1,941,087 research outputs found

    Extracting the Groupwise Core Structural Connectivity Network: Bridging Statistical and Graph-Theoretical Approaches

    Get PDF
    Finding the common structural brain connectivity network for a given population is an open problem, crucial for current neuro-science. Recent evidence suggests there's a tightly connected network shared between humans. Obtaining this network will, among many advantages , allow us to focus cognitive and clinical analyses on common connections, thus increasing their statistical power. In turn, knowledge about the common network will facilitate novel analyses to understand the structure-function relationship in the brain. In this work, we present a new algorithm for computing the core structural connectivity network of a subject sample combining graph theory and statistics. Our algorithm works in accordance with novel evidence on brain topology. We analyze the problem theoretically and prove its complexity. Using 309 subjects, we show its advantages when used as a feature selection for connectivity analysis on populations, outperforming the current approaches

    Network-topological formulation of analyses of geometrically and materially nonlinear space frames

    Get PDF
    Network and topological formulation of analyses of nonlinear space frame

    Disentangling agglomeration and network externalities : a conceptual typology

    Get PDF
    Agglomeration and network externalities are fuzzy concepts. When different meanings are (un)intentionally juxtaposed in analyses of the agglomeration/network externalities-menagerie, researchers may reach inaccurate conclusions about how they interlock. Both externality types can be analytically combined, but only when one adopts a coherent approach to their conceptualization and operationalization, to which end we provide a combinatorial typology. We illustrate the typology by applying a state-of-the-art bipartite network projection detailing the presence of globalized producer services firms in cities in 2012. This leads to two one-mode graphs that can be validly interpreted as topological renderings of agglomeration and network externalities

    Identifying options for regulating the coordination of network investments with investments in distributed electricity generation

    Get PDF
    This paper analyses two effects of the current Dutch regulation on the system operators of the electricity network and on teh decentralised generators of electricity, and suggests a number of improvements in the tariff regulation. The increase in the distributed generation of electricity, with wind turbines and solar panels, necessitates investments in the distribution network. The current tariff regulation in the Dutch electricity industry, with its ex post evaluation of the efficiency of investments and the frontier shift in the x-factor, delays these investments. In the unbundled electricity industry, the investments in the network need to be coordinated with those in the distributed generation of electricity to enable the DSOs to build enough network capacity. The current Dutch regulations do not provide for a sufficient information exchange between the generators and the system operators to coordinate the investments. This paper analyses these two effects of the Dutch regulation, and suggests improvements to the regulation of the network connection and transportation tariffs to allow for sufficient network capacity and coordination between the investments in the network and in the generation of electricity. These improvements include locally differentiated tariffs that increase with an increasing concentration of distributed generators.

    Episodic memory retrieval, parietal cortex, and the default mode network: Functional and topographic analyses

    Get PDF
    The default mode network (DMN) is often considered a functionally homogeneous system that is broadly associated with internally directed cognition (e.g., episodic memory, theory of mind, self-evaluation). However, few studies have examined how this network interacts with other networks during putative default processes such as episodic memory retrieval. Using functional magnetic resonance imaging, we investigated the topography and response profile of human parietal regions inside and outside the DMN, independently defined using task-evoked deactivations and resting-state functional connectivity, during episodic memory retrieval. Memory retrieval activated posterior nodes of the DMN, particularly the angular gyrus, but also more anterior and dorsal parietal regions that were anatomically separate from the DMN. The two sets of parietal regions showed different resting-state functional connectivity and response profiles. During memory retrieval, responses in DMN regions peaked sooner than non-DMN regions, which in turn showed responses that were sustained until a final memory judgment was reached. Moreover, a parahippocampal region that showed strong resting-state connectivity with parietal DMN regions also exhibited a pattern of task-evoked activity similar to that exhibited by DMN regions. These results suggest that DMN parietal regions directly supported memory retrieval, whereas non-DMN parietal regions were more involved in postretrieval processes such as memory-based decision making. Finally, a robust functional dissociation within the DMN was observed. Whereas angular gyrus and posterior cingulate/precuneus were significantly activated during memory retrieval, an anterior DMN node in medial prefrontal cortex was strongly deactivated. This latter finding demonstrates functional heterogeneity rather than homogeneity within the DMN during episodic memory retrieval

    A grid search optimization subroutine for use with the GOSPEL optimization software package

    Get PDF
    Grid search optimization subroutine for analyses on distributed lumped activity network
    corecore