26 research outputs found

    Characterizing CDMA downlink feasibility via effective interference

    Get PDF
    This paper models and analyses downlink power assignment feasibility in Code Division Multiple Access (CDMA) mobile networks. By discretizing the area into small segments, the power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a closed-form analytical expression of the so-called Perron-Frobenius eigenvalue of that matrix, which provides a quick assessment of the feasibility of the power assignment for each distribution of calls over the segments. Although the obtained relation is non-linear, it basically provides an effective interference characterisation of downlink feasibility. Our results allow for a fast evaluation of outage and blocking probabilities, and enable a quick evaluation of feasibility that may be used for Call Acceptance Control. \u

    Transient handover blocking probabilities in road covering cellular mobile networks

    Get PDF
    This paper investigates handover and fresh call blocking probabilities for subscribers moving along a road in a traffic jam passing through consecutive cells of a wireless network. It is observed and theoretically motivated that the handover blocking probabilities show a sharp peak in the initial part of a traffic jam roughly at the moment when the traffic jam starts covering a new cell. The theoretical motivation relates handover blocking probabilities to blocking probabilities in the M/D/C/C queue with time-varying arrival rates. We provide a numerically efficient recursion for these blocking probabilities. \u

    Non-Stationary Random Process for Large-Scale Failure and Recovery of Power Distributions

    Full text link
    A key objective of the smart grid is to improve reliability of utility services to end users. This requires strengthening resilience of distribution networks that lie at the edge of the grid. However, distribution networks are exposed to external disturbances such as hurricanes and snow storms where electricity service to customers is disrupted repeatedly. External disturbances cause large-scale power failures that are neither well-understood, nor formulated rigorously, nor studied systematically. This work studies resilience of power distribution networks to large-scale disturbances in three aspects. First, a non-stationary random process is derived to characterize an entire life cycle of large-scale failure and recovery. Second, resilience is defined based on the non-stationary random process. Close form analytical expressions are derived under specific large-scale failure scenarios. Third, the non-stationary model and the resilience metric are applied to a real life example of large-scale disruptions due to Hurricane Ike. Real data on large-scale failures from an operational network is used to learn time-varying model parameters and resilience metrics.Comment: 11 pages, 8 figures, submitted to IEEE Sig. Pro

    Pseudo steady-state period in non-stationary infinite-server queue with state dependent arrival intensity

    Get PDF
    An infinite-server queueing model with state-dependent arrival process and exponential distribution of service time is analyzed. It is assumed that the difference between the value of the arrival rate and total service rate becomes positive starting from a certain value of the number of customers in the system. In this paper, time until reaching this value by the number of customers in the system is called the pseudo steady-state period (PSSP). Distribution of duration of PSSP, its raw moments and its simple approximation under a certain scaling of the number of customers in the system are analyzed. Novelty of the considered problem consists of an arbitrary dependence of the rate of customer arrival on the current number of customers in the system and analysis of time until reaching from below a certain level by the number of customers in the system. The relevant existing papers focus on the analysis of time interval since exceeding a certain level until the number of customers goes down to this level (congestion period). Our main contribution consists of the derivation of a simple approximation of the considered time distribution by the exponential distribution. Numerical examples are presented, which confirm good quality of the proposed approximation

    Large Deviations of Bivariate Gaussian Extrema

    Get PDF
    We establish sharp tail asymptotics for component-wise extreme values of bivariate Gaussian random vectors with arbitrary correlation between the components. We consider two scaling regimes for the tail event in which we demonstrate the existence of a restricted large deviations principle, and identify the unique rate function associated with these asymptotics. Our results identify when the maxima of both coordinates are typically attained by two different vs. the same index, and how this depends on the correlation between the coordinates of the bivariate Gaussian random vectors. Our results complement a growing body of work on the extremes of Gaussian processes. The results are also relevant for steady-state performance and simulation analysis of networks of infinite server queues

    Efficient estimation of blocking probabilities in non-stationary loss networks

    Get PDF
    This paper considers estimation of blocking probabilities in a nonstationary loss network. Invoking the so called MOL (Modified Offered Load) approximation, the problem is transformed into one requiring the solution of blocking probabilities in a sequence of stationary loss networks with time varying loads. To estimate the blocking probabilities Monte Carlo simulation is used and to increase the efficiency of the simulation, we develop a likelihood ratio method that enables samples drawn at a one time point to be used at later time points. This reduces the need to draw new samples every time independently as a new time point is considered, thus giving substantial savings in the computational effort of evaluating time dependent blocking probabilities. The accuracy of the method is analyzed by using Taylor series approximations of the variance indicating the direct dependence of the accuracy on the rate of change of the actual load. Finally, three practical applications of the method are provided along with numerical examples to demonstrate the efficiency of the method

    Optimizing the strategic patient mix

    Get PDF
    In this paper we address the decision of choosing a patient mix for a hospital that leads to the most beneficial treatment case mix. We illustrate how capacity, case mix and patient mix decisions are interrelated and how understanding this complex relationship is crucial for achieving the maximum benefit from the fee-for-service financing system. Although studies to determine the case mix that is of maximum benefit exist in the literature, the hospital actions necessary to realize this case mix has seen less attention. We model the hospital as an M/G/M/G/\infty queueing system to evaluate the impact of accepting certain patient types. Using this queueing model to generate the parameters, an optimization problem is formulated. We propose two methods for solving the optimization problem. The first is exact but requires an integer linear programming solver whereas the second is an approximation relying only on dynamic programming. The model is applied in the department of surgery at a Dutch hospital. The model determines which patient types result in the desired growth in the preferred surgical treatment areas. The case study highlights the impact of striving for a certain case mix without providing a sufficiently balanced supply of resources. In the case study we show how the desired case mix can be better archieved by investing in certain capacity

    An analytical model for CDMA downlink rate optimization taking into account uplink coverage restriction

    Get PDF
    This paper models and analyzes downlink and uplink power assignment in Code Division Multiple Access (CDMA) mobile networks. By discretizing the area into small segments, the power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a closed-form analytical expression of the so-called Perron-Frobenius eigenvalue of that matrix, which provides a quick assessment of the feasibility of the power assignment for each distribution of calls over the segments. Our results allow for a fast evaluation of outage and blocking probabilities. The result also enables a quick evaluation of feasibility that may be used for capacity allocation. Our combined downlink and uplink feasibility model is applied to determine maximal system throughput in terms of downlink rates. \u
    corecore