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NETWORK-TOPOLOGICAL FORMULATION - L.
OF ANALYSES OF GEOMETRICALLY
AND MATERIALLY NONLINEAR
SPACE FRAMES

by
J. T. Oden and Alice Neighbors
ABSTRACT

The analysis of geometrically nonlinear and materially nonlinear structures
is often regarded as outside the realm of applicability of linear graph theory and
algebraic topology. That such is not the case is demonstrated in this paper.

This paper presents a (network-topological formulation of the matrix force
method for computer analysis of space frames. The automaticseléction of redundant
forces is accomplished by using linear graph theory, corresponding to the mesh
method of network analysis. Nonlinear effects of large deformations and material
nonlinearity are incorporated through use of interative procedures.

The equations of the formulation are given and examples are included to
demonstrate the metnod.

LIST OF SYMBOLS

B o = matrix relating internal forces to the applied loads.
B8 x matrix relating internal forces to the redundant forces.
e = number of members in a structure.
f, : primitive flexibility matrix of member .
F 57': unassembled flexibility matrix and flexibility matrix of the entire
! structure, respectively.
m =  number of basic meshes in a graph
n,H =  number of nodes and number of nondatum nodes, respectively in a graph.
P a = internal force vector of member &, :

P = force_veétor applied at the nodes.



= incidence matrix of a linear graph. 2.

= arm matrix of member .

Q

r

u a = displacement vector of member «.

U = Jdisplacement vector of the nondatum nodes of a structure.
X

=  redundant forces in statically indeterminate structure.

o
X3 = local coordinates of member &.
Zi =  global coordinates of structure.
xa =  orthogonal transformation matrix which rotates local coordinates of

member @ into global coordinates.
INTRODUCTION

When forces are selected as unknowns, a significant part of the formulation
of the analysis of complex structures involves purely static considerations.
Foree=displacement relations for various components of the system can be derived
beforehand in the form of flexibility matrices, but the degree of redundancy, the
relations between internal forces and applied loads, and the influence of redundant
forces are established by successive applications of the familiar laws of static
equilibrium. Though simple in concept, the process of computing static relations
in complex structures can be extremely complicated. The action of a unit force
may influence stress resultants throughout the system. Further, when electronic
computation is required, it is often necessary to include the statics of the basic
structure as input data. This means that the analyst if often forced to solve
by-hand a substantial portion of the problem before it is brought to the computer.

Fortunately, the static relations between kinetic variables in analyses of
complex space frames are directiy related to the mode of connection of the structural
‘members. The degree of redundancy, for example, can be related o the number of
closed rings and the number of releases in the system; the influence 6fvapplied

loads on various stress resultants is related to the paths through which the loading
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must be transmitted to the supports; etc. Collectively, these characteristics

are said to depict the "connectivity' or the "topology" of the system, and their
description is the principal objective of a branch of mathematics known as network
topology. Briefly, network topology, or linear graph theory, is a mathematical
digcipline whose province it is to determine the relations of the characteristics
of an entire set of variables (the system) to the characteristics of the individual
members (the components of the system) along with their mode of connection. This

branch of mathematics provides means to automatically generate static relations in

complex structures.

The topological theorems derived by Euler and the network theory of Kirchhoff
and Maxwell are the principal sources from whiech network topology has evolved.
Applications to electrical networks can be found in the books by Reed [l], Reed and
Seshu [2], and Xron [3] and in the papers of Reza [U4], Doyle [5], Gould [6], Roth [71,
and Okada [8], among others. That the theory is not limited to electrical systems
is amply demonistrated in the works of Kron [9;10] and Koenig and Blackwell [11],
wherein appiications to hydraulic and mechaﬁical systems are also presented.

The first application of topological theorems to the analysis of compléx
structural systems appears to have been presented by Kron [12]. 1In this paper,
and in a subsequent paper L13], a'method of tearingd' is employed which makes it
possible to analyze structures in successive stages. More recently Lind [14] used
a different topological approach to analyze pin-connected structures and Henderson
and Bickley [15], Henderson [16], Morice [17] and DiMaggio (18] employed topological
principles to study the determinacy of structures. The most thorough and rigorous
accounts of the subject in relation to structural applications are found in the
works of Samuelsson [193 and Roussopoulos [20]. The book by the latter author

presents an independent and somewhat different approach than is found elsewhere.
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Further applications to structural systems are given in the papers by Langefors [21],
DiMaggio and Spillers [22_'], Spillers [23,24,25], wu [26], and Fenves et al. [27,28,29].
In this paper, a modified version of the network-topological formulation of
structural problems is used in conjunction with the matrix force method to develop
a general technique for analyzing space frames. Basic definitions and topological
theorems are reviewed along with their~application to linear structural systems.
It is then shown that the topological aspects of the formulation depict only the
connectivity of the system and, in the present case, lead to purely static relations.
Hence, certain types of noﬁlinear problems can be formulated with equal facllity
using basic topological theorems. The application of the method to the analysis
of a class of geometrically and materially nonlinear structures is then discussed.
NETWORK TOPOLOGY AND GRAPH THEORY
A list of some of the basic definitions and equations of network topology is
given as follows:

1. Abstract set. An abstract set, in the present sense, 1s a collection of

a finite number of two types of objects: nodes, Nl’ Ng""’Nn and branches blz(Ni’Né)’
b23(N2,N3),..., bn—l,n(Nn—l’Nh)' The subset N(Ni’N?"”Nn) is called the node or
vertex set and each pairing bjj = (Ni’Nj) defines a branch.

2. Topological graph. A topological graph, or system graph, is a geometrical

representation of an abstract set, as defined above. A topological graph of a given
absﬁract set is constructed by assigning to each node in the set a point in three-
dimensional space and to each branch in the set a line segment or curve in three-
dimensional space. |

A topological graph is shown in Fig. la.

3. Oriented branch. An oriented branch of a topological graph is an oriented

line segment together with two endpoints. The endpoints are called nodes of the



(d)

FIG.1 TOPOLOGICAL GRAPHS
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branch.

An oriented branch b. ., with end nodes Ny, N is shown in Fig. 1b. The nodes

12 2
Ni and N2 are said to be incident with branch by, and vice~versa. The orientation
of the branch is indicated by the arrow. Nl and N2 are called the initial and

finad nodes, respeebively, of braneh byy. Branch by, is seid bo be pogibively

incident on node Ni and negatively incident on node Né.
L, Subgraph. A subgraph is a graphical representation of any subset of
branches of an abstract set.
5. Path. A path is a subgraph of a topological graph containing a sequence
of branches bOl>b12""’bn,n+l such that each pair of successive.branches has a
common endpoint. For example, branches a,b,c,d form a pathvin the topological

graph in Fig. la.

6. Connected graph. If at least one path exists between any two distinct

nodes of a graph, the graph is called a connected graph.
7. Complement of a subgraph. The complement of subgraph S of a graph G is
the subgraph remaining in G when the elements of S are removed.

8. Separate part. A separate part is a connected subgraph that contains no

nodes in common with its complement.
9. Mesh. A mesh or circuit is a closed path which is such that every node

on the path is incident to two and only two branches. Examples of meshes are shown

10. TIree. A tree is a connected subgraph containing no meshes and all nodes.
Further, there can be one and only one branch incident to any palr of nodes in a

tree. It follows that in a tree containing b branches and n nodes,

ben-1 @)

Examples of trees are indicated in Fig. 1d.
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11. Links. Links (or chords) are the branches of the complement of a tree.

12. Basic mesh. A basic mesh is the unique mesh formed by adding a cord to
a tree without introducing at least one new node. It is easily shown that if m is

the number of basic meshes in a topological graph containing b branches and n nodes,

m=b-n+s ‘ (2)
where s 1s the number of separate parts. Ordinarily s = 1.

Other definitions pertaining to structural applications are given where they
first appear in the text to follow.

TOPOLOGICAL: GRAPHS OF STRUCTURAL SYSTEMS

The topological model for a frame structure is constructed.by representing
each member of the structure by a branch and each Joint by a node in one-to-one
correspondence., For example, topological graphs qf the space frame in Flg. 2a are
shovn in Figs. 2b and 2c. The two graphs are isomorphic and, hence, topologically
equivalent.

The topological graph for a supported structure, such as that shown in Fig. 3,
is formed by constructing’the subgraph representing the unsupported structure and
then adding tree-connected branches to represent the foundation. These branches
are called imaginary branches and are indicated by dashed lines in the figure.

The remaining branches in the graph are called real branches. The nodes on the
foundation which are incident with the imaginary branches are, in this paper,
called datum nodes and the remaining nodes of the topological graph are called
nondatum modes. If a topological graph contains no separate parts other than the
graph itself (i.e., s = 1), it is easily shown that the total number m of basic

meshes is given by

m=e -n - (3)



(a) (b) | (c)

FIG.2 SPACE FRAME AND TWO ISOMORPHIC TOPOLOGICAL
GRAPHS. | | '

(a) (b)

FIG.3 SUPPORTED SPACE FRAME AND ITS TOPCLOGICAL
GRAPH. -
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where e is the number of real branches and T is the number of nondatumn nodes.
Only the real branches are considered in the analysis of a structure.

In the present topological formulation, it is first assumed that rigid
connections exist at the ends of all members. The order of statical  indeterminacy
15 Ghan OM, Whers @ is BM6 nupber &f 11AKE (Basic mephe#) 1B THE Eraph of Bhe
structure. Releases that may exist in the structure are introduced after the
topological formulation is completed.

A statically indeterminate structure can be divided into as many statically
determinate substructures as desired, up to the number of datum nodes. Figure La
indicates four statically determinate substructures of the structure shown in
Fig. 3 and Fig. 4b shows one statically determinate substructure. This is
accomplished by the sflection of the m links,

The orientation of the branches in the graph of a structure is arbitrary.

A convenient convention is to orient the tree branches so that they are negatively
included in the node to datum paths. The orientation of the links is also
arbitrary and the negative ends of the links will correspond to the cuts in the
structure. The orientation of the tree branches and links for the structure of
Figs. LYo and 4b are shown respectively in Figs. bec and Ld. The heavy lines
represent the tree branches and the light lines represent the links.

The convention used in this paper will be to number the tree branches first
and the links last, and to number the non-datum nodes first and the datum nodes
last.

STRUCTURAL MATRICES

Consider a compléx space frame consisting of e members rigidly connected at

n nodes, as is shown in Fig. 5a. The members of the space frame are assumed to be

- three-dimensional bar elements, each of which can transmit six stress resultantss:



(a) (b)

(d)

FIG. 4 LINKS AND TREE BRANCHES FOR STATICALLY
INDETERMINATE STRUCTURE.

10.
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an axial force, two bending moments, a twisting moment, and two shearing foréés
parallel to the cross section., A typical bar element O between nodes M and N is
shown in Fig. 5b. The bar is acted upon by forces and moments at each node which
are shown referred to a local coordinate system associated with element &, These
force systems are arranged 1n 6 x 1 vectors ?JQD’énd43’Na called the element

force vectors for element ¢

'p/Ma= o s ,p’m = o} (1=1,2,...,6) (%)

The first three entries in an element force vector represent the forces parallel
to the respective local coordinates Xq5 x2, and x3 whereas the remaining entries
are moments about the respective axes. The prime (/) indicates that the components

of these vectors are referred to the local coordinates of element Q.

4 7’ .
The vectors ?DMQ and 1?Na are related by statics according to the formulas

7/

ana D= 0Pl (5)

where

Y = ' =r (6)

0O 0-L 0 1 0

¢ L 0 0 0 1

L -

Here 1 is the length of the member.
- /
Similarly, there corresponds to each of the force vectors })Ma and.f>Nu 6x1

7 I
displacement vectors U MO and LlNa whose components are the displacements and



FIG. 5 A COMPL
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. . o / . /.
and rotations corresponding to the components of 1)Mn and P Nou® That is, Y Mia

(i = 1,2,3) are the displacement components of node M in the directions of the

: a
local coordinates x? and u,Mia<i = 4,5,6) are the rotations at M about the %,

/ /
axes. The displacement vectors U Mo and L‘Na are related according to the formula

/'}'ju/
M Na

where the T superscript means the ftranspose of the matrix.

/
U =7 (7)

It is necessary to consider only one of the two. force and displacement vectors
for the member O to characterize the behavior of that element, since Egs. (6) and
(7) establish dependencies between quantities associated with each end. In the
following, force and displacement vectors assoclated with the node on which the

element is negatively incident are taken as the characteristic vectors of the

/

’
element. Thus, for an element & the characteristic force vector is 'pa =P No.

4
and the characteristic displacement vector is ula = ulwx'
A 6 x 6 flexibility matrix for element O can be obtained which relates the

element force and displacemenﬁ vectors according to

/ fl Vs )
U,= 1 oPq (8)
where, for a straight bar,
L o0 o 0 0 o ]
NG
3 2
L . I
vy Ly,
0 3BT 0 0 0 ZEI
3 3
3
I I
Ly - )
, 0 0 T3 o mEEF o
f - 2 e (
- 9)
a : Ly
0 0 0 GJT 2 0 0
- I y IRy
0 0 oBL 4 o  ET6 0 o
2 2
L3 1
0 EEI;Q 0 0 0 EI;“?
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In this equation, Iy and I2 are the principal moments:of inertia, J is the torsion
constant, E is the elastic modulus, and G is the shear modulus. The functions Yi

are defined by the equations

¥, = §§ (Ay - tanh M) ; ¥, = %? (sech Ay = 1) ; YB = §§ (Ap - tanh A,).
A A A
1 1 2
2
Yh = 25 (sech Xg - 1) ; YS R (X3 - 2 coth X3 + 2 esch k3) (10a)
Ao » E{')\%
1 1
Y = e . Y =
6= % tanh kz 5t . tanh Xl
if the axial force is tensile and
3 . )
Y= ( =Ay + tan Ay) ; v, = 22 (sec Ay - 1) 5 ¥5 = 2 (A5 + tan A))
5 A A5
L2GJ
o 2 : ; :
Y, =73 (sec Ay - 1) iy = N (XB - 2 cot X3 - 2 csc K3) (10p)
X2 bLh3

—rparma

1 _
Y6 = "y tan Ay 3 Y7 = " tan Xl

2
if the axial force 1s compressive. Here [* is the warping constant, Xl = plL?/EI3,
2 2
Xg = png/EIE, and X3 = (GJ + rgpl) L2/EP, r, being the polar radius of gyration

about tne shear center.
To analyze a structure containing many elements, as in Fig. 3, it is desirable
to relate all the quantities associated with the elements to the same coordinates.

Hence, a global coordinate system Zy, Z Z3>is established at an arbitrary point

27
. . " . s O

in the structure. An orthogonal transformation matrix A exists for each element
0 which rotates the element's local coordinate system into the global coordinate

syohem,

- /
The element force and displacement vectors }J; and Lia are referred o the

.
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global system by the transformations

P = TR and U, =T Uy | (11)
where
o . : .
Ty = >0 - (2)
0 ¢

The flexibility and arm matrices of the element O are expressed in the global

system by the congruent transformations

/T 1. T
i :T“{CGT& and ?‘C,(.zT(x (aTa (13)

The complete set of force vectors corresponding to all the e elements of the

structure are now arranged in a 6e x 1 vector 9 called the internal force vector
of the system:
P=, P PP (14)

o’ e

Similarly, the displacement vectors corresponding to each force vector (ua = UNCL>

are arranged in a 6e x 1 vector U :

_ 3 -
u_{ul,ug, R | I ,ue} (15)

a’
Vectors | and ‘p are related as follows:

U= F 0 (16)
where F is the 6e x 6e unassembled flexibility matrix of the structure:

f O .. O ... O

(17)

T
u
-
e
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In addition to the internal forces, external forces, represented by 6 x 1
vectors PM and PN’ act at nodes M and N. The (absolute) displacements and rotations
_ of nodes M are likewise represented by 6 x 1 vectors UM and UN'

complete set of external force vectors correspgndihg to all of the T nodes are

Further, the

arranged in 6n x 1 vector

P={P,P,...,P]} (18)

and the displacement vectors corresponding to each node are arranged in a 6fi x 1

vector

u={u, U, ..., U} . (19)

INCIDENCE MATRIX OF A STRUCTURE
The incidence relationships between the nodes and branches of the structure's
graph are specified by an incidence matrix Q which is formulated after the links
are specified and the nodes and branches are numbered. Using notation similar to
DiMaggio and Spillers [22], the matrix Q is défined as containing the generic

element Q o where

r —
) if element & is not incident on node n
T —
Qo.'fi =<=1 npg f element & is positively incident on node n (20)
I 1f element & is negatively incident on node n

The generic element ro‘ﬁ' is a 6 x 6 matrix for a space frame and the matrix Q@ is
of order 6e x 6m.
The static relation between the internal forces and the applied loads is given

by T ' |
7P =Q P (21)

THE MATRTX FORCE METHOD

The incidence matrix Q can be used to obtain the fundamental static matrices
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used in Argyris' force method [30]. To this end, first partition the incident

matrix as follows:

Q,

o
1

(22)
Q

where Qj?is the 6n x 6n matrix corresponding to the tree branches and Q];

is the 6m x 6n matrix corresponding to the links. Equation (21) can thus be

[T T}f
Q Q P
T T

written

T .

o | =P - (23)
19

The internal forces @)L are equivalent to the redundant forces X at the negative

ends of the links.

Expanding Eg. (23) and solving for the internal forces in the tree branches

gives
T-1 T-1 T
Po= Q7 P- @ Q. X 2l
Since gjl,:: X, the internal force matrix can be written for the structure as
P=B P+ B X (25)
o X :
where
I-1 T-1 T
Q Q Q
T T L
B, =l © and BX= (26)
L J : I

The redundents of Eq. (24) can be determined by imposing compatibility at +the

cuts in the links. The redundants in terms of the applied loads are given by

-1
X=-(B F B) 3%F 8 »p (27)
X X

X O )
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vhere F is the unassembled flexibility matrix defined in Eq. (17). The internal

forces in the sgtructure are then given by

P=8BP (28)
where
B=8 - 8.( 8¢ B (BTF B) (29)
T e T Px x X x o &3
The displacement vector |} , corresponding to the nodes, is given by
u=BTu =P (30)
where
T
F-BF B (31)

is the flexibility of the entire structure.

Ls an exanmple, congider the space frame in Fig. 3. The nodes and members are

numbered as shown in Fig. lLc, according to the convention described earlier.

Menmbers 1,2,3, and 4 are tree branches and 5,6,7,8, and 9 are links.

of the incidence matrix is written as

QT=O
0
_»O
From Eq. (26), the‘B
1
o)
O
B | O
o

0O O O©
i ¢ O
6 I O
O 0 1
o and Bx
0 O O
i 0O O
c I O
0 I

o) O T -
O -Fae O
i i I
_rDc 0 -0
matrices are
8 =
X

g

I

0
O -

The transpose

.
0
(32)

0

DA |

0 Fac Tag -1 ]

(e O <I O

-1 -I0 ro

© 0 TP (s3)
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These matrices are introduced into Egs. (27) through (31) and the analysis

is completed.

Structural Releases. The above formulation is based on the agsumption that

each member in the space frame transmits six gtress resultants. In many structures,

however, various types of structural releases (e.g., hinges, free ends, etc.) are

present and the procedure discussed previously must be modified accordingly. This
modified procedure also allows alternate redundants to be selected so that the
conditioning of the matrix B }T{ F B < is improved for inversion.

Let X, denote the 6m x 1 vector of redundant forces, each component of which
is referred to its appropriate local coordinate system. Assuming that r releases

are present in the links of the system, a matrix D exists such that

D (34)

where D is & nonsingular matrix of ones and zeros and X * is the (6m - r) x 1
vector of redundant forces in the released system.
: ’
The original redundant force vector X in global coordinates is related to X

by the formula
/
X=AX (35)

in which A is a 6m x 6m transformation matrix. Thus

/ A A | y*| A x o
X=A X - - X (36)

Axy App O Aoy
where A=A D. In’ﬁroducing Eg. (36) into Ed. (25), a new B . matrix
* 11

21
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is obtained which relates P to the redundants in the reléased system., The anélysis
proceeds as before except that B Z is used instead of B}g

If releases are present in the tree branches, both Bo and Bxymust be modified
though a procedure simiiar to that outlined above,

NONLINEAR ANALYSES

Once the topological formulation of a linear structural'problem ié completed,
the structural metrices can be modified to account for nonlinear structural
behavior. In general, there are two sources of nonlinearity in the structural
problem: (1) geometric nonlinearity, which occurs when deformations are of such
magnitude that their influence in eguilibrium consideratiﬁns cannot be ignored,
(2) material nonlinearity, which occurs when the stress-strain relations of the
structural materials are nonlinear. The remainder of this paper is devoted to the
discussion of approximate procedures for handling both types of nonlinearity.

Geometric Nonlinearity. The effects of large deformations are accounted for by

computing the static matrices from the geometfy of the deformed rather than the
undeformed structure. Consider, for example, the forces at node B of member AB
shovn in Fig. 6. The components of the internal force vector?% are, by definition,
the stress resultants developed parallel and normal to the bar;s cross section at
B. These are indicated by dashed lines in the figure. Clearly, thege vectors

do not act parallel to the local coordinate axes due to the rotations 631 = Up)»
932 = uB5, 933 = Upg of end B. In the linear theory, however, no distinction is
made between the deformed and the undeforméd structure in applying statics. Hence,
the lircar theory assumes that ﬁhese forces are parallel to the original local
coordinate axes, as is indicated by the solid lines in the figure;

Let ‘ﬂg denote the stress~-resultant vector at B as given by the linear theory

and let ESB denote the force vector at B with components parallel to the local



FIG. 6 NODE FORCES ON

DEFORMED BAR

21.
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coordinates. If terms of quadratic and higher order in the rotations are neglected,

it is easily shown that

- CB 0 . -

Pp-= P = R_PY (38)
0o ¢ B B¥B :

B
where
o M
1 -8p3 Opp |

C;= %3 1 -m V (39)
-6 9 1
B2 Bl )

In addition, the distance between A and B has changed due to deformation of

the member so that instead of Eq. (6) the arm matrix is given by

‘ 1
I | O
0 Up3=Ups ugpyp |
TAB = uB3-uA3 0 ‘ —L+uBl-uA_—L § I (LLO}
Uppo~Upy  Lmpytuyg 0 |

The procedure for including such nonlinear effects 1s outlined as follows:

(1) Perform a linear analysis of the structure using flexibility matrices for
which the functions ¥, in Eq. (9) are unity (that is, neglect the influence of axial
loads on the flexibilities).

.(2) Using the results of étep 1 and Egs. (9) compute new flexibility matrices
(that is, this time account for the influence of axial loads).

(3) Using Egs. (38), (39), and (40) and the displacements and rotations

obtained in step 1, compute modified force vectors, arm matrices, and node-

incidence matrices. *

(4) Introduce the results of steps 2 and 3 into Eqs. (27) through (32) and,
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hence, analyze the structure using the modified matrices.

(5) Use the results of step I to compute ne& flexibility, node force, and
incidence matrices and repeat the process until the solution converges to a
desired degree. |
Stability. A slight modification of the above procedure can be used to compute
buckling loads. Briefly, the final flexibility matrix 5Z is computed.using the
general element flexibilities given in Eq. (9). Each element fiexibility is
espressed in terms of XFD*, where P*-is a reference external load vector and A

is a load parameter such that A > 0. The stability criterion is

det(K) = O | S (s)
vhere K = 3{-10 By then assigning successive values o A, the load P is applied
in increments Xi in such a way that for the j th increment, Eq. (41) is a
function of (%Ki) P*. The value X of %Xi which satisfies Eq. (41) is the critical
load parameter for the structure and \. P*‘is the vector of critical loads,

Material Nonlinearity. The static and kinematic conditions to be satisfied in a

structural system depend upon the connectivity of the system but they are
independent of the material properties of the system. Hence, if a structure is
constructed of nonlinear materials, its topological graph leads to the same incidence
matrices and static matrices BO and Bx that are obtained for a linear structure
with the same topological graph. The nonlinearity enters the problem only through
the force-displacement relations, since, for a nonlinear material, the flexibilities
are nonlinear functions of the node forces.

In the analysis of elasto-plastic and certain nonlinearly elastic structures,
the force~displacement relations for a typical bar element can be written in the |

form
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u=f p+ gley) (42)
where f is the flexfbility matrix given by the linear theory [Eq. (9)] and
g (PNi) is a 6 x 1 matrix whose elements are nonlinear functions of the generalized
node forces Pyie A formula for the matrix ¢ for a material exhibiting a Ramberg-
Osgood type stress-strain law was given by Oden [31] and‘is not discussed here.
After the appropriate transformations, a final system of nonlinear equations in the

redundants 1s obtalined of the form
T : T T T Y
B,FB, P*B_FB_X *B, G(P)‘ *B, 6 =0 (43)

where G (P) and G (X) contain nonlinear functions of the applied forces and the
redundants. Once these equations are solved, the internal forces are determined
using Eq. (25), element displacements are calculated using Eq. (L42), and node
displacements are computed using Eq. (30);

Of the variety of methods available to solve systems of equations of the form
in Eq. (43), one of the most expedient is a variation of the Newbton-Raphson
method 532]. In this method, the system of nonlinear equations is first written
in the form

H@) =0 C (k)
which is then expanded in a-Taylor's>series about )(o, the solution to the

linearized problem, Taking only two terms of this expansion, one finds

H@ = Hey + J (X G xoy (5)

OHj (x0) 1
0%

) .
matrix corresponding to X . Equations (45) are now linear in )((lz. These

where X (1) is the corrected solution and ‘jo =L is the Jacobian

are solved for the corrected solutlon vector )((l) and the process is
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repeated until Eq. (L4) is satisfied to a desired degree of accuracy. A general
recurrence formula is obtained by solving Eq. (L45) for the corrected solution

vector of the j + 1 th cycle:

S ud*L _

X oy - ng H () (46)

" CONCLUSIONS

Network topology provides efficient means to establish the kinematic and
kinetic conditions to be satisfied in a structural problem. From purely
topological properties of a given struétural system, the fundamental static
matrices B , and B of the matrix force method can be automatically generated.
In the case of large deformations, these matrices become functions of the
displacements and can be generated through an iterative analysis procedure. In
materially nonlinear strucﬁures, the static matrices are unaffected and nonlinearity

is introduced only through the force-displacement relstions of the structure.
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