minutes
in real life.

All learned models are then evaluated with how well a controller utilizes them. The
controller will attempt to bounce the ball at a specific xy location. This is represented

through the following optimization problem that the controller solves

mLiLHHOC(d)e (X/ u)) - l0Cdesired|

s.t. Tollinin < 1oll < rollyax
(3.50)
pitchin < pitch < pitch,, oy

Vmin < ‘vrel| < Vmax

where loc(-) is a function that maps the velocity of the ball to the xy location it will be in
when it falls back to its current height. roll and pitch are both derived from the paddle
normal n. [locgesired, TOWmin, T0llmax, Pitchmin, Pitchmax, Vimin, Vmax] are parameters
of the controller that can be chosen. The system and controller is then simulated in MuJoCo
[139] using libraries from the DeepMind Control Suite [136].

Each model is evaluated 500 different times for varying controller parameters. locgesired
is uniformly distributed in the region {(x,y)|—Tm < x < Tm,—Im <y < 1M}, Vimin
uniformly sampled from the interval [3m/s,4m/s), and Vi ax is selected to be above Vi in

by between 1m/s to 2m/s.
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Results

A plot of the model errors are shown in Figure 3.7. While the uniformly accurate model
has errors that are distributed more or less uniformly across all magnitudes of ball velocity,
the sufficiently accurate model has a clear linear relationship. This is expected from the
normalized objective that is used which penalizes errors based on large the velocity of the
ball is. Therefore, larger velocities can have larger errors with the same penalty as smaller
velocities with small errors.

The results of running each model with the controller 500 times is shown in Table
3.3. The error characteristics of the sufficiently accurate model (Figure 3.7) allow it to out
perform its uniformly accurate counterpart with both a full model and a residual model.
For the full model, the uniformly accurate problem yields a failure rate of over 20% while
the sufficiently accurate problem yields a failure rate of under 1%. Here, failure means
the paddle fails to keep the ball bouncing. For the residual model, neither model failed
because the base model provides a decent guess (though the base model by itself is not
good enough for control, see Figure 3.8). The sufficiently accurate model still provided
better mean errors.

We hypothesize that the large errors spread randomly across the uniform model leads
to high variance estimates of the output given small changes in the input. For optimizers
that use gradient information, this leads to a poor estimate of the gradient. For optimizers
that are gradient free, this still causes problems due to the high variance of the values

themselves.
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Uniform | Sufficient
Full Model Failure 20.8% 0.8%
Mean error 0.3136 0.2124
Residual Model ilils e %
Mean error 0.164 0.156

Table 3.3: (Ball Bouncing Controller Performance) Results of 500 trials of ball bouncing for each
model. There is a full and residual model trained for both the uniformly accurate and
sufficiently accurate model learning problems.
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Figure 3.9: (3D Quadrotor Simulation) Trajectory of the Sufficiently Accurate and Uniformly
Accurate models used in a MPC controller (best viewed in color). The goal is to land at
a precise point represented by the red dot. Each plot is a different view of the same
data. The dotted lines represent the trajectory of the center of mass of the vehicle for 50
time steps. The state of the quadrotor at the last time step is drawn.

3.5.3 Quadrotor

Introduction

The last experiment deals landing a quadrotor while undergoing disturbances from ground
effect. This disturbance occurs when a quadrotor operates near surfaces which can change
the airflow [112]. The state for the quadrotor model is a 12 degree of freedom model
which consists of x = [p, Vv, q, w] where p € R3 is position of the center of mass, v € R3 is
the center of mass velocity, q € SO(3) is a quaternion that represents the orientation the

quadrotor, and w € R? is the angular velocity expressed in body frame. The control input
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isu=[uM,u?@ uB u*] where ult) is the force from the it motor. The base model of

the quadrotor, f(x,u) is as follows

Pit1 Pt +PiAt
Vil || Vi +ViA¢
qi+qiAt
G+1 Tactacae,
| W1 W+ tht_
P v
v q®e10,0,Y{ ;u/mTeq'—[0,0981T (3.51)
q W (q
W I NT—w x (Jw))
w® @

where m is the total mass of the quadrotor (set to be 1kg for all experiments) and 7 is
inertia matrix around the principle axis (set to be identity for all experiments). The x
symbol represents cross product, and ® represents quaternion multiplication. When using
® between a vector and a quaternion, the vector components are treated as the imaginary
components of a quaternion with a real component of o. The discrete model normalizes
the quaternion for each state update so that it remains a unit quaternion. The body frame
of the quadrotor is such that the x axis aligns with one of the quadrotor arms, and the z

axis points “up."
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The true model used in simulation adds disturbances to the force on each propeller, but

is otherwise the same as the base model:
f(xl 'LL) = ‘F(X/ h(xl u)) (352)

where h : R™ x RP — IRP is the ground effect model. In this experiment we provide a
simplified model of ground effects where each motor has independence disturbances. The

ih output of the ground effect model, h;(x,u) is

hi(xzu) = u(i)(] + Kground)

4[eground - %]i )OC (353)

(01— Deropy ¢

K 4=
groun hmax + 7_[2

where hy,rop, is height of the propeller above the ground (not the height of the center of
mass), hmax is a constant that determines the height at which the ground effect is no
longer in effect. 84round is the angle between the unit vector aligned with the negative
z axis of the quadrotor and the unit vector [0,0,—1]. « is a number in the set [0, 1] that
represents the maximum fraction of the propeller’s generated force that can be added as a
result of ground effect. As a reminder, the [-]; operator projects its arguments onto the
positive orthant. A visualization of Kgrouna is shown in Figure 3.10. In the experiments,

hmax = 1.5, x =0.5.

Figure 3.10: (Ground effect) A visualization of Kgounq as a function of 04round and hprop-
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Experimental Details

The Sufficiently Accurate model trained using the problem presented in Example 3.1, where
€. = 0.001 and the indicator I(s) is active when the height of the quadrotor is less than
1.5. A uniformly accurate and sufficiently accurate model are trained to learn the residual
error between f(x,u) and f(x, u). Both models use a neural network with 2 hidden layers
of 16 and 8 neurons each with PReLU activation. The update for primal and dual variables
used ADAM with ag =1 x 1073 and a) = 1 x 10~%, and both models trained using 3,000
epochs. The training data consists of 10,000 randomly sampled quadrotor states. The
(x,y) positions of the quadrotor were uniformly sampled from [-10, 10]. The z positions
of the quadrotor were uniformly sampled from [0.1,5]. Linear velocities components were
uniformly sampled from [—6, 6]. Angular velocities components were uniformly sampled
from [—2.5,2.5]. Control inputs for each motor are sampled from [0, 10]. Quaternions are
sampled by sampling random unit vectors along with a random angle in [-0.4rad, 0.4rad].
This angle-axis rotation is transformed into a quaternion.

Both models are tested by sampling a random starting location and asking the quadrotor
to land at the origin. The controller used for landing is an MPC controller that repeatedly
solves the following problem

-
(o in, ; IPe — Prargetl,

st 0<u <10,Vt

s (3-54)
Xe+1 = flxe, ue) + dolxe, ue), t=1,...,T—1
Nt com = 0.2,Vt

g — 11 < 0.05
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Sufficiently Accurate | Uniformly Accurate
MPC cost 4.21 £1.88 4.55+1.90
E[l(s, ¢o)] 6.52 x 1074 6.16 x 1074
Elg(s, do)l(s)] 1.00 x 10~4 8.28 x 1074

Table 3.4: (Quadrotor Results) The first row shows the MPC cost average (3.54) and one standard
deviation over 5 runs. The second row shows the training loss, while the third row
shows the constraint function. The expected errors are evaluated on a test set not seen
during training.

where p is the position of the quadrotor, h¢ com is the height of the center of mass, and

qw is the real component of the quaternion at the last time step. This problem encourages

reaching a target, subject to control and dynamics constraint. It also has a constraint on the

height of the quadrotor so it is always above a certain small altitude, and an orientation

constraint on the last time step so it is mostly upright when it lands.

Results

The results of running this controller over several different starting locations is shown in
Table 3.4. Similar to previous experiments, the sufficiently accurate model has a higher loss
overall, but better accuracy in the constrained area which is more important to the task.
This allows the controller to utilize the higher accuracy to land the quadrotor precisely. An
example of one of the landing trajectories is shown in Figure 3.9. It can be seen that the
sufficiently accurate model can more precisely land at the origin (0,0). It also is able to
reach the ground faster, as it can more accurately compensate for the extra force caused by
the ground surface. The ground effect can also disturb roll and pitch maneuvers which

can offset the center of mass as well.
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3.6 coNcLUSsION

This chapter presented sufficiently accurate model learning as a way to incorporate prior
information about a system in the form of constraints. In addition, it proves that this
constrained learning formulation can have arbitrarily small duality gap. This means that
existing methods like primal-dual algorithms can find decent solutions to the problem.
With good constraints, the model and learning method can focus on important aspects
of the problem to improve the performance of the system even if the overall accuracy of
the model is lower. These constraints can come from robust control formulations or from
knowledge of sensor noise. Some important questions to consider when using this method
is how to choose good constraints. For some systems and tasks, it can be simple while for
others, it can be quite difficult. This objective is not useful for all tasks and systems but
rather for a subset of tasks and systems where prior knowledge is more easily expressed

as a constraint.



SEMI-AUTOMATIC CONSTRAINT
4 GENERATION

Chapter 3 introduced the idea of sufficiently accurate model learning where introducing
constraints in the model learning formulation can improve the performance of the planning
algorithms that utilize it. These constraints come from human prior knowledge and can
require expert insight. This chapter seeks to lower the barrier of entry for generating
constraints by introducing a method to semi-automatically generate them. Human prior
knowledge will still be required, but will not be in the form of specific model constraints.
Instead, the prior comes in the form of knowing when a system has failed or is close to
failure as well as how to create a constraint from a failure mode. Often times, this is easier
to define that explicit constraints.

There is a trade off between using expert knowledge and performance. If a human
expert is infinitely knowledgeable and had infinite time, they might be able to choose
the most optimal constraints for a model learning problem for a specific system. This can
result in great performance at the cost of large amount of human labor and expertise. On
the other hand, if an automatic constraint generation method uses very general principles
to learn constraints, it will not be able to exploit system specific information. This can lead
to inefficiency in the learning process and result in poor models, large data requirements,
or large training times but can save human labor. There is a spectrum that trades off
computational time, effort, and performance with human time and effort. For many

problems, a middle ground between purely human designed heuristics and no human

96
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intervention exists, and a method for semi-automatic constraint generation provides a
method to find tradeoff point.

Another aspect to consider in purely human designed priors is the possibility of mistakes.
An invalid constraint can reduce performance of a system rather than enhance it. A semi-
automatic constraint learning system can require less knowledge which might in turn lead
to less mistakes.

An analogue to directly human created constraints for model learning are expert systems
[84], a framework for automatic decision making based on human given knowledge with
computer inference. The performance of the system is very dependent on the strength of the
expert human knowledge. On the other end of the spectrum, a completely unconstrained
model learning problem is akin to early fully connected neural networks. It had very
little prior knowledge about the task desired. All knowledge is derived from the data
observed. The goal of semi-automatic constraint learning is to provide a framework such
as a Convolutional Neural Network. This introduces some prior (convolutions) for tasks
like image categorization but still relies on data. This approach can outperform a purely
data driven approach [74] and may require less human effort than an expert system.

The method we propose requires a motion planning algorithm, the ability to test motion
plans with a learned model, and a variable amount of human knowledge. A learned model
will be trained from gathered data and tested on the real system. Human determined
failure points will stop the system and generate constraints with the failure data. Then,
this process will repeat. The iterative generation process allows constraints to be refined
with more data and adapted as the model itself changes.

Section 4.1 will discuss previous work in machine learning and robotics for constraint
learning. Section 4.2 will formulate the problem to be solved and Section 4.2.1 will present

a framework to solve it. Experiments on two types of systems will be presented in Section

4.3.
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41 BACKGROUND

This section will review methods with a similar goal to semi-automatic constraint learning
for models. We will discuss constraint learning techniques in general machine learning

algorithms as well as more specific work in motion planning.

4.1.1  Constraint Learning

The underpinning of many machine learning algorithms utilizes constrained optimization.
Constrained problems can be formulated for classification [145], segmentation [96], regres-
sion [121] and appears in many classical machine learning techniques such as Support
Vector Machines [133]. It is of interest in many situations to learn the constraints in such
problems from a labeled dataset of inputs and outputs of an unknown optimization
problem. This is known as constraint learning [25] or inverse optimization [3, 19]. Constraints
can induce bias in the solution, and learning the constraints can hopefully introduce useful
biases that can lead to more general solutions [89]. The literature in this field generally
focuses on learning the parameters of an objective and constraint function [1, 135]. For
example, instead of the optimization problem presented in (3.16).
P* = (rbneig Es s, [L(s, d)Io(s)]

s.t. IESNSrD[gk(SI d))Hk(S)] < Olk = ]/2/- . 'IKI

the loss function { and constraint functions gi might have additional parameters wg, wgy, .
An example of a parameterized loss function is a Mahalanobis distance [86] {(s, ¢, w¢) =

(xt11 — d(xe, wt)) " Zew, (Xt 11 — d(xt,ut)). Then presented, with a set of N pairs of dis-
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tributions and solution models, (Sp i, d)i)]i\':1 , the inverse optimization problem can be

written as the following bi-level optimization problem [135]

wl,wgk

N
. 1 N
min ) Loy, )
i=1
s.t. Es, . [gk(s, di, wg )Ik(s)] <0,k=1,2,...K,i=1,2,...,N

argming, Es.s,, [{(s, §, we)lo(s)]

s.t. IESNS'D,i [gk(sl (b/ wgk)]lk(sﬂ < O/k = ]/2/ see /K-

where L is a function that penalizes the case when ¢; # ¢}. (4.1) describes a problem
to find the parameters w¢, wq, such that the solution of the inner optimization problem
matches closely to the given dataset solutions, ¢i, while also ensuring that the dataset
solutions match the constraint functions that are optimized over. When the problem to
optimize over is a linear program, there are various solutions [3, 135]. [135] uses Sequential
Quadratic Programming to optimize the bi-level optimization. The inner optimization
problem is solved using any typical linear program solver, and the gradients are obtained
by differentiating through the Karush-Kuhn-Tucker (KKT) conditions [15] at the solution

[7]. A similar approach to learning general convex problems is given in [1].

4.1.2 Learning Trajectory Constraints

Section 4.1.1 discussed constraint learning in general machine learning context, however
there has also been work on constraint learning specifically for trajectory generation or
motion planning. [2, 8] uses the a similar approach as [7] but applies it to the specific
problem of Model Predictive Control. The goal is to be able to learn dynamic constraints

or cost functions with respect to some function of the MPC solution. This can be used,
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for example, to learn the dynamics model of a robot given trajectories that follow some
presumable optimal path or to learn the parameters of cost and constraint functions to
match the style of some demonstrated motion.

[99] learns constraints for robotic arm grasping tasks by using a database of demonstra-
tions. Keyframes of the demonstrations are clustered, and human prior knowledge is used
to infer geometric constraints from the clustered keyframes. Constraints on pose or orienta-
tion are established based on human tuned heuristics that depend on geometric quantities
in a keyframe cluster. This allows certain tasks to learn constraints from a handful of
demonstrations which are then used for planning. The goal is that these constraints more
effectively capture the essential quantities of importance from the demonstrations. [22]
also learns constraints from a set of demonstrations. The method assumes the demonstra-
tions come from an optimal planner with some known constraints and hopes to discover
unknown constraints. A planner is then used to generate lower cost solutions than the
demonstrations. These low cost solutions are assumed to violate the unknown constraints
as the assumption is the demonstrations should obtain the lowest costs already. These low

cost solutions can be utilized to detect the unknown constraints.

4.2 CONSTRAINT GENERATION

The goal of semi-automatic constraint generation is given 1) a motion planner, 2) the ability
to test motion plans on the system, and 3) some human prior information, find constraints
gk : X x U — R such that a model can perform well on a set of N planning tasks. This can

be expressed as a tri-level optimization problem



4.2 CONSTRAINT GENERATION 101

1 N
min —Zo
gk Ni—] '

min,,, planning_cost;(xj.T,u1.7)

st ci=1qst planning_constraints;(x1.1,u1.1) <0

(4.2)

Xt+1 = Polxe,ug), t=1,...,T—1
. argming Eg s, [{(s, $)To(s)]
s.t. Es s, [gx(s, d)Ik(s)] <0, k=1,2,...,K

where planning_cost; and planning_constraints; are the cost function and constraints
for the ih planning task. The goal of this problem is to find good model constraints, gy such
that a sufficiently accurate model from Section 3.2 will do well on a set of tasks. This can be
seen as learning a set of useful biases for the model to improve its functionality and bears
some resemblance to the experienced piano mover’s problem discussed in Chapter 2. As with
Chapter 3, the constraints can empower resource constrained function approximators to
trade off where their expressive power can be utilized best for the set of tasks.

Consider the concrete example of planning and controlling a vehicle on an unevenly
icy surface. Learning a dynamics model in this environment can help predict the hard to
model friction. A set of tasks in this environment might take the form of traveling from
one corner of the map to the other from various starting and goal locations. The problem
of constraint generation is to identify constraints for model learning such that the task of
traveling across the map is better fulfilled.

While (4.2) looks similar to a inverse optimization problem (4.1), there are a few key
distinctions. First, there is an additional level of indirection. In (4.1), a planning problem

can be formulated, and the planning constraints are optimized [1—3, 8, 135]. In (4.2), a
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model learning problem is formulated and model constraints are optimized to best suit
an inner set of planning problems. Second, the planning problems considered in [2] are
convex and known to have zero duality gap, thus the inner problems can be implicitly
differentiated through the KKT conditions. For general model learning, the convexity of

the inner problem does not hold.

4.2.1  Methodology

Model Training and
Data Collection

N N N

. Constraint Regions
_ Configuration Space

Figure 4.1: (Semi-automatic Constraint Generation) The semi-automatic constraint generation
process iteratively adds and updates constraints with new data collected.

Instead of directly solving (4.2), the approach will be to incorporate human heuristics
into finding good constraints. We incorporate these human heuristics into a standard
model learning pipeline.

Model learning in robotics is often done in an iterative way [149]. Data is collected from
the system, the a model is learned from the data, then the new model is used to collect
data. This iterates until a desired level of performance is achieved. The reason for this

iterative process rather than a one time data collection is due to distribution shift. Often
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times, the distribution of states and actions that the loss function optimizes over, 8¢ is
dependent on the model itself. 81 can represent the distribution of state, action, next state
tuples induced by using the learned model to plan on a set of tasks. The objective is to
have low error on the dataset that is actually experienced by the model. Thus, a one time
data collection may not accurately reflect the real distribution of data that is dependent
on the model itself. A form of this problem is addressed by [111], which suggests that
adding new data to the dataset collected from the model can converge to a steady state
distribution. Thus, model learning for a robotic task generally appears in the form of
Algorithm 8 where the red lines are modified or added for the constrained version that

this work proposes.

Algorithm 8 Constrained Model Learning with Semi-automatic Constraint Generation

1: procedure LEARN-CONSTRAINED-MODEL

2: Initialize 6 € ©

3: Initialize dataset D = ()

4 while Not Converged do

5: Use model ¢g to collect data tuples, Dy = (x¢, Ut, X¢41)

6: D+ DUD;

7 GENERATE-CONSTRAINTS(Dj, ¢g) to formulate a sufficiently accurate model
learning problem (3.16).

8: 0 + PRIMAL-DUAL(6,D)

9: end while

10: end procedure

Algorithm 9 Constraint Generation

1: procedure GENERATE-CONSTRAINTS
2 for (x¢, U, x¢y 1) in D do

3 if FAILURE(¢g(xt,ut))or FAILURE(x¢41) then
4 CREATE-CONSTRAINTS()

5: UPDATE-CONSTRAINTS()
6

7
8:

end if
end for
end procedure
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This work proposes using the iteratively generated data to create task specific constraints
and then solve the constrained problem that arises as shown in Figure 4.1. Similar to how
the iterative data collection and training process can fix the distributional shift, the iterative
constraint generation can also adapt the constraints to be useful to the task at hand. As
the model is improved, constraints are added to only the areas that further improve the
planner’s capabilities. The GENERATE-CONSTRAINTS function is task specific and will
output both a constraint function, gy as well as a set over the state-action space denoted
by the indicator variable Iy. It is where human knowledge is brought in to heuristically

solve (4.2). In this work, the constraints considered are of the form

Ell[xt+1 — o (xe, we)|, I (xe, ut)) < ex (4.3)

which constrains the expected norm of the error in a region defined by I to be less than
€k. The two tunable parameters of this constraint will be I and €. The constraints can
be created by Algorithm 9 which require several task and system specific functions to be

defined: FAILURE, CREATE-CONSTRAINTS, and UPDATE-CONSTRAINTS.

1. FAILURE(x) is a function that takes the state of a system and decides if it has failed

or is close to failure. This is what triggers a constraint region to be generated.

2. CREATE-CONSTRAINTS is a function that will generate the constraint based on

which state failed and any additional human knowledge that can be incorporated in.

3. UPDATE-CONSTRAINTS is a function that updates the constraints given new data.
For example, if a the planner keeps creating paths that go through a constraint
region, but the trajectory keeps failing, it could indicate that the constraint needs

to be tightened. This function may be less system specific but require choosing
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the correct heuristics for the task at hand. Common heuristics will be discussed in

Section 4.2.2.

4.2.2 Update Constraint Heuristics

This section will discuss two heuristics that can be used in the UPDATE-CONSTRAINTS
function from Algorithm 9. The goal of this function is to adapt the constraint parameters

in (4.3) from already created constraint regions to new data.

Constraint Tightening

The first heuristic is simple. It relies on a counter for each constraint region. This counter
will be incremented whenever a path that goes through the constraint region ends
up triggering the FAILURE function later on. When the counter is high enough, the
counter will be reset and the error bound, €, will be scaled down to «ey, x € (0,1).
The goal of this heuristic is to tighten constraints that were initially decided by the
CREATE-CONSTRAINTS function if too many paths that go through the constraint region
ultimately end up failing. The scaling parameter « should be chosen conservatively as
decreasing the constraint bound too fast may give too much importance to some regions.
It should also be noted that the counter increment should take place only if the constraint
E[|[xt+1 — d)e(xt,ut)Hp I (x¢,ut)] is close to the constraint bound, €y. The constraint
should not be adjusted if the model learning has not yet achieved the constraint desired,

as the failure counter does not properly reflect the status of current constraint parameters.
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Region Merging

The second heuristic will merge constraint regions that are close. When two constraint
regions, Iy and Iy 1, have large overlap and similar constraint bounds, €y, a new region
that encompasses both can be created to replace them. The new region will use the lower
constraint bound. This process allows the number of constraints to remain low if a large
number of small constraint regions are created. Checking overlap between regions can be
a nontrivial computation. It depends on how the regions are defined. Thus, this heuristic
is only applicable in cases where computing region overlap and the new region shape is

computationally efficient.

4.3 EXPERIMENTS

This section will present results on experiments utilizing model learning with semi-
automatic constraint generation as described in Algorithm 8. All experiments will compare
the constrained model against a model learned without using any constraints. There are
two systems tested: a 2D simulated rocket and a kinematic bicycle model. All constraints

used will be of the form

xer1 — do(xe, we)l|3 Ti(xe, 1) < ex (4-4)

Each experimental section will consist of three components: a description of the system
and problem setup, a description of the experimental details including the system specific

functions as described in Section 4.2.1, and a description of the results and analysis.
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4.3.1  Simple Rocket Model

System Description

Fwind Twind
- C
=
.

(V%)
AR
Uy

S S

Figure 4.2: (Rocket System) Simple 2D model of a rocket that has two thrusters and is buffeted by
winds that apply lateral force and torque.

This system simulates a simple rocket in a plane with two thrusters that allows the
rocket to control its lift and attitude as shown in Figure 4.2. There is also an external
disturbance of the wind which will cause a lateral force to the rocket as well as a torque.
The strength of the wind depends on the height of the rocket.

The state of the rocket system is a 6 dimensional vector x = [px, py, 0, px, py, 0] ", where
(px, py) represents the coordinates of the location of the rocket and 6 is the heading. 6 =0
represents the rocket pointing straight up, and a positive theta corresponds with counter-

clockwise rotation. The two thrusters output forces u = [ul,u2] " as the control inputs in
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the range [0, 1]. The dynamics model of the rocket with the external wind disturbance (in

red) is

x = f(x,u) + disturbance(x, u)

ul4+u2
m

px
Py
0

cos(0) —g

ul4+u2 _:
— ¥ 2 5in(0)

B(u2—ul)

- Imoment -

Fwind

m

0

Twind
L imoment -

(4.5)

where m = 0.1 kg is the mass, B = 0.25 m is half the base width, and I;homent =

0.417kg m? is the moment of inertia. A discretized model using Euler integration with

time step At = 0.1 s is used for simulation. The disturbance functions, F,yina and Twina

are shown in Figure 4.3.
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Figure 4.3: (Rocket Wind Disturbance) Force and Torque caused by wind disturbance as a function

of the height of the rocket.
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The task for the rocket is to land safely despite the buffeting winds. A optimization

based controller is formulated

T—1
min T (xgoal(XT_Xgoal)TC(XT_Xgoal)+(xcont’rol Z H(Hut)
{Xt}Lp{Ut}t; t=1

st U]y € Umax, Yt
py: = 0, Vt

0 < = — e, Wt
4

X1 = Xstarts (pXszyT) = Pgoal

which tries to land the rocket at the goal with minimal control effort and avoid crashing or

tilting at too large an angle. pyoq1 is simply the location component of xgq1.

Experimental Details

The experiments compare two neural network models. Both are residual error models that
attempt to learn the disturbance component of the dynamics model in (4.5). One model
is learned using Algorithm 8, while the other learned using the same iterative process but
with no constraints. Both models are neural networks with two hidden layers of 16 and 8
neurons. Each hidden layer is followed by a PReLU activation [43]. All weights and biases
of the output layers are initialized to zeros. The models are all trained using the ADAM
optimizer with a learning rate of 1e —4. The constrained model updated the dual variables
with ADAM as well with a learning rate of 5e —4.

The system specific functions for the rocket system are as follows:

1. FAILURE: the system is in a failure mode if the height is below o or the absolute

value of angle of the rocket exceeds /4
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2. CREATE-CONSTRAINTS: A constraint region is generated around the failure state
that includes all (px, px, py) values. (py, 6, 0) values within a radius of (1.5,7/4,3)

are included. The error bound ey is set to be half of the current error in that region.

3. UPDATE-CONSTRAINTS: The rocket system uses the constraint tightening heuristic

discussed in Section 4.2.2 with o« = 0.5.

The training procedure for both the constrained and unconstrained models consists
of using an initial dataset of 60,000 data tuples to train an initial unconstrained model.
Then, 4 iterations of collecting data and training the model. Each data collection consisted
of obtaining 32 trajectories using a receding time horizon controller that solves (4.6)
with T = 30, xgoa1r = 0, C = diag(0.1,0.1,0.05,1,1,1), ®goat = 1, Xcontrot = 0.07,
Umax = [1,1]". Each model is trained for 150 epochs between data gathering. After all the
constraints are gathered, the models are finetuned for a further 700 epochs to facilitate

constraint satisfaction.

Results and Analysis

The constraint generation procedure generated two constraints centered around a mean
with error ey shown in Table 4.1. Using a validation dataset, the results of the trained
model are shown in Table 4.2. The first three rows show the squared model error over the
entire dataset as well as on each constraint region. Notice that though the constrained
model has worse error overall, it is more accurate in the constraint regions. The error in
the constraint regions in Table 4.3 do not perfectly satisfy the constraints bounds given in
Table 4.1 because of two reasons: 1) a validation dataset is used to evaluate the errors and
2) the primal-dual training process does not guarantee convergence to a feasible solution.

After both a constrained and unconstrained model is trained, the models are tested by

running the planner described in (4.6) over 200 novel starting states. The planner is used
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to generate controls in the style of a Model Predictive Controller; A plan is generated and
several time steps of the control are used, and then the planner replans. The starting x
location is uniformly sampled from [—4,4], the starting y location is sampled from [4, 10],
and the starting angle is sampled from [—7t/6,7/6]. The starting velocities are all set to o.
The failure rate of the constrained and unconstrained model are shown in the last row
of Table 4.2. Despite having higher overall model error, the constrained model obtains a

slightly lower failure rate.

Mean (py, 6, 0) €k
Constraint o | (2.312,0.731,0.359) | 5.7244e-7
Constraint 1 | (0.243,0.918,0.639) | 2.5523e-7

Table 4.1: (Rocket Constraint Regions) The two constraint regions generated for the rocket system
through Algorithm 8. The second column shows the mean of constraint region, while
the third column shows the constraint bound.

Metric Unconstrained Model | Constrained Model
Entire state-action space { 2.534€-6 3.369e-6
Constraint o: [E[golo] 2.284e-6 5.995e-7
Constraint 1: [E[gq1{] 2.084e-6 3.173e-7
Failure Rate 0.875 0.840

Table 4.2: (Rocket Experiment Results) This table records the error of the model in various subsets
of the dataset as well as the failure rate of running a closed loop planner 200 times on
problems with new starting states.

4.3.2 Bicycle Model

System Description

The kinematic bicycle model, as shown in Figure 4.4, is a common model used to simulate

higher fidelity car models as it can closely approximate them [105]. The state consists
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of x = [px,py,0,v]" where (px,py) is the location of the vehicle on a 2D plane, v is the
velocity, and 0 is the heading. The control inputs are u = [a, 6] where a is an acceleration

and § is a steering angle.

Figure 4.4: (Bicycle Model) Kinematic bicycle model that is commonly used for vehicle motion
planning.

This experiment deals with a vehicle traveling on an uneven icy surface. The differential

equation that governs the slippery bicycle model is

vcos(0 + B)
vsin(0 + ) [
X = ,p = arctan( tan(6))coeffs (4-7)
v s v+l
1. sin(B)
a * coeffy

where 1, lf is the distance from the center of the bike to the rear and front wheel
respectively. coeff, and coeff;s are slip coefficients in the range (0, 1] where 1 contains
no slip and corresponds to the normal bicycle model. A discrete system model is created

using Euler integration with a time step of At =0.1.
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The task for the bicycle system is to navigate from a start state to a goal position while
avoiding circular obstacles. An receding horizon optimization based planner is formulated

as

K
2
min H[px,py]T—pgoal 2+ZZ[1.1 *rk—H[px,py]T—ckH I

(e Awd ] =1 ke 2

—_

s.t. HLLtHOO SUmax, t=1,...,T—1 (4.8)
Vmin <Vt K Vimax, t=1,...,T

H[thrpyt]T _CkHZ 2 T'k/t = ]/"‘IT/k: 1r-"/]</

where obstacles are represented as a set of circles, (cy, rk)E:] , Where cy is the circle center
and ry is the radius. This controller hopes to keep the vehicle away from the obstacles and

encourages the trajectory to keep a small safety margin.

Experimental Details
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Figure 4.5: (Bicycle Slip Coefficient) The true map of the environment the bicycle system is
simulated in. The slip coefficients in (4.7) are shown as contour lines.
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Figure 4.6: (Bicycle Square Errors) Squared errors in two constraint regions on a validation dataset.
The errors approximately follow a folded Gaussian distribution.

Similar to the rocket experiment, a constrained and unconstrained model is trained. Both
models try to learn the error between the real system model in (4.7) with slip coefficients
varying over location as shown in Figure 4.5. Both the acceleration and turning slip
coefficients are the same at any given location. Both models use neural networks identical
to those used in the rocket experiment (Section 4.3.1) except that the hidden layers have 8
and 4 neurons.

The system specific functions for the bicycle system are as follows:

1. FAILURE: the system is in a failure mode if the bicycle system crashes into an

obstacle

2. CREATE-CONSTRAINTS: A constraint region is generated around the state right
before a crash that includes all (6,v) values. (px, py) values within a radius of 0.5 are
included. The (px, py) squared prediction error in a constraint region is modeled as
a folded normal distribution. This assumption is approximate and can be seen in Figure
4.6. To maintain safety, the squared prediction error can be constrained such the
distance from the predicted state to the nearest obstacles is greater than 3 standard

deviations.
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3. UPDATE-CONSTRAINTS: The bicycle system uses the region merging heuristic
discussed in Section 4.2.2 when the overlap volume between two constraints is 40%

of any of the two separate constraints.

The training procedure for both the constrained and unconstrained models consists of
using an initial dataset of 40,000 data tuples to train an initial unconstrained model. Then
3 iterations of collecting data and training the model. Each data collection consisted of
obtaining 32 trajectories using a receding time horizon controller that solves (4.8) with
T =60, Umax = [1,0.6] 7, Vinin = —1, Vmax = 5. There are three circular obstacles in the
map shown in Figure 4.5. The starting (px,py) locations are sampled uniformly from
the range [—6, —4] x [—6,—4]. The goal (px, py) locations are sampled uniformly from the
range [4, 6] x [4,6]. Each model is trained for 200 epochs between data gathering. After all
the constraints are gathered, the models are finetuned for a further 500 epochs to facilitate

constraint satisfaction.

Results and Analysis

10

-3
L

S
L

Figure 4.7: (Bicycle Constraint Regions) The generated constraint regions are shown in blue.

The constraint generation process created 6 constraint regions. The errors for the final

constrained and unconstrained models are shown in Table 4.3 and their locations are
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Figure 4.8: (Bicycle Trajectories and Failures) This plot shows the trajectories of 1000 test runs
of the unconstrained and constrained models using the planner described in (4.8).
The first row displays results for the unconstrained model in green. The second row
displays results for the constrained model in blue. The first column shows the actual
trajectories taken.

shown in Figure 4.7. The overall model error for both the constrained and unconstrained
model are similar. However, the constrained model has less error in its constraint regions.
This is traded off for worst accuracy elsewhere.

The last row of Table 4.3 displays the failure rate of the models when tested on 1000
validation start and goal locations for the planner (4.8) to navigate. Similar to the rocket
system, this planner is operated in a receding time horizon loop. The constrained model
obtains fails almost 3 times less than the unconstrained model. The 1000 trajectories and
the failure locations are shown in Figure 4.8. While the constrained model still occasionally
fails inside the constraint regions, the number is greatly reduced. There are 5 constraint

regions generated for the bottom right obstacles, and Figure 4.8 shows that the vast
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majority of the collisions for the unconstrained model occurs in those constraint regions.

This is alleviated in the constrained model.

Metric Unconstrained Model | Constrained Model
Entire state-action space 7.937€-4 7.460e-4
Constraint o: [E[golo] 3.966e-4 2.969e-4
Constraint 1: [E[g114] 9.947€-4 7.322e-4
Constraint 2: [E[g,1;] 5.269e-5 2.957e-5
Constraint 3: [E[g313] 1.760€-3 1.011€-3
Constraint 4: [E[g4]l4] 3.672e-4 3.506e-4
Constraint 5: [E[g515] 1.000€-3 7.786€e-4
Failure Rate 0.133 0.050

Table 4.3: (Bicycle Experiment Results) This table records the error of the model in various subsets
of the dataset as well as the failure rate of running a closed loop planner 1000 times on
problems with random start and goal states.

4.3.3 Conclusion

This chapter provides a method to alleviate some of the human effort involved in creating
constraints for a sufficiently accurate model as presented in Chapter 3. By using an iterative
process that requires a few system specific functions that may be easier to define than
the constraints themselves, constraints may be automatically generated to improve the
planning model.

The constrained rocket model achieved small performance gains compared to the
unconstrained model, the constrained bicycle model improved upon its unconstrained
counterpart by a larger margin. We believe this is due to the nature of the CREATE-
CONSTRAINTS functions used. The rocket system used a fairly generic function. It simply
created constraints that were some fraction of the current models errors. The bicycle model

used a more principled approach that constrained the errors by a physically meaningful
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value. One interpretation is that the constrained bicycle model required more human
effort to craft a more specific CREATE-CONSTRAINTS function. There is a trade off
between crafting more specialized functions to enable the model learning algorithms to

take advantage of human prior knowledge and performance and computational effort.



5 CONCLUSIONS

Incorporating machine learning algorithms into robot motion planning is about evaluating
tradeoffs. Machine learning by itself is a tool that can be extremely powerful to enable
pattern recognition across large datasets. However, it does not contain many of the human
heuristics that might be hard to infer from data alone.

Chapter 2 discussed learning heuristics for planning algorithms. In particular, one
experiment showed that learning a sampling distribution for a flytrap environment yields
extremely similar results to some human designed heuristics (Figure 2.9). This illustrates
the trade off on a small scale. Learning algorithms may be able to replace some human
expertise but at the cost the computational effort required to search for the solution.
Different problems may require a different mix of human expertise and machine learned
data processing.

Chapters 3 and 4 explored a constrained framework for model learning. The results
display a range of trade offs from explicitly designing constraints with human intuition
(Chapter 3) to using less human expertise but more computational power to search for
constraints (Chapter 4). Even within the semi-automatic process, there is a range of
solutions that can incorporate less human knowledge (the rocket system) or more human
knowledge (the bicycle system).

This work shows various methods that can shift the effort of finding efficient and low
cost motion plans between humans and computers. There is no free lunch as each method

comes with costs and benefits. At this time, specific robot systems and tasks should be

119
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evaluated on which aspects should be automated and which aspects should be designed
with human expertise. Currently, the intersection of machine learning and robot motion
planning is still in its infancy and we hope that future research can lessen the burden on

the human expertise required to utilize the algorithms in this space.



6 APPENDIX

6.1 EXPECTATION-WISE LIPSCHITZ-CONTINUITY OF LOSS FUNC-

TIONS

This Appendix section shows that the loss functions in Examples 3.1 and 3.2 are expectation-

wise Lipschitz-continuous.

Selective Accuracy, Example 3.1

The loss function (s, ¢) = ||d(x¢, we) —x¢41], is expectation-wise Lipschitz-continuous in

¢. Using the reverse triangle inequality, we get

Hl(s,d>1 ) — I(S,d)Z)HOO = ||H¢1 (x¢, Ui) —Xt41 ”2 - Hq)z(xt,ut) — Xt+1 HZHOO

(6.1)

< b1 (xe, we) — b2 (xe, we) |5l o -

By, the equivalence of norms, there exists L such that ||$1(x, 1) — d2(x,u)||, < Ll (x,u)—

$2(x, 1), for all (x,u). Thus,
Hl(slq)])_l(sld)ZJHOO < L||d)1 _d)ZHOO (62)
Since this is true for any s, it is also true in expectation.

Es [[U(s, d1) —Us, d2)[|o < LEs [[d1 — 2]l (6.3)
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Normalized Objective, Example 3.2

The loss function 1(s, $) = L (Xh’;‘j ]_H:t“ L A (s) is also expectation-wise Lipschitz-continuous

in ¢. Following the same logic as for the euclidean norm, we get

I
s, 1)~ Us, 02)lle < L|| 25 (1 — ) (6.4)
xt+1ll2 00
This reduces to
1
1 — <L . — .
H (sl d)1) I(S/ d)Z)Hoo < Hmlnxt+1 th+1 Hz (d)1 d)Z) . (6 5)

Ta(s)

when considering the case where s € A. The largest that o, can be is 1 over the

smallest value of ||x¢41]],. If s € A, both sides reduce to o, as the indicator variable is o.

This leads to

1
€

IUs, 1) —Us, &) < L H (1 — b2)
%0 (6.6)

L
E |[U(s, d1) —Us, d2) o < _E b1 —b2lls

6.2 EQUIVALENT PROBLEM FORMULATION

Using the notation from Section 3.2, the problem defined in [110] is

P* = fo(x
max 0(x)

s.t. x <E[f1(s, d(s))] (6.7)

f2x)>20,xeX,pcd
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where fy, and f; are concave functions. fy is not necessarily convex with respect to ¢. X is
a convex set and @ is compact. Note that fy, f1, f2, X, and X are not directly present in the
Sufficiently Accurate problem.

To translate the problem, let us assume that x is K+ 1 dimensional, where K is the
number of constraints in (3.16). Let the last element of f; (s, ¢) be equal to —1(s, ¢ )L (s),
the negative of the objective function in the Sufficiently Accurate problem. Let the first k'
element of f1(s, ) be equal to —gx (s, d)Ix(s), the negative of a constraint function in
(3.16). Set the objective function to be fo(x) = xk1, where xx 1 is the (K + 1)t element
of x. 5 can be ignored by setting it to be the zero function. Under these assumptions, (6.7)

is equivalent to the following

P* =maxxK1
s.t. xi < —Elgk(s, d)Ik(s), k=1,...,K
xx+1 < —El(s, d)Io(s)]
xecX,¢ed.

Now, define the set X = {(x1,x2,...,xk41) : xxk =0,k =1,...,K,xkr1 € Xx1}, where
Xk 41 is an arbitrary compact set in one dimension. This set of vectors, X, is a set that is o
in the first K components, and is compact in the last component. This, will further simplify

(6.8) to the following

P* — mq?x —E[l(s, $)Io(s)]

s.t. 0 < —Elgi(s, &)L (s), k=1,...,K (6-9)

bed
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as long as 1 takes on values in a compact set. Finally, flipping all the negatives in (6.9),

P* = — min E[l(s, $)Iy(s)]
b (6.10)
s.t. E[gk(s, )k (s)] <0,k=1,...,K

This completes the translation of problem (6.7) to (3.16).

63 PROOF OF THEOREM 3

This proof follows some of the steps of the proof for [29, Theorem 1]. Let (¢*,A*) be the
primal and dual variables that attains the solution value of P* = D* in problems (3.16)
and (3.35). Similarly, let (6*,AF) be the primal and dual variables that attain the solution
value D in problem (3.31). ¢ g+ is the function that 6* induces. Note that the optimal dual
variables for (3.35), A*, are not necessarily the same as the optimal dual variables for (3.31),

Ag-
Lower Bound

We first show the lower bound for Dj. Writing out the dual problem (3.35), we obtain

D*: : — * Yk .
r{l;gglelgﬁ(d),?\) L(d*, A7) (6.11)

Since A* is the optimal dual variable that achieves the maximal value for the maximization

and minimization for the Lagrangian, it is true that

¢* = argmin £(d,\*). (6.12)
¢
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Thus for any ¢,
L(d*,A) < L(d,A),Vd € ©. (6.13)

We now look at the parameterized dual problem (3.31).

. . _ .
Dg —rggrerggﬁe(e,?\) —gl;ggggﬁ(%,?\) (6.14)

This simply redefines Lg in terms of £ as the only difference is that L¢ is only defined
for a subset of the primal variables that £ is defined for. By definition, A§ maximizes the
minimization of £g over 0. That is to say for the dual solution (6*,A§), Aj minimizes

L(d)g*, )

5 = argmaxmin £(¢g, \)

A0 0cO
(6.15)
= argmax £(Ppeg+, A).
A>0
Thus, for all A, it is the case that
L(dbo-,Ay) = Lo+, A) (6.16)
Putting together (6.13) and (6.16), we obtain
Dg - L(d)e*/)\g) > L(¢6*/A*) = L(d)*/}\*) =D~ (617)

Upper Bound

Next, we show the upper bound for Dj. We begin by writing the Lagrangian (3.30)

Dy = in £(dpe, A 6.18
6 = max min (bo,A) (6.18)
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as previously written in (6.14). By adding and subtracting £(,A), we obtain

=

— rgi())([ﬁ(d), A+ gleig[ﬁ(cpe, A) — L(d,A)]] (6.19)

< max|L(,A) +minL(doe, A) — L (P, Al

=

where the last line comes from the fact that the absolute value of an expression is always
at least as large as the original expression, i.e. x < [x|. Looking just at the quantity

|L(do,A) — L(d, )], we can expand it as

1£(do,A) — L(d,A)| = [E[Lo(s, do) +A" g(s, de)l—

(6.20)
Elto(s, )+ 2" g(s, b))
Using the triangle inequality, this is upper bounded as
|L(Cb9/7\) - ’C(d)/ }\)| < |IE[€O(S/ d)e) - eO(s/ Cb)”—'_
(6.21)
[ (g(s, be) —gls, )
Using Holder’s inequality, we can create a further upper bound
[£(be,A) — L(d, M| < [[Ello(s, do) —Lols, dllo +

(6.22)

1Al 1Elg(s, do) — gls, &)l

where the infinity norm of the scalar value E[{y(s, o) — lo(s, §)] is the same as its absolute
value. Using the fact that the infinity norm is convex and Jensen’s inequality, we can move

the norm inside of the expectation.

1£(bo,A) — L(d, NI < E|llo(s, do) —Lols, &)l + AT Ellg(s, de) —gls, &), (6-23)
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By expectation-wise Lipschitz-continuity of both the loss and constraint functions,

[£(do,A) = L(d, NI < LE [[do — bl + [[All LE [[do — Pl

(6.24)
= (T+[AlLE [[do — |l -
Combining (6.19) with (6.24), we obtain
< = i — .
D§ < rgg[ﬁ(dxk) + (Al + DL minE [ do — bl (6.25)

Since, Qg is an e-universal approximation for ®, we can write mingecg E ||dpg — d||, < €.
This further reduces (6.25) to

Dp < r}{l%[ﬁ(dxﬂ + (Al + T)Lel. (6.26)

Note that (6.26) is true for all ¢. In particular it must be also true for the A that minimizes
the inner value, i.e.
Dj < max min[L(d,A) + (||A]l; + 1)Lel

A=0 bed
(6.27)

=TLe+ max gleig [E[o(s, )] + AT (Elg(s, &)+ 1Le)]

The second half of (6.27) is actually the solution to the dual problem (3.26). The primal
problem is reproduced here for reference,
Pic = min Elto(s, ¢)

s.t. E[g(s, ¢)] +1Le < 0.

That is to say, Dj < Le 4 D7 .. The primal problem (3.25) is a perturbed version of (3.16),

where all the constraints are tighter by Le. There exists a relationship between the solution
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of (3.25) and (3.16) from [15, Eq. 5.57]. Treating (3.16) as the perturbed version of (3.25)

(that tightens the constraints by —Le), the relationship between the two solutions is
P* > Pf. —Af. 'Le. (6.28)
Since both (3.16) and (3.25) have zero duality gap by Theorem 2, this is the same as
D" > Die —[IA{elly Le. (6-29)
Combining (6.29) with the fact that D < Le + Dy, the following bound is obtained.
Dg < D"+ Le([Afclly +1) (6:30)

This gives us the desired upper bound.

6.4 PROOF OF LEMMA 1

We start by establishing an upper bound on the difference [D§ — D} |. By definition of
the Dual Problems (3.31) and (3.22), it follows that D = ming £g(6,A) and DY, =

ming £ (6,A},). Hence we have that

Dj — D} = min £o(6,A5) —min £n (6,18

< min £o(6,X5) — min £n (0, A3), (6.31)

where the inequality follows from the fact that A}, maximizes the function dn(A) =

ming LN (6,A). Thus, any other A, in particular A§ results in a value that is less than or
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equal to DY. Let 0%, (A) = argming g £~ (6, A). Substituting by this definition and using

the definition of minimum, (6.31) can be further upper bounded by
Dj — Dy < Lo(8%(A5),A5) — Ln (85 (A5),A3). (6.32)

We set now to establish a similar lower bound. Analogous to the step for the upper bound,
we can use the definition of the Dual problem to lower bound Dy — Dy,
Dj — D, > min Lo (6,A%) —min £n(0,A%,). (6.33)

Likewise, define 0*(A) = argming g £¢(0,A) and further upper bound (6.33) as
D — DY > Lo(0* (M), Ak ) — £n (0 (AR ), AL (6.34)

Using the upper and lower bounds for Dj — Dy, derived in (6.32) and (6.34), we can
bound the absolute value of the difference by the maximum of the absolute values of the

lower and upper bounds

1Lo (0% (AN ), AN) — En (0% (AR ), AR
Dy — Dyl < max NN NN (6.35)

Lo (0K (A5), A5) — Ln(OR (A5), A5)]

A conservative upper bound for the previous expression is

ID§ —DXI<| sup  Lo(6,A) —Ln(6,M)] (6.36)
0€® A eRK

This completes the proof of the Lemma.
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(Ball Bouncing Trajectory) The (x, y z) trajectory of the ball is
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