97 research outputs found

    An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning

    Full text link
    Manifold-learning techniques are routinely used in mining complex spatiotemporal data to extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear model identification tasks. We focus here on the case of time series data that can ultimately be modelled as a spatially distributed system (e.g. a partial differential equation, PDE), but where we do not know the space in which this PDE should be formulated. Hence, even the spatial coordinates for the distributed system themselves need to be identified - to emerge from - the data mining process. We will first validate this emergent space reconstruction for time series sampled without space labels in known PDEs; this brings up the issue of observability of physical space from temporal observation data, and the transition from spatially resolved to lumped (order-parameter-based) representations by tuning the scale of the data mining kernels. We will then present actual emergent space discovery illustrations. Our illustrative examples include chimera states (states of coexisting coherent and incoherent dynamics), and chaotic as well as quasiperiodic spatiotemporal dynamics, arising in partial differential equations and/or in heterogeneous networks. We also discuss how data-driven spatial coordinates can be extracted in ways invariant to the nature of the measuring instrument. Such gauge-invariant data mining can go beyond the fusion of heterogeneous observations of the same system, to the possible matching of apparently different systems

    Emergence and combinatorial accumulation of jittering regimes in spiking oscillators with delayed feedback

    Get PDF
    Interaction via pulses is common in many natural systems, especially neuronal. In this article we study one of the simplest possible systems with pulse interaction: a phase oscillator with delayed pulsatile feedback. When the oscillator reaches a specific state, it emits a pulse, which returns after propagating through a delay line. The impact of an incoming pulse is described by the oscillator's phase reset curve (PRC). In such a system we discover an unexpected phenomenon: for a sufficiently steep slope of the PRC, a periodic regular spiking solution bifurcates with several multipliers crossing the unit circle at the same parameter value. The number of such critical multipliers increases linearly with the delay and thus may be arbitrary large. This bifurcation is accompanied by the emergence of numerous "jittering" regimes with non-equal interspike intervals (ISIs). Each of these regimes corresponds to a periodic solution of the system with a period roughly proportional to the delay. The number of different "jittering" solutions emerging at the bifurcation point increases exponentially with the delay. We describe the combinatorial mechanism that underlies the emergence of such a variety of solutions. In particular, we show how a periodic solution exhibiting several distinct ISIs can imply the existence of multiple other solutions obtained by rearranging of these ISIs. We show that the theoretical results for phase oscillators accurately predict the behavior of an experimentally implemented electronic oscillator with pulsatile feedback

    Hopf Bifurcations of Twisted States in Phase Oscillators Rings with Nonpairwise Higher-Order Interactions

    Full text link
    Synchronization is an essential collective phenomenon in networks of interacting oscillators. Twisted states are rotating wave solutions in ring networks where the oscillator phases wrap around the circle in a linear fashion. Here, we analyze Hopf bifurcations of twisted states in ring networks of phase oscillators with nonpairwise higher-order interactions. Hopf bifurcations give rise to quasiperiodic solutions that move along the oscillator ring at nontrivial speed. Because of the higher-order interactions, these emerging solutions may be stable. Using the Ott--Antonsen approach, we continue the emergent solution branches which approach anti-phase type solutions (where oscillators form two clusters whose phase is π\pi apart) as well as twisted states with a different winding number.Comment: 24 pages, 8 figure

    Transition from chimera/solitary states to traveling waves

    Full text link
    We study numerically the spatiotemporal dynamics of a ring network of nonlocally coupled nonlinear oscillators, each represented by a two-dimensional discrete-time model of the classical van der Pol oscillator. It is shown that the discretized oscillator exhibits a richer behavior, combining the peculiarities of both the original system and its own dynamics. Moreover, a large variety of spatiotemporal structures is observed in the network of discrete van der Pol oscillators when the discretization parameter and the coupling strength are varied. Such regimes as the coexistence of multichimera state/traveling wave and solitary state are revealed for the first time and studied in detail. It is established that the majority of the observed chimera/solitary states, including the newly found ones, are transient towards the purely traveling wave mode. The peculiarities of the transition process and the lifetime (transient duration) of the chimera structures and the solitary state are analyzed depending on the system parameters, observation time, initial conditions, and influence of external noise

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF
    corecore