1,496 research outputs found

    Low energy indoor network : deployment optimisation

    Get PDF
    This article considers what the minimum energy indoor access point deployment is in order to achieve a certain downlink quality-of-service. The article investigates two conventional multiple-access technologies, namely: LTE-femtocells and 802.11n Wi-Fi. This is done in a dynamic multi-user and multi-cell interference network. Our baseline results are reinforced by novel theoretical expressions. Furthermore, the work underlines the importance of considering optimisation when accounting for the capacity saturation of realistic modulation and coding schemes. The results in this article show that optimising the location of access points both within a building and within the individual rooms is critical to minimise the energy consumption

    Decentralized spectral resource allocation for OFDMA downlink of coexisting macro/femto networks using filled function method

    Get PDF
    For an orthogonal frequency division multiple access (OFDMA) downlink of a spectrally coexisting macro and femto network, a resource allocation scheme would aim to maximize the area spectral efficiency (ASE) subject to constraints on the radio resources per transmission interval accessible by each femtocell. An optimal resource allocation scheme for completely decentralized deployments leads however to a nonconvex optimization problem. In this paper, a filled function method is employed to find the global maximum of the optimization problem. Simulation results show that our proposed method is efficient and effective

    Green inter-cluster interference management in uplink of multi-cell processing systems

    Get PDF
    This paper examines the uplink of cellular systems employing base station cooperation for joint signal processing. We consider clustered cooperation and investigate effective techniques for managing inter-cluster interference to improve users' performance in terms of both spectral and energy efficiency. We use information theoretic analysis to establish general closed form expressions for the system achievable sum rate and the users' Bit-per-Joule capacity while adopting a realistic user device power consumption model. Two main inter-cluster interference management approaches are identified and studied, i.e., through: 1) spectrum re-use; and 2) users' power control. For the former case, we show that isolating clusters by orthogonal resource allocation is the best strategy. For the latter case, we introduce a mathematically tractable user power control scheme and observe that a green opportunistic transmission strategy can significantly reduce the adverse effects of inter-cluster interference while exploiting the benefits from cooperation. To compare the different approaches in the context of real-world systems and evaluate the effect of key design parameters on the users' energy-spectral efficiency relationship, we fit the analytical expressions into a practical macrocell scenario. Our results demonstrate that significant improvement in terms of both energy and spectral efficiency can be achieved by energy-aware interference management

    V2X Meets NOMA: Non-Orthogonal Multiple Access for 5G Enabled Vehicular Networks

    Full text link
    Benefited from the widely deployed infrastructure, the LTE network has recently been considered as a promising candidate to support the vehicle-to-everything (V2X) services. However, with a massive number of devices accessing the V2X network in the future, the conventional OFDM-based LTE network faces the congestion issues due to its low efficiency of orthogonal access, resulting in significant access delay and posing a great challenge especially to safety-critical applications. The non-orthogonal multiple access (NOMA) technique has been well recognized as an effective solution for the future 5G cellular networks to provide broadband communications and massive connectivity. In this article, we investigate the applicability of NOMA in supporting cellular V2X services to achieve low latency and high reliability. Starting with a basic V2X unicast system, a novel NOMA-based scheme is proposed to tackle the technical hurdles in designing high spectral efficient scheduling and resource allocation schemes in the ultra dense topology. We then extend it to a more general V2X broadcasting system. Other NOMA-based extended V2X applications and some open issues are also discussed.Comment: Accepted by IEEE Wireless Communications Magazin

    Energy Aware Transmission in Cellular Uplink with Clustered Base Station Cooperation

    Get PDF
    We provide an analytical formula to evaluate the performance of the uplink of planar cellular networks when joint processing is enabled among limited number of base stations in a generalised fading environment. Focusing on user transmission power allocation techniques to mitigate inter-cluster interference we investigate the system's spectral-energy efficiency trade-off. The paper addresses the gains in both cell throughput and transmissions energy efficiency due to the combined strategies of base station cooperation and user power management. We assess the effect of the propagation environment and of the key network design parameters of cooperation cluster size and inter-site distance on the overall performance providing numerical results for a real-world scenario

    Personal area technologies for internetworked services

    Get PDF
    • 

    corecore