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Price of Anarchy for Non-atomic Congestion Games

with Stochastic Demands

Chenlan Wang, Xuan Vinh Doan, Bo Chen∗

Warwick Business School & Centre for Discrete Mathematics and its Applications
(DIMAP), University of Warwick, CV4 7AL, UK

Abstract

We generalize the notions of user equilibrium, system optimum and price
of anarchy to non-atomic congestion games with stochastic demands. In this
generalized model, we extend the two bounding methods from Roughgarden
and Tardos (2004) and Correa et al. (2008) to bound the price of anarchy,
and compare the upper bounds we have obtained. Our results show that
the price of anarchy depends not only on the class of cost functions but also
demand distributions and, to some extent, the network topology. The upper
bounds are tight in some special cases, including the case of deterministic
demands.

Keywords: price of anarchy, user equilibrium, system optimum, stochastic
demand

1. Introduction

Non-atomic congestion games (Rosenthal, 1973; Schmeidler, 1973) illus-
trate non-cooperative situations involving large populations of players com-
peting for a finite set of resources. Routing problem in transportation net-
works (Wardrop, 1952; Beckmann et al., 1956) is a very important appli-
cation of non-atomic congestion games. The price of anarchy (PoA), first
introduced by Koutsoupias and Papadimitriou (1999) on a load-balancing
game, is one of the main measures of system degradation due to lack of coor-
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dination. In non-atomic congestion games, as studied by Roughgarden and
Tardos (2004), the PoA is the worst-case system performance at a user equi-
librium (UE) compared with the system performance at a system optimum
(SO), where a UE (Wardrop, 1952) is a steady state of travelers’ selfish rout-
ing while an SO represents an optimal usage of traffic resources as a result
of a well-coordinated collective action on the whole network.

Quantitative study on the PoA enables us to deem certain outcomes of
a game optimal or approximately optimal and to make known the factor in-
fluencing the inefficiency of the UE, and further contributes to mechanism
design for congestion games. Roughgarden and Tardos (2002, 2004) bounded
the PoA when the link cost functions are separable, semi-convex and differ-
entiable. The PoA was proved to be dependent only on the class of the cost
functions, independent of the network topology (Roughgarden, 2003). In
particular, the PoA with affine cost functions is tightly bounded by 4/3.

The main developments in the research on PoA were extensions to net-
works with a broader range of cost functions. Chau and Sim (2003) general-
ized Roughgarden and Tardos’ results to the cases with symmetric cost func-
tions. Correa et al. (2004, 2008) gave a geometric proof of the upper bound
of the PoA with cost functions that are non-convex, non-differentiable, and
even discontinuous. Perakis (2007) extended the work to asymmetric cost
functions and bounded the PoA by two parameters of asymmetry and non-
linearity. Sheffi (1985) introduced the notion of stochastic user equilibrium
(SUE), which describes the travelers’ selfish routing decisions on their sub-
jective perceived travel costs by involving stochastic cost functions. The PoA
on logit-based SUE was bounded by Guo et al. (2010) on the basis of Sheffi’s
model.

Another line of development in the PoA study is to improve the setting of
the traffic demand to better reflect reality. Chau and Sim (2003) presented
a weaker upper bound on the PoA with elastic demands. Although study on
the PoA with stochastic demands is still quite new, efforts have been spent
on modeling UE and SO involving demand uncertainty. It was assumed that
the objective of selfish travelers was to choose the path that minimizes the
mean travel cost (Sumalee and Xu, 2011) or weighted sum of the mean and
the variance of the travel cost (Sumalee and Xu, 2011; Bell and Cassir, 2002)
with risk-neutral and risk-averse travelers, respectively. A travel time budget
was also considered in the equilibrium condition on the basis of reliability
(Lo et al., 2006; Shao et al., 2006). However, to deduce the distributions of
the path and link flows, all of these studies relied on some assumptions, such
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as that all the path flows follow the same type of distribution as the demand
and have the same variance (or standard deviation) to mean ratio (Sumalee
and Xu, 2011; Shao et al., 2006; Zhou and Chen, 2008), and that all the path
flows are independent (Clark and Watling, 2005; Sumalee and Xu, 2011;
Shao et al., 2006; Zhou and Chen, 2008). Apparently, these assumptions are
open to questions for the relationship between the path flows and demands,
not only because of lack of empirical data support but also they violate
the demand feasibility constraint even in simple networks. In order to have
a better reliable result on the PoA, we need to relax the aforementioned
assumptions and establish a new equilibrium condition.

In this paper we present an analytical method to determine distributions
of path and link flows under given demand distributions and, from a practical
perspective, describe travelers’ behaviors by path choice probabilities. We
generalize the deterministic UE condition to a stochastic version with risk-
neutral travelers. For our generalized model we establish upper bounds on the
PoA, which are found to depend on cost functions and demand distributions.
These upper bounds are shown to be tight in some special cases, including
the case of deterministic demands.

The remainder of the paper is organized as follows. Section 2 introduces
generalized notions of user equilibrium (UE) and system optimum (SO) un-
der demand uncertainty, formulates the equilibrium condition as a variational
inequality problem and discusses existence and uniqueness of an equilibrium.
Section 3 extends to our stochastic model the two methods introduced re-
spectively by Roughgarden and Tardos (2004) and Correa et al. (2008) to
bound the PoA. We establish upper bounds on PoA with polynomial cost
functions and specific demand distributions, namely, general positive-valued
distributions and normal distributions. Section 4 discusses connections with
existing results in the literature and makes some concluding remarks.

2. The model with stochastic demands

2.1. Preliminaries and notation

Consider a general network G = (N,E), where N and E denote the set
of nodes and links, respectively. To each link e ∈ E, we associate a (link)
cost function ce(·) : R+ → R+, which is assumed to be nondecreasing in its
argument, the link flow. A subset of nodes form a set of origin-destination
(O-D) pairs, denoted by I. We call an O-D pair i ∈ I a commodity. Parallel
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links are allowed and a node can be in multiple O-D pairs. Denote Pi as the
set of all possible paths connecting an O-D pair i ∈ I.

Day-to-day variability of traffic demands is considered as the source of
uncertainty in this study. We assume that the demand distributions are
given and publicly known, which is based on the fact that a traveler, es-
pecially a commuter, has knowledge of the probabilities of possible demand
levels from his or her own experiences, although the actual current demand
level is unknowable. A similar assumption can be found in the model with
deterministic demands, which states that travelers have perfect knowledge of
the fixed demand in the network (Wardrop, 1952). The demands of different
O-D pairs are assumed to be independent. We adopt the following notation
in our study, where capital and lower-case letters are used to express random
variables and, if applicable, the corresponding mean values, respectively. For
convenience, we divide them into two groups: input and output. The input
information provided in the network is as follows.

D: vector of random traffic demands with component Di as the random
demand between O-D pair i ∈ I;

d: vector of mean traffic demands with component di > 0 as the mean
demand between O-D pair i ∈ I;

σ2
i : variance of Di, i ∈ I;
εi: coefficient of demand variation, i.e., εi = σi/di, i ∈ I;
ε: maximum coefficient of demand variation, i.e., ε = maxi∈I{εi};
ε: minimum coefficient of demand variation, i.e., ε = mini∈I{εi};

δik,e: link-path incidence indicator, which is 1 if link e is included in path
k ∈ Pi and 0 otherwise, e ∈ E, i ∈ I;

δie: link-commodity incidence indicator, i.e., δie = maxk∈Pi
δik,e, e ∈ E, i ∈

I;
ne: number of O-D pairs that use link e ∈ E in their paths, i.e., ne =∑

i∈I δ
i
e;

n: n = maxe∈E{ne}. Hence n ≤ |I|.

On parameter n defined above, we note that, if n = 1, then every link is
used by only a single O-D pair, which implies that the whole network can be
separated into |I| single-commodity sub-networks. Therefore, as far as our
problem is concerned for system stability and optimality (to be defined more
precisely in Sections 2.3 and 2.4), our problem is reduced to the problem
with a single commodity when n = 1.

After all travelers make their routing choices, the output in the network
is the resulting traffic flows.
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F i
k: random traffic flow on path k ∈ Pi, i ∈ I;
f ik: mean traffic flow on path k ∈ Pi, i ∈ I;
F: vector of random path flows, i.e., F = (F i

k : k ∈ Pi, i ∈ I);
f : vector of mean path flows, i.e., f = (f ik : k ∈ Pi, i ∈ I);
Ve: random traffic flow on link e ∈ E;
ve: mean traffic flow on link e ∈ E;
V: vector of random link flows, i.e., V = (Ve : e ∈ E);
v: vector of mean link flows, i.e., v = (ve : e ∈ E);

We denote any instance of a non-atomic congestion game by a triple
(G,D, c), where G is the underlying network, D and c are the vectors of
random demands and (link) cost functions, respectively.

2.2. Routing strategies

Under the deterministic setting, i.e., Di = di for all i ∈ I, the continuum
of players of each O-D pair i ∈ I is represented by the interval [0, di] endowed
with the Lebesgue measure. The set of mixed strategies of each player from
O-D pair i ∈ I is

Ωi =
{
pi = (pik ≥ 0 : k ∈ Pi) :

∑
k∈Pi

pik = 1
}
,

where pik is the probability that path k ∈ Pi is chosen. According to (Schmei-
dler, 1973), a strategy profile is a (Lebesgue) measurable function qi from
[0, di] to Ωi, i.e, for each player x ∈ [0, di], q

i(x) ∈ Ωi is his/her mixed strategy.
A strategy profile qi induces the vector f i of path flows, f i = (f ik : k ∈ Pi),
which is called an action distribution in (Roughgarden and Tardos, 2002), as
follows:

f ik =

∫ di

0

qik(x)dx, ∀ k ∈ Pi,

where qik(x) is the probability that path k ∈ Pi is chosen by the player x from
O-D pair i ∈ I. Clearly,

∑
k∈Pi

f ik = di since qi(x) ∈ Ωi for all x ∈ [0, di],
i ∈ I. (Roughgarden and Tardos, 2002) focused on flow assignments, i.e.,
action distributions, instead of strategy profiles with the argument that every
flow assignment can be induced by some strategy profile and the costs de-
pend only on the flow assignment of a strategy profile. Under the stochastic
setting, realized path flows depend on not only the chosen strategy profile
but also the realized demand. Therefore, it is necessary for us to work with
strategy profiles as primary variables instead of flow assignments. Given that
the demands are stochastic, it is reasonable to assume that all the players of
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a same O-D pair play the same strategy at an equilibrium in such an envi-
ronment with incomplete information (Myerson, 1998; Ashlagi et al., 2006).
Indeed it is unrealistic for a player to know the routing choices of all other
players or to distinguish players from a same O-D pair when the demand is
uncertain. According to (Myerson, 1998), players can only form perceptions
about how other players make routing decisions solely depending on the in-
formation of which O-D pairs these players belong to. Mathematically, we
assume that for any two different players x and x′ in the (random) interval
[0, Di] of the same O-D pair i ∈ I,

qik(x) = qik(x
′) = pik, ∀ k ∈ Pi,

where pi is some mixed strategy in Ωi. Under this assumption, each strategy
profile for players from O-D pair i ∈ I is now represented by a single mixed
strategy pi ∈ Ωi. Let Ω =

∏
i∈I Ωi. Then each vector p = (pi : i ∈ I) ∈ Ω

represents a strategy profile of players from all O-D pairs.
Now let us define random path flows and link flows for our stochastic

model. Given a strategy profile represented by p = (pi : i ∈ I) ∈ Ω, the
random path flows can be calculated as follows:

F i
k =

∫ Di

0

qik(x)dx =

∫ Di

0

pikdx = pik ·Di, ∀ k ∈ Pi, i ∈ I. (1)

Since pi ∈ Ωi, we have: ∑
k∈Pi

F i
k = Di, ∀ i ∈ I. (2)

It is clear that the flow on each link is the sum of flows on all the paths that
include the link:

Ve =
∑
i∈I

∑
k∈Pi

δik,eF
i
k, ∀ e ∈ E.

Applying (1), we obtain the following formulation for random link flows:

Ve =
∑
i∈I

pie ·Di, ∀ e ∈ E, (3)

where pie =
∑

k∈Pi
δik,ep

i
k is the (link) choice probability of link e ∈ E for the

players from i ∈ I.
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Given the link cost functions, the random path cost is simply the sum of
the costs of those links that constitute the path, i.e.,

cik(F) =
∑
e∈E

δik,ece(Ve), ∀ k ∈ Pi, ∀ i ∈ I. (4)

We can also compute the total (social) cost as follows:

C(F) =
∑
e∈E

ce(Ve)Ve. (5)

Remark 1. It is commonly assumed in the literature (Clark and Watling,
2005; Sumalee and Xu, 2011; Shao et al., 2006; Zhou and Chen, 2008) that
all path flows {F i

k : k ∈ Pi, i ∈ I} are independent, which apparently violates
the flow constraints (2). In our study, dependent path flows from a same O-D
pair are considered as they should be according to (2) and we only assume
that demands {Di : i ∈ I} are independent. From (1) we can see that the
path flows from different O-D pairs are independent, i.e., for any i, i′ ∈ I,
i 6= i′ and any k ∈ Pi, k′ ∈ Pi′ , path flows F i

k and F i′

k′ are independent of each
other.

2.3. Equilibrium under stochastic demands (UE-SD)

As discussed in the previous subsection, under stochastic traffic demands,
we assume that risk-neutral travelers between a same O-D pair will use
the same strategy at a steady state. We define our equilibrium condition
such that travelers cannot improve their expected travel costs by unilaterally
changing their routing choice strategies.

Definition 1 (UE-SD condition). Given a transportation game (G,D, c)
with stochastic demands, strategy profile p ∈ Ω is said to be a user equilib-
rium (UE-SD) if and only if

E[cik(F)] ≤ E[ci`(F)], ∀ k, ` ∈ Pi, i ∈ I with pik > 0. (6)

From the definition we see that, at any UE-SD, all the paths with positive
probabilities for the same O-D pair have the equal and minimum expected
travel cost. When all travelers play mixed strategies according to the UE-SD
condition, the expected travel costs are guaranteed to be at minimum. To
solve the equilibrium problem, let us reformulate the UE-SD condition as a
variational inequality (VI).
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Proposition 1. Given a transportation game (G,D, c) with stochastic de-
mands, let p̄ ∈ Ω be a strategy profile. Then p̄ is a UE-SD if and only if it
satisfies the following VI condition: for any strategy profile p ∈ Ω,

(f − f̄)TE
[
c(F̄)

]
≥ 0, (7)

where F̄ is the vector of path flows corresponding to p̄, and f̄ and f are,
respectively, the vector of the mean path flows corresponding to p̄ and p.

Proof. Taking the expectation in (1), we have f ik = pikdi. Since demand
di > 0 for every i ∈ I, we can write the UE-SD condition (6) as follows:

E[cik(F)] ≤ E[ci`(F)], ∀ k, ` ∈ Pi, i ∈ I with f ik > 0. (8)

Let πi = min`∈Pi
E[ci`(F)] for any i ∈ I, then (8) is equivalent to{
f ik(E[cik(F)]− πi) = 0,

f ik ≥ 0,
∀ k ∈ Pi, ∀ i ∈ I.

Let p̄, F̄ and f̄ be the vectors of path choice probabilities and the corre-
sponding path flows, mean path flows at a UE-SD, respectively. Then∑

i∈I

∑
k∈Pi

(f̄ ik)(E[cik(F̄)]− π̄i) = 0,

where π̄i = min`∈Pi
E[ci`(F̄)]. For any f = (f ik ≥ 0 : k ∈ Pi, i ∈ I), we also

have ∑
i∈I

∑
k∈Pi

f ik(E[cik(F̄)]− π̄i) ≥ 0.

Thus ∑
i∈I

∑
k∈Pi

(f̄ ik)(E[cik(F̄)]− π̄i) ≤
∑
i∈I

∑
k∈Pi

f ik(E[cik(F̄)]− π̄i). (9)

From condition (2) we have
∑

k∈Pi
f ik =

∑
k∈Pi

(f̄ ik) = di for every i ∈ I.
Hence ∑

i∈I

∑
k∈Pi

(f̄ ik)π̄i =
∑
i∈I

∑
k∈Pi

f ikπ̄i,

which together with (9) implies (7):∑
i∈I

∑
k∈Pi

(f̄ ik)E[cik(F̄)] ≤
∑
i∈I

∑
k∈Pi

f ikE[cik(F̄)].
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On the other hand, observe that as the first order optimality condition,
the solution of VI problem (7) also solves the following LP problem:

min fTE[c(F̄)]

s.t.
∑
k∈Pi

f ik = di, i ∈ I,

f ik ≥ 0, k ∈ Pi, i ∈ I,

the duality of which is

max λTd
s.t. λi ≤ E[cik(F̄)], k ∈ Pi, i ∈ I.

Therefore, we have the following complementary slackness conditions:

(E[cik(F̄)]− λi)f ik = 0, k ∈ Pi, i ∈ I,

which imply (6).

Remark 2. With equations (3) and (4) we can rewrite the VI condition
(7) in terms of link flows: p̄ ∈ Ω is a UE-SD if and only if it satisfies the
condition that, for any vector p ∈ Ω of path choice probabilities,∑

e∈E

(ve − v̄e)E[ce(V̄e)] ≥ 0, (10)

where V̄e is the link flow on link e ∈ E corresponding to p̄, and ve and v̄e are,
respectively, the mean link flows on link e ∈ E corresponding to p and p̄.

An equivalence between the UE-SD condition and a minimization prob-
lem can also be established if the link cost functions are affine, which is stated
in the following proposition.

Proposition 2. Given a transportation game (G,D, c) with stochastic de-
mands and affine cost functions, let p̄ ∈ Ω be a vector of path choice probabil-
ities. Then p̄ is a UE-SD if and only if it solves the following minimization
problem

min
p∈Ω

Z(p) ≡
∑
e∈E

∫ ve

0

ce(x)dx, (11)

where, as we recall, ve =
∑

i∈I
∑

k∈Pi
δik,ep

i
kdi.

9



Proof. We prove this proposition by verifying the equivalence between VI
problem (7) and minimization problem (11). Note that, since the link cost
function ce(x) is continuously differentiable and non-decreasing, function∫ ve

0
ce(x)dx is convex (with respect to ve) for any e ∈ E. Convexity is in-

variant under affine maps; therefore, the objective function Z(p) in (11) is
convex (with respect to p). In addition, feasible region Ω is convex and com-
pact. Thus minimization problem (11) is a convex optimization problem.
It is then necessary and sufficient for p̄ to satisfy the first order optimality
condition of (11) (Bertsekas, 1999, Proposition 2.1.2):

(p− p̄)T∇Z(p̄) ≥ 0. (12)

We have:

∂Z(p)

∂pik
=
∑
e∈E

ce(ve)
∂ve
∂pik

=
∑
e∈E

ce(ve)(δ
i
k,edi) = cik(f)di.

In addition, we have f̄ ik = p̄ikdi by taking the expectation in (1). Thus,
condition (12) is equivalent to

(f − f̄)Tc(̄f) ≥ 0,

which in turn is equivalent to (7) when the link cost functions are affine.

Proposition 2 establishes that the VI condition for a UE-SD is just a
restatement of the first order necessary and sufficient condition of a mini-
mization problem, if the cost functions c are affine. For general link cost
functions, we can rewrite condition (7) in the following form by substituting
f ik = pikdi and f̄ ik = p̄ikdi:

(p− p̄)TS(p̄) ≥ 0, p ∈ Ω, (13)

where S(p) is a vector with the same dimension as E[c(F)], obtained by
replacing element E[cik(F)] in vector E[c(F)] with E[cik(F)]di for every k ∈
Pi, i ∈ I. When link cost functions are continuous, the game admits at least
one UE-SD. This is due to the fact that existence of a solution p̄ ∈ Ω to VI
problem (13) is guaranteed by the continuity of S(p) and the compactness
of Ω.

Let us conclude this subsection with a discussion on non-uniqueness of
user equilibria in transportation games with stochastic demands. In deter-
ministic models, the user equilibrium is unique with respect to link flows
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under the assumption of separable and strictly increasing link cost functions
(Beckmann et al., 1956; Dafermos and Sparrow, 1969). As one link flow can
correspond to many path flows in general networks, the path flow of a deter-
ministic user equilibrium is not unique. In our stochastic model, path and
link flows are random and determined by path and link choice probabilities
respectively. The following example shows that multiple UE-SDs may ex-
ist even under the assumption of separable and strictly increasing link cost
functions.

Example 1. Consider the network in Figure 1. There are two O-D pairs in
the network, (s1, t) and (s2, t). Each O-D pair is connected by two paths,
paths 1 and 2 from s1 to t and paths 3 and 4 from s2 to t, where Path 1
consists of links 1 and 3, Path 2 of links 1 and 4, Path 3 of links 2 and 3,
and Path 4 of links 2 and 4. The cost function on each link is also indicated
in the figure.

t

s1

s2

c4(x) = x2

c3(x) = x2

c2(x) = x

c1(x) = x

Figure 1: Network with multiple UE-SDs

The demand D1 from s1 to t follows a distribution with a mean d1 = 1
and variance σ2

1 = 1, while the demand D2 from s2 to t follows a different
distribution with a mean d2 = 1 and variance σ2

2 = 4. Given the definition of
UE-SD, a feasible strategy profile is clearly a UE-SD when both paths from
each O-D pair have the same expected travel cost, i.e., when{

E[c1(V1)] + E[c3(V3)] = E[c1(V1)] + E[c4(V4)],

E[c2(V2)] + E[c3(V3)] = E[c2(V2)] + E[c4(V4)],

which are equivalent to

E[c3(V3)] = E[c4(V4)]. (14)
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Based on condition (14), we can find many UE-SDs. Here we present two
of them for comparison: p̄1 = (1, 0, 0.25, 0.75) and p̄2 = (0.5, 0.5, 0.5, 0.5).
From (3) we can calculate means and variances of link flows and expected
link costs for each of the two strategy profiles as shown in Table 1, from which
satisfaction of condition (14) at each strategy profile confirms that they are
both UE-SDs.

At p̄1 ve Var[Ve] E[ce(Ve)] At p̄2 ve Var[Ve] E[ce(Ve)]

Link 1 1 1 1 Link 1 1 1 1
Link 2 1 4 1 Link 2 1 4 1
Link 3 1.25 1.25 2.8125 Link 3 1 1.25 2.25
Link 4 0.75 2.25 2.8125 Link 4 1 1.25 2.25

Table 1: Means and variances of link flows, expected link costs at p̄1 = (1, 0, 0.25, 0.75)
and p̄2 = (0.25, 0.25, 0.25, 0.25)

It is easy to see that at the two UE-SDs the mean link flows on links 3
and 4 are different and the link choice probabilities are also different. For
example, the choice probability of link 3 is 1 for travelers from s1 to t and 0.25
from s2 to t in the first UE-SD, while it becomes 0.5 for both O-D pairs in
the second UE-SD. Furthermore, in terms of the expected total cost E[C(F)]
(see definition (5)), they are also different at the two UE-SDs as shown in
the following calculations (assuming that E[D3

i ] is finite for i = 1, 2), where
F̄1 and F̄2 are path flows resulted from p̄1 and p̄2, respectively:

E[C(F̄1)] = E[V 2
1 ] + E[V 2

2 ] + E[V 3
3 ] + E[V 3

4 ]

= E[D2
1] + E[D2

2] + E[(p1D1 + p3D2)3] + E[(p2D1 + p4D2)3]

= 9.4375 + E[D3
1] + 0.4375 E[D3

2],

E[C(F̄2)] = E[V 2
1 ] + E[V 2

2 ] + E[V 3
3 ] + E[V 3

4 ]

= 12.25 + 0.25E[D3
1] + 0.25 E[D3

2].

Clearly, E[C(F̄1)] 6= E[C(F̄2)] when E[D3
1] + 0.25 E[D3

2] 6= 3.75. �

Example 1 shows that multiple UE-SDs with different mean link flows,
link choice probabilities, and expected total costs can exist. If cost func-
tions are further restricted to being affine, as addressed in Proposition 2, the
UE-SD condition can be reformulated as a minimization problem, which is
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actually in the same form as deterministic user equilibrium condition (Beck-
mann et al., 1956) with respect to mean link flows. Thus under the same
condition of separable and strictly increasing cost functions, the mean link
flows of UE-SD are unique. However, link choice probabilities and expected
total cost are still non-unique in general, which can be shown by modifying
Example 1 with all settings remaining the same except that all link cost
functions are affine, ce(x) = x for all e = 1, . . . , 4.

By solving the minimization problem (11), a strategy profile is a UE-SD
if and only if v1 = v2 = v3 = v4 = 1, which can be expressed as follows:

p1 + p2 = p3 + p4 = p1 + p3 = p2 + p4 = 1.

We can find multiple UE-SD strategy profiles from this system of equations,
such as (1, 0, 0, 1) and (0.5, 0.5, 0.5, 0.5). The choice probability of link 3 is
1 from s1 to t and 0 from s2 to t in the former UE-SD, while both become
0.5 in the latter UE-SD. The expected total cost in the whole network can
be calculated as 14 and 11.5 for the two UE-SDs respectively.

2.4. System optimum under stochastic demand (SO-SD)

At a system optimum (SO-SD), traffic is coordinated by a central au-
thority according to mixed strategies. It should be noted in the case of
coordination that traffic is assigned according to path choice probabilities
rather than by traffic proportions. This is due to the fact that demand is
cumulative over the time period concerned, while traffic allocation needs to
be made once a traffic flow arrives at a route entrance. The central authority
has to implement traffic coordination without full knowledge of the actual
demand. The objective of the coordinator is to minimize the expectation of
the total travel cost at an SO-SD. This gives rise to our following definition.

Definition 2 (SO-SD condition). Given a transportation game (G,D, c)
with stochastic demands, a vector p ∈ Ω of path choice probabilities is said
to be an SO-SD strategy if it solves the following minimization problem:

min
p∈Ω

T (p) ≡ E [C(F)] = E

[∑
e∈E

ce(Ve)Ve

]
, (15)

where Ve is computed from p according to (3).

Generally, an SO-SD may not be unique as the optimization problem (15)
may have more than one optimal solution, all of which, however, must yield
the same expected total cost in the whole network.

13



3. Price of anarchy

In this section we investigate the price of anarchy (PoA) to be defined
below based on the model presented in the preceding section with the ex-
pected total cost T (·) defined in the network by (15) as the social (system)
objective function. Given a transportation game (G,D, c) with stochastic
demands, the corresponding PoA is defined as the worst-case ratio between
expected total costs at a UE-SD and at an SO-SD:

PoA(G,D, c) := max

{
T (p)

T (q)
: p,q ∈ Ω,p is a UE-SD and q is an SO-SD

}
.

Here and in the remainder of the paper, it is understood that the correspond-
ing ratio is infinity whenever the denominator is zero.

Let I be any given set of instances (G,D, c) of transportation games with
stochastic demands, then the PoA with respect to I is defined as

PoA(I) := max
(G,D,c)∈I

PoA(G,D, c).

Note that even for deterministic demands (i.e., D is particularly determin-
istic), the PoA is already unbounded if the link cost functions c are unre-
stricted (Roughgarden and Tardos, 2002). In this paper, we will establish
upper bounds on the PoA for a fixed set Cm of link cost functions, the class of
polynomial cost functions with degree at most m. For deterministic models,
the tight upper bound of the PoA is proved to be (1−m(m+ 1)−(m+1)/m)−1

for the class Cm of link cost functions. Roughgarden and Tardos (2004) first
proved the result by using the fact that the link cost functions are semi-
convex and differentiable. Correa et al. (2008) extended the work of Rough-
garden and Tardos (2004) by removing the assumption of semi-convex and
differentiable cost functions, and bounded the PoA by a geometric method,
which resulted in the same tight upper bound for polynomial cost functions.
For convenience of comparison in the paper, we refer these two bounding
techniques as convexity and geometry method, respectively. We extend both
methods to our stochastic model.

3.1. Price of anarchy under general stochastic demands

Both convexity and geometry method we mentioned above for determinis-
tic models require general bounds on the total cost function

∑
e∈E ce(ve)ve. In

our stochastic model, the expected total cost function is E
[∑

e∈E ce(Ve)Ve
]
,

14



which in general is not solely a function of the mean link flows ve, e ∈ E. In
order to extend the bounding techniques to our stochastic model, we make
the following general assumption. Denote by C(I) the class of all link cost
functions {ce(·) : e ∈ E} used in game instances (G,D, c) ∈ I.

Assumption 1. For each link cost function ce(·) ∈ C(I), there exist non-
decreasing functions se(·), se(·), te(·), te(·): R+ → R+, such that se(0) =
se(0) = 0 and te(0) = te(0) = ce(0); and for any random link flows Ve
(e ∈ E) as defined in (3) with ve > 0,

0 < se(ve) ≤ E[ce(Ve)Ve] ≤ se(ve), (16)

0 < te(ve) ≤ E[ce(Ve)] ≤ te(ve). (17)

Note that when ve = 0, we can derive Ve = 0 from (3) and the fact that
di > 0, i ∈ I. Hence with E[ce(Ve)] = ce(0) and E[ce(Ve)Ve] = 0, we can still
use se(·), se(·) te(·) and te(·) to bound E[ce(Ve)Ve] and E[ce(Ve)] when ve = 0.

The above assumption is satisfied under some mild conditions, which we
will discuss in detail later. Based on Correa et al. (2008), we make the
following definitions.

Definition 3. Under Assumption 1, for each link cost function ce(·) ∈ C(I),
define

β(ce, I) = sup
x≥0, y>0

x (te(y)− te(x))

y te(y)
,

and
β(I) = sup

c∈C(I)

β(c, I).

Note that particularly when demands are deterministic, we can choose
te(·) = te(·) = ce(·) and obtain

β(ce, I) = sup
x≥0, y>0

x (ce(y)− ce(x))

y ce(y)
= sup

y>x≥0

x (ce(y)− ce(x))

y ce(y)
,

which is proved geometrically to be less than 1 in (Correa et al., 2008).
However with stochastic demands, we can no longer guarantee that β(I)
in Definition 3 is always less than 1. The supremum in the definition of
β(ce, I) can be attained under the condition x > y. We demonstrate this
point later in our study of the PoA. We now use Figure 2 to show how
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(x (te(y)− te(x)))/(y te(y)) can be interpreted geometrically under both con-
ditions, x ≥ y and x < y. As shown in panel (a), when x ≤ y, the shaded
rectangle of area x (te(y) − te(x)) is within the big rectangle of area y te(y).
However, in panel (b), the shaded rectangle of area x (te(y) − te(x)) is not
completely within the dotted rectangle of area y te(y) due to the possibility
that te(y) > te(x), which implies β(ce, I) could be more than 1. It shows
that the geometric meaning of this ratio is not as clear as its counterpart in
the deterministic setting. However, we still use the word “geometry” to refer
to the bounding technique motivated from (Correa et al., 2008) to indicate
the significance of the motivating work.

0

t(·)

t(·)

te(x)

te(y)

x y

(a) x ≤ y
0

t(·)

t(·)

te(x)

te(y)

y x

(b) x > y

Figure 2: Geometric interpretation of
x (te(y)− te(x))

y te(y)
in the definition of β(ce, I)

Definition 4. Under Assumption 1, for each link cost function ce(·) ∈ C(I),
define for each e ∈ E functions φe(·) and ηe(·) : R+ → R+ as follows:

φe(x) =
x te(x)

se(x)
, ηe(x) =

x te(x)

se(x)
.

Let
α(ce, I) = inf

x>0
φe(x), α(ce, I) = sup

x>0
ηe(x),

and
α(I) = inf

c∈C(I)
α(c, I), α(I) = sup

c∈C(I)

α(c, I).
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Now we are ready to show our first bound by the geometry method.

Proposition 3. [General geometry bound] Let (G,D, c) ∈ I be any game
instance. Under Assumption 1, if β(I) < 1, then

PoA(G,D, c) ≤ (1− β(I))−1 · α(I)

α(I)
.

Proof. Let p̄ be a UE-SD with V̄, v̄ as the corresponding link flows and mean
link flows. Let p∗ be an SO-SD with V∗,v∗ as the corresponding link flows
and mean link flows. Given that d > 0, we have v̄, v∗ ≥ 0. From UE-SD
condition (10), we have

∑
e∈E

v̄eE[ce(V̄e)] ≤
∑
e∈E

v∗eE[ce(V̄e)]

=
∑
e∈E

v∗eE[ce(V
∗
e )] +

∑
e∈E

v∗e
(
E
[
ce(V̄e)

]
− E [ce(V

∗
e )]
)
,

which can be rearranged as

(1−R)
∑
e∈E

v̄eE
[
ce(V̄e)

]
≤
∑
e∈E

v∗eE [ce(V
∗
e )] ,

where, with {e ∈ E : v̄e > 0} 6= ∅,

R =

∑
e∈E

v∗e
(
E
[
ce(V̄e)

]
− E [ce(V

∗
e )]
)

∑
e∈E

v̄eE
[
ce(V̄e)

]
≤

∑
e∈E:v̄e>0

v∗e
(
E
[
ce(V̄e)

]
− E [ce(V

∗
e )]
)

∑
e∈E:v̄e>0

v̄eE
[
ce(V̄e)

]
≤ max

e∈E:v̄e>0

v∗e
(
E
[
ce(V̄e)

]
− E [ce(V

∗
e )]
)

v̄eE
[
ce(V̄e)

] .

The first inequality above is due to v∗e
(
E
[
ce(V̄e)

]
− E [ce(V

∗
e )]
)
≤ 0 when

v̄e = 0 as can be seen from the facts that V̄e = 0 when v̄e = 0 and te(·) is
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non-decreasing (Assumption 1). Now we have:

R ≤ max
e∈E:v̄e>0

{
v∗e
v̄e
− v∗eE[ce(V

∗
e )]

v̄eE
[
ce(V̄e)

]} ≤ max
e∈E:v̄e>0

{
v∗e
v̄e
− v∗ete(v

∗
e)

v̄ete(v̄e)

}
= max

e∈E:v̄e>0

v∗e
(
te(v̄e)− te(v∗e)

)
v̄ete(v̄e)

≤ β(I).

Hence
(1− β(I))

∑
e∈E

v̄eE
[
ce(V̄e)

]
≤
∑
e∈E

v∗eE [ce(V
∗
e )] . (18)

We have

T (p̄)

T (p∗)
=

∑
e∈E

E[ce(V̄e)V̄e]∑
e∈E

E[ce(V ∗e )V ∗e ]
= R1 ·R2

−1 ·R3,

where

R1 =

∑
e∈E

v̄eE
[
ce(V̄e)

]
∑
e∈E

v∗eE [ce(V ∗e )]
≤ (1− β(I))−1 ,

according to inequality (18), and

R2 =

∑
e∈E

v̄eE[ce(V̄e)]∑
e∈E

E[ce(V̄e)V̄e]
=

∑
e∈E:v̄e>0

v̄eE[ce(V̄e)]∑
e∈E:v̄e>0

E[ce(V̄e)V̄e]

≥ min
e∈E:v̄e>0

v̄eE[ce(V̄e)]

E[ce(V̄e)V̄e]
≥ α(I), (19)

R3 =

∑
e∈E

v∗eE[ce(V
∗
e )]∑

e∈E
E[ce(V ∗e )V ∗e ]

=

∑
e∈E:v∗e>0

v∗eE[ce(V
∗
e )]∑

e∈E:v∗e>0

E[ce(V ∗e )V ∗e ]

≤ max
e∈E:v∗e>0

v∗eE[ce(V
∗
e )]

E[ce(V ∗e )V ∗e ]
≤ α(I). (20)

The second equations in (19) and (20) hold because V̄e = 0 and V ∗e = 0 when
v̄e = 0 and v∗e = 0, respectively. Therefore,

T (p̄)

T (p∗)
≤ (1− β(I))−1 · α(I)

α(I)
,

for any pair p̄,p∗ ∈ Ω of a UE-SD and an SO-SD.
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In considering polynomial link cost functions, Roughgarden and Tardos
(2004) used the fact that link cost functions are differentiable and semi-
convex in their bounding techniques (or more exactly, the convexity of the
function x ce(x)). In extending their method to our stochastic model, we
make the following assumption, which we will show later is satisfied for poly-
nomial link cost functions.

Assumption 2. For each link cost function ce(·) ∈ C(I), the function se(·)
in Assumption 1 is convex and differentiable. In addition, there exists a
function λe(·) : R+ → R+ such that s′e(λe(x)x) = te(x) for all x ≥ 0, where
s′e(·) is the derivative of se(·).

Definition 5. Under Assumptions 1 and 2, for each link cost function ce(·) ∈
C(I), define for e ∈ E functions ψe(·) and µe(·) : R+ → R+ as follows:

ψe(x) =
x te(x)

se(x)
, µe(x) =

se(λe(x)x)

se(x)
.

Using φe(·) defined in Definition 4 in addition to ψe(·) and µe(·), we define

γ(ce, I) = inf
x>0
{µe(x) + φe(x)− ψe(x)λe(x)} ,

Let
γ(I) = inf

c∈C(I)
γ(c, I).

Now let us present a bound by the convexity method in the following
proposition.

Proposition 4. [General convexity bound] Let (G,D, c) ∈ I be any game
instance. Under Assumptions 1 and 2, if γ(I) > 0, then

PoA(G,D, c) ≤ 1

γ(I)
.

Proof. Let p̄ and p∗ ∈ Ω be respectively a UE-SD and an SO-SD, with
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v̄,v∗ ≥ 0 as the corresponding mean link flows. Then

T (p∗) =
∑
e∈E

E [ce(V
∗
e )V ∗e ] ≥

∑
e∈E

se(v
∗
e)

≥
∑
e∈E

(se(λe(v̄e)v̄e) + (v∗e − λe(v̄e)v̄e)s′e(λe(v̄e)v̄e))

=
∑
e∈E

(
se(λe(v̄e)v̄e) + (v∗e − λe(v̄e)v̄e)te(v̄e)

)
=
∑
e∈E

(
se(λe(v̄e)v̄e) + v∗ete(v̄e)− λe(v̄e)v̄ete(v̄e)

)
,

where the first inequality follows from (16), and the second last equation
follows from Assumption 2.

Applying UE-SD condition (10) and inequalities (17) in the last line above
leads to

T (p∗) ≥
∑
e∈E

(
se(λe(v̄e)v̄e) + v̄ete(v̄e)− λe(v̄e)v̄ete(v̄e)

)
=

∑
e∈E:v̄e>0

(
se(λe(v̄e)v̄e) + v̄ete(v̄e)− λe(v̄e)v̄ete(v̄e)

)
=

∑
e∈E:v̄e>0

(µe(v̄e) + φe(v̄e)− ψe(v̄e)λe(v̄e)) se(v̄e)

≥ γ(I)
∑

e∈E:v̄e>0

se(v̄e) = γ(I)
∑
e∈E

se(v̄e) ≥ γ(I)T (p̄).

where the first equation follows from se(0) = 0 (Assumption 1) and the
second equation follows from Definitions 4 and 5. Given that γ(I) > 0, we
have

T (p̄)

T (p∗)
≤ 1

γ(I)
,

for any pairs p̄,p∗ ∈ Ω of a UE-SD and an SO-SD.

Remark 3. When demands are deterministic, Propositions 3 and 4 yield the
PoA bounds in Correa et al. (2008) and Roughgarden and Tardos (2004),
respectively, by choosing se(ve) = se(ve) = ce(ve)ve and te(ve) = te(ve) =
ce(ve) for e ∈ E, which implies α(ce, I) = α(ce, I) = 1. As we have mentioned
before, β(ce, I) < 1 always holds for nondecreasing cost functions according
to Correa et al. (2008). Similarly, condition γ(ce, I) > 0 is satisfied since

µe(x) + φe(x)− ψe(x)λe(x) = µe(x) + 1− λe(x) > 0,
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due to the fact that µe(x) > 0 and λe(x) ≤ 1 for x > 0 for nonzero cost
functions (see Roughgarden and Tardos (2004) for details).

3.2. Price of anarchy with polynomial cost functions

As mentioned previously, for deterministic models, both convexity and
geometry method lead to the same PoA upper bound with polynomial link
cost functions. For our stochastic model, this is no longer true. After es-
tablishing two general PoA upper bounds in this subsection, we will show
respectively in the next two subsections that for polynomial link cost func-
tions, the geometry bound on the PoA is better (but not tight) in general,
while the convexity bound is better and indeed tight in some special cases.

We consider the set Im of game instances for any fixed m ∈ Z+ (m ≥ 1)
with (non-zero) polynomial link cost functions in the form of

ce(x) =
m∑
j=0

bejx
j, bej ≥ 0, j = 0, 1, . . . ,m and

m∑
j=0

bej > 0; e ∈ E.

In other words, C(Im) = Cm, the set of (non-zero) polynomial functions with

nonnegative coefficients and degree at most m. Let C̃m be the subset of Cm
consisting of only one term, namely C̃m = ∪0≤j≤mC̃jm, where C̃jm = {bxj : b >

0} for all j = 0, 1, . . . ,m. Let Ĩm be the subset of game instances in Im with

link cost functions in C̃m. The following lemma shows we can focus on the
subset Ĩm when bounding the PoA for instances in Im.

Lemma 5. For any instance (G,D, c) ∈ Im, we have

PoA(G,D, c) ≤ PoA(Ĩm).

Proof. Any instance (G,D, c) ∈ Im can be transformed into an equivalent

instance with link cost functions in C̃m by replacing any link e ∈ E of cost
ce(x) =

∑m
j=0 bejx

j with a directed path consisting of no more than m + 1

links of costs c̃e,j(x) = bejx
j (0 ≤ j ≤ m) such that bej > 0. This equivalent

instance clearly belongs to Ĩm. The result then follows immediately.

A similar lemma can be found in (Roughgarden, 2005) for calculating the
anarchy value of polynomial cost functions in deterministic models.

We now consider monomial link cost functions in C̃m. Given link cost
function ce(·) ∈ C̃jm, i.e., ce(x) = bejx

j with bej > 0 for a fixed j ≤ m, we
have:

E [ce(Ve)Ve] = bejE
[
V j+1
e

]
.
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If j = 0, then E [ce(Ve)Ve] = bejve, which is a function of the mean link
flow ve. For j ≥ 1, in order to compute E [ce(Ve)Ve], we need the moment
E [V j+1

e ] of Ve to be finite. Given that Ve =
∑

i∈I p
i
e · Di and {Di : i ∈ I}

are independent, we then need the first j + 1 moments of Di to be finite.
In addition, in order to construct functions se(·), se(·), te(·), and te(·) in
Assumption 1, we make the following assumption.

Assumption 3. The first m + 1 moments of random demands Di (i ∈ I)
are all finite and positive. In addition, for j = 2, . . . ,m + 1, there exist
0 < lj ≤ hj such that

0 ≤ ljv
j
e ≤ E

[
V j
e

]
≤ hjv

j
e, ∀ e ∈ E.

Positivity of moments is satisfied in general if we consider positive-valued
demand distributions, which is reasonable to assume. We also consider nor-
mal distributions later since they are widely used in the literature to simulate
traffic demands, especially the ones with large (positive) means or relatively
small variances, although negative tails are contained (Clark and Watling,
2005; Asakura and Kashiwadani, 1991). Positivity of higher moments for
normal distributions is again satisfied easily under the assumption of posi-
tive means. With respect to the parameters lj and hj, for consistency we
define l0 = h0 = l1 = h1 = 1 since E [V j

e ] = vje for j = 0, 1. We will show
later how to compute lj and hj for j > 1 for both positive-valued demand
distributions and normal distributions (with positive means).

Under Assumption 3, we can now show that there exist functions se(·),
se(·), te(·), te(·), and λe(·) with which both Assumptions 1 and 2 are satisfied
for monomial link cost functions.

Definition 6. For a fixed j (0 ≤ j ≤ m), let ce(·) ∈ C̃jm. Let{
te(x) = hjbejx

j,
te(x) = ljbejx

j,

{
se(x) = hj+1bejx

j+1,
se(x) = lj+1bejx

j+1,

where hj and lj are taken from Assumption 3. In addition, let

λe(x) =


(

hj
(j + 1)lj+1

)1/j

, j > 0,

1, j = 0.
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With the functions defined in Definition 6, it is easy to show that As-
sumption 1 is satisfied. As for Assumption 2, it is indeed that se(·) is convex
and differentiable. We can also check easily that s′e(λe(x)x) = te(x) for all
x ≥ 0. We are now ready to compute all necessary parameters to provide
specific upper bounds on the PoA.

Lemma 6. Under Assumption 3, we have

α(Ĩm) = min
0≤j≤m

lj
hj+1

, α(Ĩm) = max
0≤j≤m

hj
lj+1

, (21)

β(Ĩm) = max
1≤j≤m

{
j

j + 1
·
(

hj
(j + 1)lj

)1/j
}
, (22)

γ(Ĩm) = min
1≤j≤m

{
lj
hj+1

− j

j + 1
· hj
hj+1

·
(

hj
(j + 1)lj+1

)1/j
}
. (23)

Proof. We have

φe(x) =
x te(x)

se(x)
=

lj
hj+1

, ηe(x) =
x te(x)

se(x)
=

hj
lj+1

.

Hence

α(ce, Ĩm) =
lj
hj+1

, α(ce, Ĩm) =
hj
lj+1

.

Since C(Ĩm) = C̃m = ∪0≤j≤mC̃jm, we have

α(Ĩm) = min
0≤j≤m

inf
c∈C̃jm

α(c, Ĩm) = min
0≤j≤m

lj
hj+1

,

α(Ĩm) = max
0≤j≤m

sup
c∈C̃jm

α(c, Ĩm) = max
0≤j≤m

hj
lj+1

.

For parameter β(ce, Ĩm), we have

x (te(y)− te(x))

y te(y)
=
x

y

(
1− lj

hj

(
x

y

)j)
≡ fj(z),

where z = x/y, which implies that

β(Ĩm) = max
0≤j≤m

sup
c∈C̃jm

β(c, Ĩm) = max
0≤j≤m

sup
z>0

fj(z).
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For 1 ≤ j ≤ m, elementary calculus gives

sup
z>0

fj(z) =
j

j + 1
·
(

hj
(j + 1)lj

)1/j

,

which together with the fact that f0(·) ≡ 0 implies equation (22).

We now consider γ(ce, Ĩm). If j = 0, we have: λe(x) = µe(x) = 1 =

φe(x) = ηe(x). Thus we have γ(ce, Ĩm) = 1 for ce(·) ∈ C̃0
m. When j > 0 we

have

λe(x) =

(
hj

(j + 1)lj+1

)1/j

.

Thus

µe(x) =
se(λe(x)x)

se(x)
=

lj+1

hj+1

(
hj

(j + 1)lj+1

)1/j+1

.

Similar to φe(·) and ηe(·), we have ψe(x) = hj/hj+1. All three functions,
λe(·), µe(·), and ψe(·) are constants, leading to the following:

γ(ce, Ĩm) = µe(x) + φe(x)− ψe(x)λe(x)

=
lj+1

hj+1

(
hj

(j + 1)lj+1

)1/j+1

+
lj
hj+1

− hj
hj+1

(
hj

(j + 1)lj+1

)1/j

=
lj
hj+1

− j

j + 1
· hj
hj+1

·
(

hj
(j + 1)lj+1

)1/j

.

Since specifically for j = 1, we have l1/h2 = 1/h2 ≤ 1, which implies

γ(ce, Ĩm) ≤ 1 for ce(·) ∈ C̃1
m, according to the definition of γ(Ĩm), we ob-

tain equation (23).

In the following two theorems we present specific geometry and convexity
bound on the PoA by applying Proposition 3 and 4 to game instances in Im.

Theorem 7. [Geometry upper bound] Let (G,D, c) ∈ Im. Under Assump-
tion 3, if

hj
lj
<

(j + 1)j+1

jj
, ∀ j = 1, . . . ,m, (24)

then

PoA(G,D, c) ≤

(
1− max

1≤j≤m

{
j

j + 1
·
(

hj
(j + 1)lj

)1/j
})−1

·
max

0≤j≤m
hj/lj+1

min
0≤j≤m

lj/hj+1

.

24



Proof. The proof of the theorem is straightforward by applying Proposition 3
for Ĩm combined with Lemma 6. Note that Assumption 1 is satisfied for
functions defined in Definition 6 under Assumption 3. Lemma 5 is then used
to bound the PoA for game instances in Im.

Theorem 8. [Convexity upper bound] Let (G,D, c) ∈ Im. Under Assump-
tion 3, if

hj
lj+1

(
hj
lj

)j
<

(j + 1)j+1

jj
, ∀ j = 1, . . . ,m, (25)

then

PoA(G,D, c) ≤ max
1≤j≤m

(
lj
hj+1

− j

j + 1
· hj
hj+1

·
(

hj
(j + 1)lj+1

)1/j
)−1

.

Remark 4. Theorems 7 and 8 both generalize the PoA bounds provided by
Roughgarden and Tardos (2002, 2004) and Correa et al. (2008) for determin-
istic models.

When the traffic demands return to being deterministic, we can choose
lj = hj = 1 for all integer j ≤ m+ 1, so that Assumption 3 is satisfied. Both
conditions (24) and (25) clearly hold since (j + 1)j+1/jj > 1 for 1 ≤ j ≤ m.

Both the geometry and convexity bound become
(
1−m(m+ 1)−(m+1)/m

)−1
,

which matches the tight upper bound of the PoA in deterministic models.
On the other hand, unlike in deterministic models, conditions (24) and

(25) are necessary for our stochastic model. It is due to the fact that param-
eters we use to bound the PoA in our stochastic model now depend on not
only the cost functions but also demand distributions and to some extent,
the network structure. Both conditions are constructed based on functional
approximations of E [ce(Ve)] and E [ce(Ve)Ve]. In general it is difficult to
determine what set I of instances of transportation games with stochastic
demands for which these conditions are always satisfied. However, we will
derive these two conditions in the next subsection with specific demand dis-
tributions.

3.3. Price of anarchy under specific demand distributions

3.3.1. General positive-valued demand distributions

It is natural to consider general positive-valued distributions for demands
{Di : i ∈ I}. It was clear that we need to assume the finiteness of the first
m+ 1 moments of Di (i ∈ I) when considering game instances in Im. These
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moments are non-negative when demands follow positive-valued distribu-
tions. Let

θ
(j)
i =

E[Dj
i ]

dji
> 0, ∀ i ∈ I, ∀ j = 0, 1, . . . ,m+ 1. (26)

Lemma 9. For any s, t ∈ Z+ and any i ∈ I,

θ
(s+t)
i ≥ θ

(s)
i · θ

(t)
i . (27)

Proof. We have

E[Ds+t
i ] = E[Ds

iD
t
i ] = E[Ds

i ] · E[Dt
i ] + Cov(Ds

i , D
t
i), i ∈ I.

Since Di is a positive random variable, Cov(Ds
i , D

t
i) ≥ 0 (see, e.g., Schmidt

(2014)). Thus
E[Ds+t

i ] ≥ E[Ds
i ] · E[Dt

i ], ∀ i ∈ I,
which leads to

E
[
Ds+t
i

]
E[Di]s+t

≥ E[Ds
i ]

E[Di]s
· E[Dt

i ]

E[Di]t
, ∀ i ∈ I.

We then have θ
(s+t)
i ≥ θ

(s)
i · θ

(t)
i for all i ∈ I.

We will need Minkowski’s inequality, which is stated in the following
lemma.

Lemma 10 (Minkowski’s Inequality). Let X and Y be random variables.
Then for 1 ≤ q <∞,

(E[|X + Y |q])1/q ≤ (E[|X|q])1/q + (E[|Y |q])1/q .

Denote θ
(j)

= maxi∈I{θ(j)
i } for j = 0, 1, . . . ,m. The following lemma

shows positive-valued distributions do satisfy Assumption 3 with hj = θ
(j)

and lj = 1 for j = 2, . . . ,m + 1. Note that for j = 0, 1, we also have

lj = hj = θ
(j)

= 1.

Lemma 11. For any transportation game (G,D, c) in which random de-
mands {Di : i ∈ I} follow positive-valued distributions, the moments of link
flows can be bounded as follows:

0 ≤ vje ≤ E[V j
e ] ≤ θ

(j)
vje, ∀ j = 2, . . . ,m+ 1, e ∈ E.
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Proof. According to (3), Ve is a non-negative random variable since {Di : i ∈
I} follow positive-valued distributions. Due to the convexity of xj on [0,∞)
for j ≥ 2, the middle inequality follows directly from Jensen’s inequality. For
the last inequality in the lemma, we have

(
E[V j

e ]
)1/j

=

E

(∑
i∈I

δiep
i
eDi

)j
1/j

≤
∑
i∈I

δie

(
E
[(
pieDi

)j])1/j

=
∑
i∈I

δiep
i
e

(
E[Dj

i ]
)1/j

=
∑
i∈I

δiep
i
edi

(
θ

(j)
i

)1/j

≤
(
θ

(j)
)1/j

ve,

where the first inequality follows Minkowski’s inequality. We then have

E[V j
e ] ≤ θ

(j)
vje, ∀ e ∈ E,

which completes our proof.

Substituting hj = θ
(j)

and lj = 1 for j = 0, 1, . . . ,m in Theorem 7, we
obtain the following specific geometry bound on the PoA.

Proposition 12. Let (G,D, c) ∈ Im. If {Di : i ∈ I} follow positive-valued
distributions with finite first m+ 1 moments and

θ
(j)
<

(j + 1)j+1

jj
, ∀ j = 1, . . .m, (28)

then

PoA(G,D, c) ≤ max
1≤j≤m

1− j

j + 1
·

(
θ

(j)

j + 1

)1/j
−1

· θ(m)
θ

(m+1)
.

Proof. We only need to show that α(Ĩm) = 1/θ
(m+1)

and α(Ĩm) = θ
(m)

. By

setting s = t + 1 in (27), it is easy to prove that θ
(j)

is nondecreasing in j.
Then

α(Ĩm) = min
0≤j≤m

1

θ
(j+1)

=
1

θ
(m+1)

,

α(Ĩm) = max
0≤j≤m

θ
(j)

= θ
(m)
.
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Similarly, we can substitute hj = θ
(j)

and lj = 1 for j = 0, 1, . . . ,m in
Theorem 8 to obtain the following specific convexity bound on the PoA.

Proposition 13. Let (G,D, c) ∈ Im. If {Di : i ∈ I} follow positive-valued
distributions with finite first m+ 1 moments and

θ
(m)

<
m+ 1

mm/(m+1)
, (29)

then

PoA(G,D, c) ≤ max
1≤j≤m

 1

θ
(j+1)

− j

j + 1
· θ

(j)

θ
(j+1)

·

(
θ

(j)

j + 1

)1/j
−1

.

Remark 5. Since (j + 1)/jj/(j+1) is decreasing in j, condition (29) implies
condition (28) for m ≥ 1. When m = 1 both conditions are always satisfied
and we will discuss this special case in Section 3.4. So let us consider the
two conditions for m = 2, 3, 4, as the highest power of a link cost function
is seldom greater than 4 in practice (Clark and Watling, 2005; Sumalee and
Xu, 2011). Table 2 shows applicable ranges of moments up to degree 4 for
two conditions (28) and (29). The results indicate that condition (29) for
the specific convexity bound in Proposition 13 is much less applicable for
polynomial cost functions with higher degrees.

Degree j = 2 j = 3 j = 4

Geometry condition (28): θ
(2)
< 6.75 θ

(3)
< 9.48 θ

(4)
< 12.21

Convexity condition (29): θ
(2)
< 1.89 θ

(3)
< 1.75 θ

(4)
< 1.65

Table 2: Applicable ranges of moments for the two PoA bounds

Example 2. We provide an example with log-normal distributions for the
comparison in the above remark. Assume for i ∈ I that Di ∼ lnN(µi, ωi),
i.e., Di follows a log-normal distribution with mean di = eµi+ω

2
i /2 and variance

σ2
i = (eω

2
i − 1)d2

i , which means that the coefficient of demand variation εi =
σi/di = (eω

2
i − 1)1/2. The moments of Di are E

[
Dj
i

]
= ejµi+j

2ω2
i /2. Thus

θ
(j)
i =

E
[
Dj
i

]
dji

= ej(j−1)ω2
i /2 = (ε2i + 1)j(j−1)/2, ∀ i ∈ I, j ∈ Z+.

28



ε̄

PoA upper bound

0 0.2 0.4 0.6 0.8 1.0 1.2 2.4
0

20

40

60

80

geometryconvexity

Figure 3: The two PoA upper bounds with quadratic cost functions (m = 2) and log-
normal distributions

We then have θ
(j)

= (ε̄2 + 1)j(j−1)/2 for all j ∈ Z+. Conditions (28) and
(29) can now be expressed in terms of applicable ranges of the maximum
coefficient of variation ε for different classes of polynomial link cost functions.
Table 3 shows maximum values of ε for Cm with m = 2, 3, and 4.

Class of cost functions C2 C3 C4

Geometry condition (28): 2.40 1.06 0.72
Convexity condition (29): 0.94 0.45 0.29

Table 3: Maximum values of coefficient of variation ε of log-normal distributions for the
two upper bounds

In Figure 3 we also plot the two specific PoA bounds presented in Propo-
sitions 12 and 13 when demands follow log-normal distributions for quadratic
cost functions (m = 2).

As can be seen, the geometry bound is better and applicable for a wider
range of game instances. The vertical dotted (asymptotical) lines help to
show that the convexity and geometry bound approach infinity when ε̄ →
0.94 and 2.40 respectively. Note that when the demand variation is very
small (ε̄ ≤ 0.54 in this case), the convexity bound can be slightly better
than the geometry bound although the overall improvement is insignificant.
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Similar results can be obtained for m = 3 and m = 4. �

3.3.2. Normal distributions

As previously mentioned, normal distributions can be used to approxi-
mate traffic demands, especially those with large positive means or relatively
small variances. As the second class of specific demand distributions, let us
consider Di ∼ N(di, σ

2
i ) for i ∈ I, i.e., Di follows a normal distribution with

mean di and variance σ2
i for i ∈ I. We assume di > 0 for i ∈ I. Note that

this assumption guarantees the non-negativity of mean link flows, which is
needed to derive general upper bounds on the PoA in Propositions 3 and 4.

Given that demands {Di : i ∈ I} are independent, clearly Ve also follows
a normal distribution for e ∈ E. The mean ve and variance σ2

e of Ve can be
derived from (3) as follows, which is applicable for any independent demand
distributions:

ve =
∑
i∈I

∑
k∈Pi

δik,ep
i
kdi,

and

σ2
e = Var

[ ∑
i∈I, k∈Pi

δik,ep
i
kDi

]
= Var

[∑
i∈I

δiep
i
eDi

]
=
∑
i∈I

δie(p
i
e)

2σ2
i .

Since Ve ∼ N(ve, σ
2
e), the jth moment of the link flow Ve can be written as

follows:

E[V j
e ] =

j∑
r=0, r=even

(
j

r

)
(σe)

r(ve)
j−r(r − 1)!!, ∀ e ∈ E, (30)

where j ∈ N is the power degree, (r − 1)!! is the double factorial of r − 1,
i.e., (r − 1)!! = (r − 1)(r − 3) · · · 1 (if r is even) with the understanding that

(−1)!! = 1, and

(
j

r

)
= j!/((j − r)!r!) is a binomial coefficient. (Note that

moment formula (30) for the normal distribution can be found in standard
texts, e.g., in (Patel and Read, 1996; Ross, 2002, p. 396 (47)).)

In order to bound moments of Ve, we first bound its variance σ2
e using

the following lemma.

Lemma 14. The mean ve and variance σ2
e of random link flow Ve (e ∈ E)

satisfy the following inequalities:

ε2

n
v2
e ≤ σ2

e ≤ ε2v2
e ,
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where n, ε, and ε are defined in Section 2.1.

Proof. By definition εi = σi/di, we can bound σ2
e from above:

σ2
e =

∑
i∈I

δie(p
i
e)

2ε2i d
2
i ≤

(
max
i∈I
{εi}

)2∑
i∈I

δie(p
i
edi)

2

≤ ε2

( ∑
i∈I, k∈Pi

δik,ep
i
kdi

)2

= ε2v2
e ,

and bound σ2
e from below:

σ2
e ≥

(
min
i∈I
{εi}

)2∑
i∈I

δie(p
i
edi)

2 ≥ ε2

ne

(∑
i∈I

δiep
i
edi

)2

=
ε2

ne

( ∑
i∈I, k∈Pi

δik,ep
i
kdi

)2

≥ ε2

n
v2
e ,

where the second inequality follows from Cauchy-Schwarz inequality with
ne =

∑
i∈I δ

i
e as defined in Section 2.1.

We are now ready to bound moments of link flows and show that As-
sumption 3 is satisfied.

Lemma 15. For any transportation game (G,D, c) in which {Di : i ∈ I}
follow normal distributions with positive mean demands, Assumption 3 is
satisfied with

lj =

j∑
r=0, r=even

(
j

r

)(
ε2

n

)r/2
(r− 1)!!, hj = θ

(j)
, ∀ j = 2, . . . ,m+ 1. (31)

Proof. Since Di ∼ N(di, σ
2
i ) with di > 0 and finite σi for all i ∈ I, it is clear

that all moments of Di are finite and positive according to (30). We need to
show that

ljv
j
e ≤ E[V j

e ] ≤ hjv
j
e, ∀ j = 2, . . . ,m+ 1, e ∈ E,

where lj and hj are defined in (31). Applying Lemma 14 in (30), we obtain

E[V j
e ] ≥

j∑
r=0, r=even

(
j

r

)(
ε2

n

)r/2
(ve)

j(r − 1)!!, e ∈ E.
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On the other hand, observe that

θ
(j)
i =

j∑
r=0, r=even

(
j

r

)
(εi)

r(r − 1)!!, ∀ i ∈ I,

which implies

θ
(j)

=

j∑
r=0, r=even

(
j

r

)
(ε)r(r − 1)!!,

which together with Lemma 14 implies the upper bound.

Lemma 15 indicates that we can apply Theorems 7 and 8 for transporta-
tion games (G,D, c) in which {Di : i ∈ I} follow normal distributions with
positive means by using values of lj and hj in (31). Since lj depends on
ε and ε → 0 implies lj → 1, without any restriction on ε (i.e., no posi-
tive lower bound), we would have the same PoA upper bounds as with any
positive-valued distributions (with the same moments as those of normal

distributions). This is due to the fact that hj = θ
(j)

in both settings.
Additionally lj depends also on n = maxe∈E ne, where ne as defined in

Section 2.1 is the number of O-D pairs that use link e. Clearly, n is a
network-related parameter, which means for normal distributions, the two
upper bounds (and conditions of their applicability) are not network inde-
pendent as in deterministic models in general. However the effect of n is
limited, as we can also derive upper bounds independent of n by setting
n → ∞. From (31), n → ∞ also implies lj → 1. Thus in such an extreme
case, the PoA upper bounds (and conditions of their applicability) for normal
distributions would return to the same as those for positive-valued distribu-
tions (with the same moments as those of normal distributions). Then from
Table 2 we can derive maximum applicable ε of normal distributions for both
geometry and convexity upper bound, as shown in Table 4. For polynomial
cost functions with degree no more than 4, we can bound the PoA using the
geometry method for arbitrary network as long as ε < 1.08. This condition
is actually not restrictive, as only normal distributions with relatively small
variance are usually used in practice to simulate traffic demands.

In order to demonstrate the effect of small n, we use the case of ε = ε = ε
for simplicity. Figure 4 shows the maximum applicable values of ε when
m = 2 for our geometry and convexity bound. We can see that condition (24)
is always satisfied for n < 7 and so is condition (25) for n < 3. When n is large
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Class of cost functions C2 C3 C4

Geometry Condition (24): 2.40 1.68 1.08
Convexity Condition (25): 0.94 0.50 0.32

Table 4: Maximum applicable ε of normal distributions for the two upper bounds when
n→∞

n

ε

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

geometry

convexity

Figure 4: Maximum values of coefficient of variation, ε, of normal distributions for the
two PoA upper bounds with quadratic cost functions (m = 2)

enough, the applicable ranges of ε remain almost constant and as discussed
above, the upper bounds of these ranges converge to the corresponding values
reported in Table 4. Similar results can be found for m = 3 and m = 4. As
noted in Section 2.1, the case of n = 1 is equivalent to the case of single
commodity, which we will treat as a special simple case later in Section 3.4,
as we will do for the case of m = 1.

We also compare the two upper bounds for different values of ε, which is
illustrated in Figure 5 for m = 2 and n = 5 with clearly better a quality of
the geometry bound.

3.4. Two special cases

We have provided two general upper bounds on the PoA for transporta-
tion games with general networks and general polynomial cost functions un-
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Figure 5: The two PoA upper bounds with quadratic cost functions (m = 2) and normal
distributions and n = 5

der two specific classes of demand distributions, namely, general positive-
valued distributions and normal distributions. With these settings, the ge-
ometry method leads to a better upper bound under less stringent conditions.
In this subsection we will investigate two special cases in which the convexity
method will lead to a better (and in fact tight) upper bound.

The first special case is with single-commodity networks (|I| = 1), or
equivalently n = 1 as noted before, while the second special case is of affine
cost functions. Interestingly, both conditions (24) and (25) in these two
special cases are satisfied automatically as in deterministic models.

3.4.1. Single commodity networks

Consider any transportation game (G,D, c) ∈ Im such that G has a
single O-D pair. Since |I| = 1, we will drop the subscript i in writing
relevant parameters, such as writing D instead of Di. In order to satisfy
Assumption 3, we assume the first m+1 moments of D are finite and positive.
Then Ve = pe ·D. Thus E [V j

e ] = θ(j)vje, where θ(j) = E [Dj] /dj. We can then
select lj = hj = θ(j) for all j = 0, 1, . . . ,m + 1 and hence Assumption 3 is
satisfied.

Condition (24) is satisfied since hj/lj = 1 for all j = 1, . . . ,m. The
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geometry bound in Theorem 7 can be calculated as follows:

PoA(G,D, c) ≤ (1− max
1≤j≤m

j(j + 1)−(j+1)/j)−1 ·
max

0≤j≤m
θ(j)/θ(j+1)

min
0≤j≤m

θ(j)/θ(j+1)

= (1−m(m+ 1)−(m+1)/m)−1 ·
max

0≤j≤m
θ(j)/θ(j+1)

min
0≤j≤m

θ(j)/θ(j+1)
.

We claim that θ(j+1) ≥ θ(j) ≥ 1 for all j in both settings for the demand distri-
butions, general positive-valued distributions and normal distributions. For
positive-valued distributions, it follows directly from (27). For normal dis-
tributions, we can use (30) to derive the result. Thus max0≤j≤m θ

(j)/θ(j+1) =
θ(0)/θ(1) = 1. The geometry bound can then be simplified further as follows:

PoA(G,D, c) ≤ (1−m(m+ 1)−(m+1)/m)−1 · max
0≤j≤m

θ(j+1)

θ(j)
. (32)

Condition (25) becomes

θ(j)

θ(j+1)
<

(j + 1)j+1

jj
, ∀ j = 1, . . . ,m,

which is also satisfied given that θ(j+1) ≥ θ(j) ≥ 1 for all j. The convexity
bound in Theorem 8 becomes:

PoA(G,D, c) ≤ max
1≤j≤m


(

1− j

j + 1

(
θ(j)

(j + 1)θ(j+1)

)1/j
)−1

θ(j+1)

θ(j)

 . (33)

We claim that the convexity bound in (33) is better than the geometry
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Figure 6: The two PoA upper bounds for single commodity networks with log-normal
distributions and quadratic cost functions (m = 2)

bound in (32). In fact,

max
1≤j≤m


(

1− j

j + 1
·
(

θ(j)

(j + 1)θ(j+1)

)1/j
)−1

· θ
(j+1)

θ(j)


≤ max

1≤j≤m

(
1− j

j + 1
·
(

θ(j)

(j + 1)θ(j+1)

)1/j
)−1

· max
1≤j≤m

θ(j+1)

θ(j)

≤ max
1≤j≤m

(
1− j

j + 1

(
1

j + 1

)1/j
)−1

· max
0≤j≤m

θ(j+1)

θ(j)

= (1−m(m+ 1)−(1+m)/m)−1 · max
0≤j≤m

θ(j+1)

θ(j)
,

where the second inequality is due to θ(j+1)/θ(j) ≥ 1 and θ(0) = θ(1) = 1.
Figure 6 shows these two upper bounds for the log-normal distributions

discussed in Section 3.3.1 for quadratic link cost functions (m = 2), in which
the convexity bound is strictly better than the geometry bound. In what
follows we provide an example to show that the convexity bound in (33) is
actually tight.
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Example 3. Consider a two-link network in Figure 7. The cost function on
the upper link is a constant, c1(x) = E[Dj], and that on the lower link is a
polynomial function, c2(x) = xj for a fixed j, 1 ≤ j ≤ m.

ts

c2(x) = xj

c1(x) = E[Dj]

Figure 7: Two-link network with polynomial cost functions

As the expected total cost on the lower link is never greater than that on
the upper link, strategy p̄ = (0, 1) is a UE-SD. We have

T (p̄) = E[Dj+1] = θ(j+1)dj+1.

Let p∗ = (p∗1, p
∗
2) be an SO-SD strategy, which minimizes the expected total

cost
T (p) = p1θ

(j)dj+1 + (p2)j+1 θ(j+1)dj+1.

Hence

p∗1 = 1−
(

θ(j)

(j + 1)θ(j+1)

)1/j

and p∗2 =

(
θ(j)

(j + 1)θ(j+1)

)1/j

,

which lead to

T (p∗) =

(
1− j

j + 1
·
(

θ(j)

(j + 1)θ(j+1)

)1/j)
θ(j)dj+1.

Thus, for this instance,

PoA ≥

(
1− j

(j + 1)
·
(

θ(j)

(j + 1)θ(j+1)

)1/j)−1

· θ
(j+1)

θ(j)
, (34)

which shows that the convexity bound in (33) is tight. �
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3.4.2. Affine cost functions

We now consider a transportation game (G,D, c) ∈ I1, i.e., all link cost
functions belong to C1, the set of all non-zero affine functions with non-
negative coefficients:

ce(x) = aex+ be, where ae, be ≥ 0 and ae + be > 0, ∀ e ∈ E.

Assume that {Di : i ∈ I} have positive means and finite second moments.
From Lemma 14, we can choose h2 = 1 + ε2 and l2 = 1 + ε2/n. Hence
Assumption 3 is satisfied.

Condition (24) is satisfied since h1 = l1 = 1. With the chosen values of
h2 and l2, the geometry bound in Theorem 7 can be simplified:

PoA(G,D, c) ≤ 4

3
(1 + ε2). (35)

Condition (25) reduces to (1 + ε2/n)
−1

< 4, which is always satisfied.
The convexity bound in Theorem 8 is simplified as follows:

PoA(G,D, c) ≤
(

1

1 + ε2
− 1

2
· 1

1 + ε2
· 1

2(1 + ε2/n)

)−1

=
4

3

(
1 + ε2

)( 1 + ε2/n

1 + (4/3) · ε2/n

)
. (36)

It is apparent that the convexity bound in (36) is better than the geometry
bound in (35). In addition, the bound in (36) indicates that it is network
dependent in general.

Figure 8 shows the two bounds with different values of n for affine cost
functions when ε = ε = ε. We can see that the geometry bound is the limiting
convexity bound when n tends to infinity.

We conclude our consideration of the special case of affine cost functions
by noting that the convexity bound in (36) is actually tight when n = 1 as
can be easily verified by direct computation with the special case j = 1 of
Example 3.

4. Discussion and concluding remarks

In this study, we have presented a general model for transportation games,
taking variation of the traffic demands into account. The notion of mixed
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Figure 8: The two PoA upper bounds with affine cost functions for different values of n

strategies is adopted in our models of user equilibrium and system optimum
with stochastic demands to describe travelers’ and coordinator’s behaviors in
a stochastic environment. The user equilibrium condition is reformulated as
a VI problem for general cost functions. Unlike in the deterministic models,
multiple equilibria can exist in our stochastic model.

We have extended two bounding techniques from Roughgarden and Tar-
dos (2004) and Correa et al. (2008) and established two different upper
bounds on the PoA for our stochastic model, namely, the convexity and
geometry bound, respectively. Unlike in the deterministic models, the two
upper bounds are applicable in general only under certain conditions. In our
opinion, these conditions are technical limitations of the bounding techniques
we have used. We believe that in general, if these conditions are not met, the
PoA can still be bounded even though we are not able to prove it at present.

We have derived two specific PoA upper bounds for the class of poly-
nomial link cost functions with positive-valued demand distributions as well
as normal distributions, which are commonly used to approximate demand
distributions. Numerical results show that in general the geometry bound is
better and more applicable than the convexity bound. However, for single-
commodity networks, the convexity bound is tight (and hence better than
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the geometry bound). Similarly, when only affine link cost functions are con-
sidered, the convexity bound is again better than the geometry one. One
possible explanation is that the convexity method relies on convex under-
approximation, which is less effective with highly non-linear (convex) cost
functions. On the other hand, it seems this method is more effective if we
have a good approximation of E [ce(Ve)Ve], which is indeed case when the
network is of a single commodity (and hence no approximation is needed)
or when the demand variation is very small. In general, both upper bounds
can be improved if we can have better approximation of E [ce(Ve)Ve] for some
specific types of demand distributions. For the class of polynomial link cost
functions, better approximation of E [ce(Ve)Ve] means larger lj and smaller
hj for j ∈ Z+ in Assumption 3.

All upper bounds obtained for our stochastic model under various specific
settings generalize the corresponding upper bounds obtained by Roughgarden
and Tardos (2002, 2004) and Correa et al. (2008) for deterministic demands.
The stochasticity of demands plays an important role in the formulation
of these upper bounds in our model. Unlike in the deterministic models,
these upper bounds can goes to infinity when the demand variation tends
to infinity. It shows that travelers’ selfish routing can cause serious system
degradation with stochastic demands. In addition, while the upper bounds
in the deterministic models are network independent, those in our stochastic
model can be network dependent (through the number n of O-D pairs whose
paths share a particular link in the network).

Finally, all upper bounds obtained in this paper can be reached under
the assumption of separable cost functions. Extension of this study with
non-separable cost functions is a future research direction. In addition, it
would be interesting to see if novel methods can be found to bound the PoA
when necessary conditions proposed in this study are relaxed.
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