7,729 research outputs found

    Iterative pre-distortion of the non-linear satellite channel

    Full text link
    Digital Video Broadcasting - Satellite - Second Generation (DVB-S2) is the current European standard for satellite broadcast and broadband communications. It relies on high order modulations up to 32-amplitude/phase-shift-keying (APSK) in order to increase the system spectral efficiency. Unfortunately, as the modulation order increases, the receiver becomes more sensitive to physical layer impairments, and notably to the distortions induced by the power amplifier and the channelizing filters aboard the satellite. Pre-distortion of the non-linear satellite channel has been studied for many years. However, the performance of existing pre-distortion algorithms generally becomes poor when high-order modulations are used on a non-linear channel with a long memory. In this paper, we investigate a new iterative method that pre-distorts blocks of transmitted symbols so as to minimize the Euclidian distance between the transmitted and received symbols. We also propose approximations to relax the pre-distorter complexity while keeping its performance acceptable

    Machine learning for fiber nonlinearity mitigation in long-haul coherent optical transmission systems

    Get PDF
    Fiber nonlinearities from Kerr effect are considered as major constraints for enhancing the transmission capacity in current optical transmission systems. Digital nonlinearity compensation techniques such as digital backpropagation can perform well but require high computing resources. Machine learning can provide a low complexity capability especially for high-dimensional classification problems. Recently several supervised and unsupervised machine learning techniques have been investigated in the field of fiber nonlinearity mitigation. This paper offers a brief review of the principles, performance and complexity of these machine learning approaches in the application of nonlinearity mitigation

    Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has attracted a lot of interest in optical fiber communications due to its simplified digital signal processing (DSP) units, high spectral-efficiency, flexibility, and tolerance to linear impairments. However, CO-OFDM’s high peak-to-average power ratio imposes high vulnerability to fiber-induced non-linearities. DSP-based machine learning has been considered as a promising approach for fiber non-linearity compensation without sacrificing computational complexity. In this paper, we review the existing machine learning approaches for CO-OFDM in a common framework and review the progress in this area with a focus on practical aspects and comparison with benchmark DSP solutions.Peer reviewe

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Digital predistortion of RF amplifiers using baseband injection for mobile broadband communications

    Get PDF
    Radio frequency (RF) power amplifiers (PAs) represent the most challenging design parts of wireless transmitters. In order to be more energy efficient, PAs should operate in nonlinear region where they produce distortion that significantly degrades the quality of signal at transmitter’s output. With the aim of reducing this distortion and improve signal quality, digital predistortion (DPD) techniques are widely used. This work focuses on improving the performances of DPDs in modern, next-generation wireless transmitters. A new adaptive DPD based on an iterative injection approach is developed and experimentally verified using a 4G signal. The signal performances at transmitter output are notably improved, while the proposed DPD does not require large digital signal processing memory resources and computational complexity. Moreover, the injection-based DPD theory is extended to be applicable in concurrent dual-band wireless transmitters. A cross-modulation problem specific to concurrent dual-band transmitters is investigated in detail and novel DPD based on simultaneous injection of intermodulation and cross-modulation distortion products is proposed. In order to mitigate distortion compensation limit phenomena and memory effects in highly nonlinear RF PAs, this DPD is further extended and complete generalised DPD system for concurrent dual-band transmitters is developed. It is clearly proved in experiments that the proposed predistorter remarkably improves the in-band and out-of-band performances of both signals. Furthermore, it does not depend on frequency separation between frequency bands and has significantly lower complexity in comparison with previously reported concurrent dual-band DPDs
    • …
    corecore