4,818 research outputs found

    Mapping multiplex hubs in human functional brain network

    Get PDF
    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e. hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches.Comment: 11 pages, 8 figures, 2 table

    Information Indices with High Discriminative Power for Graphs

    Get PDF
    In this paper, we evaluate the uniqueness of several information-theoretic measures for graphs based on so-called information functionals and compare the results with other information indices and non-information-theoretic measures such as the well-known Balaban index. We show that, by employing an information functional based on degree-degree associations, the resulting information index outperforms the Balaban index tremendously. These results have been obtained by using nearly 12 million exhaustively generated, non-isomorphic and unweighted graphs. Also, we obtain deeper insights on these and other topological descriptors when exploring their uniqueness by using exhaustively generated sets of alkane trees representing connected and acyclic graphs in which the degree of a vertex is at most four

    Deep Learning for Link Prediction in Dynamic Networks using Weak Estimators

    Full text link
    Link prediction is the task of evaluating the probability that an edge exists in a network, and it has useful applications in many domains. Traditional approaches rely on measuring the similarity between two nodes in a static context. Recent research has focused on extending link prediction to a dynamic setting, predicting the creation and destruction of links in networks that evolve over time. Though a difficult task, the employment of deep learning techniques have shown to make notable improvements to the accuracy of predictions. To this end, we propose the novel application of weak estimators in addition to the utilization of traditional similarity metrics to inexpensively build an effective feature vector for a deep neural network. Weak estimators have been used in a variety of machine learning algorithms to improve model accuracy, owing to their capacity to estimate changing probabilities in dynamic systems. Experiments indicate that our approach results in increased prediction accuracy on several real-world dynamic networks

    A statistical model for brain networks inferred from large-scale electrophysiological signals

    Get PDF
    Network science has been extensively developed to characterize structural properties of complex systems, including brain networks inferred from neuroimaging data. As a result of the inference process, networks estimated from experimentally obtained biological data, represent one instance of a larger number of realizations with similar intrinsic topology. A modeling approach is therefore needed to support statistical inference on the bottom-up local connectivity mechanisms influencing the formation of the estimated brain networks. We adopted a statistical model based on exponential random graphs (ERGM) to reproduce brain networks, or connectomes, estimated by spectral coherence between high-density electroencephalographic (EEG) signals. We validated this approach in a dataset of 108 healthy subjects during eyes-open (EO) and eyes-closed (EC) resting-state conditions. Results showed that the tendency to form triangles and stars, reflecting clustering and node centrality, better explained the global properties of the EEG connectomes as compared to other combinations of graph metrics. Synthetic networks generated by this model configuration replicated the characteristic differences found in brain networks, with EO eliciting significantly higher segregation in the alpha frequency band (8-13 Hz) as compared to EC. Furthermore, the fitted ERGM parameter values provided complementary information showing that clustering connections are significantly more represented from EC to EO in the alpha range, but also in the beta band (14-29 Hz), which is known to play a crucial role in cortical processing of visual input and externally oriented attention. These findings support the current view of the brain functional segregation and integration in terms of modules and hubs, and provide a statistical approach to extract new information on the (re)organizational mechanisms in healthy and diseased brains.Comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF fil
    • …
    corecore