2,816 research outputs found

    Network uncertainty in selfish routing

    Get PDF
    We study the problem of selfish routing in the presence of incomplete network information. Our model consists of a number of users who wish to route their traffic on a network of m parallel links with the objective of minimizing their latency. However, in doing so, they face the challenge of lack of precise information on the capacity of the network links. This uncertainty is modelled via a set of probability distributions over all the possibilities, one for each user. The resulting model is an amalgamation of the KP-model of [13] and the congestion games with user-specific functions of [17]. We embark on a study of Nash equilibria and the price of anarchy in this new model. In particular, we propose polynomial-time algorithms for computing some special cases of pure Nash equilibria and we show that negative results of [17], for the non-existence of pure Nash equilibria in the case of three users, do not apply to our model. Consequently, we propose an interesting open problem in this area, that of the existence of pure Nash equilibria in the general case of our model. Furthermore, we consider appropriate notions for the social cost and the price of anarchy and obtain upper bounds for the latter. With respect to fully mixed Nash equilibria, we propose a method to compute them and show that when they exist they are unique. Finally we prove that the fully mixed Nash equilibrium maximizes the social welfare. 1

    Uncertainty in Multi-Commodity Routing Networks: When does it help?

    Full text link
    We study the equilibrium behavior in a multi-commodity selfish routing game with many types of uncertain users where each user over- or under-estimates their congestion costs by a multiplicative factor. Surprisingly, we find that uncertainties in different directions have qualitatively distinct impacts on equilibria. Namely, contrary to the usual notion that uncertainty increases inefficiencies, network congestion actually decreases when users over-estimate their costs. On the other hand, under-estimation of costs leads to increased congestion. We apply these results to urban transportation networks, where drivers have different estimates about the cost of congestion. In light of the dynamic pricing policies aimed at tackling congestion, our results indicate that users' perception of these prices can significantly impact the policy's efficacy, and "caution in the face of uncertainty" leads to favorable network conditions.Comment: Currently under revie

    Boltzmann meets Nash: Energy-efficient routing in optical networks under uncertainty

    Full text link
    Motivated by the massive deployment of power-hungry data centers for service provisioning, we examine the problem of routing in optical networks with the aim of minimizing traffic-driven power consumption. To tackle this issue, routing must take into account energy efficiency as well as capacity considerations; moreover, in rapidly-varying network environments, this must be accomplished in a real-time, distributed manner that remains robust in the presence of random disturbances and noise. In view of this, we derive a pricing scheme whose Nash equilibria coincide with the network's socially optimum states, and we propose a distributed learning method based on the Boltzmann distribution of statistical mechanics. Using tools from stochastic calculus, we show that the resulting Boltzmann routing scheme exhibits remarkable convergence properties under uncertainty: specifically, the long-term average of the network's power consumption converges within ε\varepsilon of its minimum value in time which is at most O~(1/ε2)\tilde O(1/\varepsilon^2), irrespective of the fluctuations' magnitude; additionally, if the network admits a strict, non-mixing optimum state, the algorithm converges to it - again, no matter the noise level. Our analysis is supplemented by extensive numerical simulations which show that Boltzmann routing can lead to a significant decrease in power consumption over basic, shortest-path routing schemes in realistic network conditions.Comment: 24 pages, 4 figure

    Price of Anarchy for Non-atomic Congestion Games with Stochastic Demands

    Get PDF
    We generalize the notions of user equilibrium and system optimum to non-atomic congestion games with stochastic demands. We establish upper bounds on the price of anarchy for three different settings of link cost functions and demand distributions, namely, (a) affine cost functions and general distributions, (b) polynomial cost functions and general positive-valued distributions, and (c) polynomial cost functions and the normal distributions. All the upper bounds are tight in some special cases, including the case of deterministic demands.Comment: 31 page
    corecore