15 research outputs found

    Neuro-Symbolic techniques for Predictive Maintenance

    Get PDF
    Predictive maintenance plays a key role in the core business of the industry due to its potential in reducing unexpected machine downtime and related cost. To avoid such issues, it is crucial to devise artificial intelligence models that can effectively predict failures. Predictive maintenance current approaches have several limitations that can be overcome by exploiting hybrid approaches such as Neuro-Symbolic techniques. Neuro-symbolic models combine neural methods with symbolic ones leading to improvements in efficiency, robustness, and explainability. In this work, we propose to exploit hybrid approaches by investigating their advantage over classic predictive maintenance approaches

    Backpropagating through Markov Logic Networks

    Get PDF
    We integrate Markov Logic networks with deep learning architectures operating on high-dimensional and noisy feature inputs. Instead of relaxing the discrete components into smooth functions, we propose an approach that allows us to backpropagate through standard statistical relational learning components using perturbation-based differentiation. The resulting hybrid models are shown to outperform models solely relying on deep learning based function fitting. We find that using noise perturbations is required to allow the proposed hybrid models to robustly learn from the training data

    Relational Neural Machines

    Get PDF
    Deep learning has been shown to achieve impressive results in several tasks where a large amount of training data is available. However, deep learning solely focuses on the accuracy of the predictions, neglecting the reasoning process leading to a decision, which is a major issue in life-critical applications. Probabilistic logic reasoning allows to exploit both statistical regularities and specific domain expertise to perform reasoning under uncertainty, but its scalability and brittle integration with the layers processing the sensory data have greatly limited its applications. For these reasons, combining deep architectures and probabilistic logic reasoning is a fundamental goal towards the development of intelligent agents operating in complex environments. This paper presents Relational Neural Machines, a novel framework allowing to jointly train the parameters of the learners and of a First--Order Logic based reasoner. A Relational Neural Machine is able to recover both classical learning from supervised data in case of pure sub-symbolic learning, and Markov Logic Networks in case of pure symbolic reasoning, while allowing to jointly train and perform inference in hybrid learning tasks. Proper algorithmic solutions are devised to make learning and inference tractable in large-scale problems. The experiments show promising results in different relational tasks

    From Statistical Relational to Neurosymbolic Artificial Intelligence: a Survey

    Full text link
    This survey explores the integration of learning and reasoning in two different fields of artificial intelligence: neurosymbolic and statistical relational artificial intelligence. Neurosymbolic artificial intelligence (NeSy) studies the integration of symbolic reasoning and neural networks, while statistical relational artificial intelligence (StarAI) focuses on integrating logic with probabilistic graphical models. This survey identifies seven shared dimensions between these two subfields of AI. These dimensions can be used to characterize different NeSy and StarAI systems. They are concerned with (1) the approach to logical inference, whether model or proof-based; (2) the syntax of the used logical theories; (3) the logical semantics of the systems and their extensions to facilitate learning; (4) the scope of learning, encompassing either parameter or structure learning; (5) the presence of symbolic and subsymbolic representations; (6) the degree to which systems capture the original logic, probabilistic, and neural paradigms; and (7) the classes of learning tasks the systems are applied to. By positioning various NeSy and StarAI systems along these dimensions and pointing out similarities and differences between them, this survey contributes fundamental concepts for understanding the integration of learning and reasoning.Comment: To appear in Artificial Intelligence. Shorter version at IJCAI 2020 survey track, https://www.ijcai.org/proceedings/2020/0688.pd
    corecore