19 research outputs found

    Multi-View Networks For Multi-Channel Audio Classification

    Full text link
    In this paper we introduce the idea of multi-view networks for sound classification with multiple sensors. We show how one can build a multi-channel sound recognition model trained on a fixed number of channels, and deploy it to scenarios with arbitrary (and potentially dynamically changing) number of input channels and not observe degradation in performance. We demonstrate that at inference time you can safely provide this model all available channels as it can ignore noisy information and leverage new information better than standard baseline approaches. The model is evaluated in both an anechoic environment and in rooms generated by a room acoustics simulator. We demonstrate that this model can generalize to unseen numbers of channels as well as unseen room geometries.Comment: 5 pages, 7 figures, Accepted to ICASSP 201

    Deep Long Short-Term Memory Adaptive Beamforming Networks For Multichannel Robust Speech Recognition

    Full text link
    Far-field speech recognition in noisy and reverberant conditions remains a challenging problem despite recent deep learning breakthroughs. This problem is commonly addressed by acquiring a speech signal from multiple microphones and performing beamforming over them. In this paper, we propose to use a recurrent neural network with long short-term memory (LSTM) architecture to adaptively estimate real-time beamforming filter coefficients to cope with non-stationary environmental noise and dynamic nature of source and microphones positions which results in a set of timevarying room impulse responses. The LSTM adaptive beamformer is jointly trained with a deep LSTM acoustic model to predict senone labels. Further, we use hidden units in the deep LSTM acoustic model to assist in predicting the beamforming filter coefficients. The proposed system achieves 7.97% absolute gain over baseline systems with no beamforming on CHiME-3 real evaluation set.Comment: in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP

    Rank-1 Constrained Multichannel Wiener Filter for Speech Recognition in Noisy Environments

    Get PDF
    Multichannel linear filters, such as the Multichannel Wiener Filter (MWF) and the Generalized Eigenvalue (GEV) beamformer are popular signal processing techniques which can improve speech recognition performance. In this paper, we present an experimental study on these linear filters in a specific speech recognition task, namely the CHiME-4 challenge, which features real recordings in multiple noisy environments. Specifically, the rank-1 MWF is employed for noise reduction and a new constant residual noise power constraint is derived which enhances the recognition performance. To fulfill the underlying rank-1 assumption, the speech covariance matrix is reconstructed based on eigenvectors or generalized eigenvectors. Then the rank-1 constrained MWF is evaluated with alternative multichannel linear filters under the same framework, which involves a Bidirectional Long Short-Term Memory (BLSTM) network for mask estimation. The proposed filter outperforms alternative ones, leading to a 40% relative Word Error Rate (WER) reduction compared with the baseline Weighted Delay and Sum (WDAS) beamformer on the real test set, and a 15% relative WER reduction compared with the GEV-BAN method. The results also suggest that the speech recognition accuracy correlates more with the Mel-frequency cepstral coefficients (MFCC) feature variance than with the noise reduction or the speech distortion level.Comment: for Computer Speech and Languag
    corecore