620,874 research outputs found
Properties of highly clustered networks
We propose and solve exactly a model of a network that has both a tunable
degree distribution and a tunable clustering coefficient. Among other things,
our results indicate that increased clustering leads to a decrease in the size
of the giant component of the network. We also study SIR-type epidemic
processes within the model and find that clustering decreases the size of
epidemics, but also decreases the epidemic threshold, making it easier for
diseases to spread. In addition, clustering causes epidemics to saturate
sooner, meaning that they infect a near-maximal fraction of the network for
quite low transmission rates.Comment: 7 pages, 2 figures, 1 tabl
Overlapping Multi-hop Clustering for Wireless Sensor Networks
Clustering is a standard approach for achieving efficient and scalable
performance in wireless sensor networks. Traditionally, clustering algorithms
aim at generating a number of disjoint clusters that satisfy some criteria. In
this paper, we formulate a novel clustering problem that aims at generating
overlapping multi-hop clusters. Overlapping clusters are useful in many sensor
network applications, including inter-cluster routing, node localization, and
time synchronization protocols. We also propose a randomized, distributed
multi-hop clustering algorithm (KOCA) for solving the overlapping clustering
problem. KOCA aims at generating connected overlapping clusters that cover the
entire sensor network with a specific average overlapping degree. Through
analysis and simulation experiments we show how to select the different values
of the parameters to achieve the clustering process objectives. Moreover, the
results show that KOCA produces approximately equal-sized clusters, which
allows distributing the load evenly over different clusters. In addition, KOCA
is scalable; the clustering formation terminates in a constant time regardless
of the network size
Motif Clustering and Overlapping Clustering for Social Network Analysis
Motivated by applications in social network community analysis, we introduce
a new clustering paradigm termed motif clustering. Unlike classical clustering,
motif clustering aims to minimize the number of clustering errors associated
with both edges and certain higher order graph structures (motifs) that
represent "atomic units" of social organizations. Our contributions are
two-fold: We first introduce motif correlation clustering, in which the goal is
to agnostically partition the vertices of a weighted complete graph so that
certain predetermined "important" social subgraphs mostly lie within the same
cluster, while "less relevant" social subgraphs are allowed to lie across
clusters. We then proceed to introduce the notion of motif covers, in which the
goal is to cover the vertices of motifs via the smallest number of (near)
cliques in the graph. Motif cover algorithms provide a natural solution for
overlapping clustering and they also play an important role in latent feature
inference of networks. For both motif correlation clustering and its extension
introduced via the covering problem, we provide hardness results, algorithmic
solutions and community detection results for two well-studied social networks
Families and clustering in a natural numbers network
We develop a network in which the natural numbers are the vertices. We use
the decomposition of natural numbers by prime numbers to establish the
connections. We perform data collapse and show that the degree distribution of
these networks scale linearly with the number of vertices. We compare the
average distance of the network and the clustering coefficient with the
distance and clustering coefficient of the corresponding random graph. In case
we set connections among vertices each time the numbers share a common prime
number the network is not a small-world type. If the criterium for establishing
links becomes more selective, only prime numbers greater than are used to
establish links, the network shows small-world effect, it means, it has high
clustering coefficient and low distance
- …
