49,555 research outputs found

    Are Face and Object Recognition Independent? A Neurocomputational Modeling Exploration

    Full text link
    Are face and object recognition abilities independent? Although it is commonly believed that they are, Gauthier et al.(2014) recently showed that these abilities become more correlated as experience with nonface categories increases. They argued that there is a single underlying visual ability, v, that is expressed in performance with both face and nonface categories as experience grows. Using the Cambridge Face Memory Test and the Vanderbilt Expertise Test, they showed that the shared variance between Cambridge Face Memory Test and Vanderbilt Expertise Test performance increases monotonically as experience increases. Here, we address why a shared resource across different visual domains does not lead to competition and to an inverse correlation in abilities? We explain this conundrum using our neurocomputational model of face and object processing (The Model, TM). Our results show that, as in the behavioral data, the correlation between subordinate level face and object recognition accuracy increases as experience grows. We suggest that different domains do not compete for resources because the relevant features are shared between faces and objects. The essential power of experience is to generate a "spreading transform" for faces that generalizes to objects that must be individuated. Interestingly, when the task of the network is basic level categorization, no increase in the correlation between domains is observed. Hence, our model predicts that it is the type of experience that matters and that the source of the correlation is in the fusiform face area, rather than in cortical areas that subserve basic level categorization. This result is consistent with our previous modeling elucidating why the FFA is recruited for novel domains of expertise (Tong et al., 2008)

    BranchConnect: Large-Scale Visual Recognition with Learned Branch Connections

    Full text link
    We introduce an architecture for large-scale image categorization that enables the end-to-end learning of separate visual features for the different classes to distinguish. The proposed model consists of a deep CNN shaped like a tree. The stem of the tree includes a sequence of convolutional layers common to all classes. The stem then splits into multiple branches implementing parallel feature extractors, which are ultimately connected to the final classification layer via learned gated connections. These learned gates determine for each individual class the subset of features to use. Such a scheme naturally encourages the learning of a heterogeneous set of specialized features through the separate branches and it allows each class to use the subset of features that are optimal for its recognition. We show the generality of our proposed method by reshaping several popular CNNs from the literature into our proposed architecture. Our experiments on the CIFAR100, CIFAR10, and Synth datasets show that in each case our resulting model yields a substantial improvement in accuracy over the original CNN. Our empirical analysis also suggests that our scheme acts as a form of beneficial regularization improving generalization performance.Comment: WACV 201

    The Devil is in the Tails: Fine-grained Classification in the Wild

    Get PDF
    The world is long-tailed. What does this mean for computer vision and visual recognition? The main two implications are (1) the number of categories we need to consider in applications can be very large, and (2) the number of training examples for most categories can be very small. Current visual recognition algorithms have achieved excellent classification accuracy. However, they require many training examples to reach peak performance, which suggests that long-tailed distributions will not be dealt with well. We analyze this question in the context of eBird, a large fine-grained classification dataset, and a state-of-the-art deep network classification algorithm. We find that (a) peak classification performance on well-represented categories is excellent, (b) given enough data, classification performance suffers only minimally from an increase in the number of classes, (c) classification performance decays precipitously as the number of training examples decreases, (d) surprisingly, transfer learning is virtually absent in current methods. Our findings suggest that our community should come to grips with the question of long tails

    Hard Mixtures of Experts for Large Scale Weakly Supervised Vision

    Full text link
    Training convolutional networks (CNN's) that fit on a single GPU with minibatch stochastic gradient descent has become effective in practice. However, there is still no effective method for training large CNN's that do not fit in the memory of a few GPU cards, or for parallelizing CNN training. In this work we show that a simple hard mixture of experts model can be efficiently trained to good effect on large scale hashtag (multilabel) prediction tasks. Mixture of experts models are not new (Jacobs et. al. 1991, Collobert et. al. 2003), but in the past, researchers have had to devise sophisticated methods to deal with data fragmentation. We show empirically that modern weakly supervised data sets are large enough to support naive partitioning schemes where each data point is assigned to a single expert. Because the experts are independent, training them in parallel is easy, and evaluation is cheap for the size of the model. Furthermore, we show that we can use a single decoding layer for all the experts, allowing a unified feature embedding space. We demonstrate that it is feasible (and in fact relatively painless) to train far larger models than could be practically trained with standard CNN architectures, and that the extra capacity can be well used on current datasets.Comment: Appearing in CVPR 201
    • …
    corecore