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1. 
\ 

NETWORK-TOPOLOGICAL FORMULATION 
OF ANALYSES OF GEOMETRICALLY 
AND MATERIALLY NONLINEAR 

SPACE FRAMES 

by 

J. T. Oden and Alice Neighbors 

ABSTRACT 

The analysis of geometrically nonlinear and materially nonlinear structures 

is often regarded as outside the realm of applicability of linear graph theory and 

algebraic topology. That such is not the case is demonstrated in this paper. 

This paper presents a{network-topological formulation of the matrix force 

method for computer analysis of space frames. 

forces is accomplished by using linear graph theory, corresponding to the mesh 

method of network analysis. 

nonlinearity are incorporated through use of interative procedures. 

The automaticselection of redundant 

Nonlinear effects of large deformations and material 

The equations of the formulation are given and examples are included to 

demonstrate the me’thod. 

LIST OF SYMBOLS 

matrix relating internal forces to the applied loads. 

matrix relating internal forces to the redundant forces. 

number of members in a structure. 

primitive flexibility matrix of member U. 

unassembled flexibility matrix and flexibility matrix of the entire 
structure, respectively. 

number of basic meshes in a graph 

number of nodes and number of nondatum nodes, respectively in a graph. 

internal force vector of member CL, 

force vector applied at the nodes. 



Q =  

a r =  
u a =  
u =  

a - 
xi = 

- 

zi = 

a 
A =  

incidence matrix of a linear graph. 

arm matrix of member a, 

displacement vector of member U. 

displacement vector of the nondatum nodes of a structure. 

redundant forces in statically indeterminate structure. 

local coordinates of member a, 

global coordinates of structure. 

orthogonal transformation matrix which rotates local coordinates of 
member a into global coordinates. 

INTRODUCTION 

2. 

When forces are selected as unknowns, a significant part of the formulation 

of the analysis of complex structures involves purely static considerations. 

Force-digplacement rela6iolzs for various componen%a of the system 6811 bo darived 

beforehand in the form of flexibility matrices, but the degree of redundancy, the 

relations between internal forces and applied loads, and the influence of redundant 

forces are established by successive applications of the familiar laws of static 

equilibrium. 

in complex structures can be extremely complicated. The action of a unit force 

may influence stress resultants throughout the system. Further, when electronic 

computation is required, it is often necessary to include the statics of the basic 

struczure as input data. This means that the analyst if often forced to solve 

by-hand a substantial portion of the problem before it is brought to the computer. 

Though simple in concept, the process of computing static relations 

Fortunately, the static relations between kinetic variables in analyses of 

complex space frames are directly related to the mode of connection of the structural 

members. The degree of redundancy, for example, can be related to’the number of 

closed rings and the number of releases in the system; the influence of applied 

loads on various stress resultants is related to the paths through which the loading 
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must be transmitted to the supports; etc. Collectively, these characteristics 

are said to depict the 11 connectivity" or the "topology" of the system, and their 

description is the principal objective of a branch of mathematics known as network 

topology. Briefly, network topology, or linear graph theory, is a mathematical 

discipLine whose province it is to determine the relatioks af the characteristics 

of an entire set of variables (the system) to the characteristics of the individual 

members (the components of the system) along with their mode of connection. 

branch of mathematics provides means to automatically generate static relations in 

complex structures. 

This 

The topological theorems derived by Euler and the network t.heory of Kirchhoff 

and Maxwell are the principal sources from which network topology has evolved. 

Applicatisns ts electrical netwwks can be fsund in the  bQske by Reed [la, Reed and 

Seshu [?I, and Kron C31 and in the papers of Reza C41, Doyle [SI, Gould C61, Roth ["I, 
and Okada [SI, among others. 

is amply dernor,strated in the works of Kron [9,101 and Koenig and Blackwell [111, 

That the theory is not limited to electrical systems 

wherein appiications to hydraulic and mechanical systems are also presented. 

The first application of topological theorems to the analysis of complex 

structural systems appears to have been presented by Kron h 2 1 .  In this paper, 

and in a subsequent paper [131, a'bethod of tearing is employed which makes it 

possible to analyze structures in successive stages. More recently Lind [141 used 

a different topological approach to analyze pin-connected structures and Henderson 

and Biekley [I?], Henderson h61 ,  Morice E171 and DiMaggio L181 employed topological 

principles to study the determinacy of structures. 

accounts of t n e  subject in relation to structural applications are found in the 

works of Samuelsson c191 and Rousso-poulos c201. 

The most thorough and rigorous 

The book by the latter author 

presents an independent and somewhat different approach than is found elsewhere. 
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Further applications to structural systems are given in the papers by Langefors c211, 

DiMaggio and Spillers c221, Spillers [23,24,251, Wu C261, and Fenves et al. [27,28,29]. 

In this paper, a modified version of the network-topological formulation of 

structural problems is used in conjunction with the matrix force method to develop 

a. 8onerla.l. %eshnique for snaLyzing space frames. Basic definitions and topiLo 

theorems are reviewed along with their application to linear structural systems. 

It is then shown that the topological aspects of the formulation depict only the 

connectivity of the system and, in the present case, lead to purely static relations. 

Hence, certain ty-pes of nonlinear problems can be formulated with equal facility 

using basic topological theorems, 

of a class of geometrically and materially nonlinear structures is then discussed. 

The application of the method to the analysis 

IWTWORK TOPOLOGY AND GRAPH THEORY 

A list of some of the basic definitions and equations of network topology is 

given as follows: 

1. Abstract set. An abstract set, in the present sense, is a collection of - 
a finite number of two ty-pes of objects: 

bZ3(N2,N3),. . . , bn-l,n(Nn-l,Nn). 
vertex set and each pairing bij = (N.,N.) defines a branch. 

nodes, N1, N2,...,N and branches b12(N1,N2)$ n 
The subset N(N1,N2.. . ,Nn) is called the node or 

1 J  

2. To,ologicalgraph. A topological graph, or system graph, is a geometrical 

representation of an abstract set, as defined above. A topological graph of a given 

abstract set is constructed by assigning to each node in the set a point in three- 

dimensional space and to each branch in the set a line segment or curve in three- 

dimensional space. 

A topological graph is shown in Fig. la. 

3. Oriented branch. An oriented branch of a topological graph ia an oriented 

line segment together with two endpoints. The endpoints are called nodes of the 
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6. 
brznch. 

An oriented branch b12 with end nodes Nl, N i s  shown i n  Fig. l b ,  The nodes 2 

NL and N2 are  said t o  be incident with branch b12 and v5ce-versa. 

of the branch i s  indicated by the arrow. 

f ine& nsdea, respaetive&y, sf braneb big. 

incident on node N 

Subgraph. 

The or ien ta t ion  

N1 and N a r e  cal led the  i n i t i a l  and 
2 

Ps;.a,neb bfn & @  s&&& Bo be 

2' and negatively incident on node N 

A subgraph i s  a graphical representation of any subset of 
1 

4. 

branches of an abstract  se t .  

5. - Path. A path i s  a subgraph of a topological graph containing a sequence 

of branches b~l,b12,...,bn,n+l such t h a t  each pa i r  of successive.branches has a 

common endpoint. For example, branches a,b,c,d form a path i n  the  topological 

graph in Fig, l a ,  

6. Connected graph. If a t  l e a s t  one path ex i s t s  between any two d i s t i n c t  

nodes of a graph, the graph i s  cal led a connected graph. 

7. Complement - -  of a subgraph. The complement of subgraph S of a graph G i s  

the subgraph remaining i n  G when the  elements of S a r e  removed. 

8. Separate par t .  A separate pa r t  i s  a connected subgraph that  contains no 

nodes i n  common with i t s  complement. 

Mesh. A mesh or c i r c u i t  i s  a closed path which i s  such that every node 99 - 
on the path i s  incident t o  two and only two branches. 

i n  Fi;. IC. 

Examples of meshes are shown 

10. Tree. A t r e e  i s  a connected subgraph containing no meshes and a l l  nodes. 

Further, there  can be m e  and only one branch incident t o  any pa i r  of nodes i n  a 

t ree .  It follows t h a t  i n  a t r e e  containing b branches and n nodes, 

b = n - 1  

Examples of t r e e s  a re  indicated i n  Fig. Id. 
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Links (or chords) a re  t h e  branches of the complement of a t ree .  

A basic  mesh i s  the  unique mesh formed by adding a cord t o  

11. 

12. 

Links. 

Basic mesh. -- 
a t r e e  without introducing a t  l e a s t  one new node. It i s  eas i ly  show tha t  i f  m i s  

t h e  number of basic meshes i n  a topological graph containing b branches and n nodes, 

m = b - n + s  (2) 

where s i s  the  number of separate par ts .  Ordinarily s = 1. 

Other def ini t ions pertaining t o  s t ruc tu ra l  applications a r e  given where they 

f i r s t  appear i n  the t e x t  t o  follow. 

TOPOLOGICAL GRAPHS OF STRUCTURAL SYSTEMS 

The topological model for a frame s t ructure  i s  constructed by representing 

each member of the  s t ructure  by a branch and each j o i n t  by a node i n  one-to-one 

correspondence. For example, topological graphs of the  space frame i n  Fig. 2a a re  

shotm i n  Figs. 2b and 2c. The two gra-phs a re  isomorphic and, hence, topologically 

equivalent. 

The topoiogical graph f o r  a supported s t ructure ,  such as  t h a t  shown i n  Fig. 3, 

i s  formed by constructing the  subgraph representing the  unsupported s t ruc ture  and 

then adding tree-connected branches t o  represent t he  foundation. 

a r e  cal led imaginary branches and are  indicated by dashed l i n e s  i n  the  figure.  

The remaining branches i n  the  graph are  cal led r e a l  branches. The nodes on the  

foundation which are  incident with the  imaginary branches are,  i n  t h i s  paper, 

called datum nodes and the remaining nodes of t he  topological graph a re  ca l led  

nondatum modes. 

graph i t s e l f  ( i - e . ,  s = I), it i s  eas i ly  shown t h a t  t h e  t o t a l  number m of basic  

meshes i s  given by 

These branches 

If a topological graph contains no separate p a r t s  other than the  

- 
m = e - n  ( 3 )  
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9. - 
%&ere e is the number of real branches and n is the number of nondatumn nodes. 

Only the real branches are considered in the analysis of a structure. 

f n  the  present topological Formulation, it i s  f i r s t  assumed that ri 

connections exist at the ends of all members. The order of statical indeterminacy 

%k Bfia l t  6R3 ?&@%@ f# 5.0 

structure. 

topological formulation is completed. 

Releases that may exist in the structure are introduced after the 

A statically indeterminate structure can be divided into as many statically 

determinate substructures as desired, up to the number of datum nodes. 

indicates four statically determinate substructures of the structure shown in 

Fig. 3 and Fig. 4b shows one statically determinate substructure. This is 

accomplished by the xlection of the m links. 

Figure 4a 

The orientation of the branches in the graph of a structure is arbitrary. 

A convenient coflvention is to orient the tree branches so that they are negatively 

included in the node to datum paths. The orientation of the links is also 

arbitrary and the negative ends of the links will correspond to the cuts in the 

structure. The orientation of the tree branches and links for the structure of 

Figs. Sa and 4b are shown respectively in Figs. 4c and 4d. 

represent the tree branches and the light lines represent the links. 

The heavy lines 

The convention used in this paper w i l l  be t o  number the tree branches first 

and the links last, and t o  number the non-datum nodes first and the datum nodes 

last. 

STRUCTURAL MATRICES 

Consider a cornpiex space frame consisting of e members rigidly connected at 

n nodes, as is shown in Fig. 5a. 

three-dimensional bar elements, each of which can transmit six stress resultants: 

The members of the space frame are assumed t o  be 
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an  axial  force, two bending moments, a twisting moment, and two shearing forces 

para l le l  t o  the cross section. A typical  bar element a between nodes M and N i s  

shown i n  Fig. 5b. The bar i s  acted upon by forces and moments a t  each node which 

are shown referred t o  a l oca l  coordinate system associated with element a. 

force systems are arranged 119 6 x 1 vectors pMa a n i l ~ ’ ~ ~  ca l lea  $he ePmemt 

force vectors for  element a: 

These 
/ ’  

The first  three entr ies  i n  an element force vector represent the forces p a r a l l e l  

and x whereas the remaining en t r ies  t o  the respective loca l  coordinates x 

are  moments about the respective axes. The prime (’) indicates t ha t  the components 

of these vectors are  referred t o  the loca l  coordinates of element a. 

1’ x2, 3 

The vectors pia and are  re la ted by s t a t i c s  according t o  the  formulas 

where 

1 0 0 0 0 0  

0 1 0 0 0 0  

0 0 1 0 0 0  

0 0 0 1 0 0  

0 0 - L  0 1 0  

O L O O O l  

Here L i s  the  length of the member. 

/ -1 
NM 

=r 

-./ / 
Similarly, there  corresponds to each of the force vectors ‘,d an@ ’p Ncl 6 x 1 Ma ‘ / 

aisplacement vectors u aK3 u whose components a re  the displacements and N a  
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I / / 
and rotations corresponding to the components of $) 

(i = l,2,3) are the displacement components of node M in the directions of the 
a a 

local coordinates x. and u' (i = 4,5,6) are the rotations a t  M about the xi 
1 Mia 

axes. The displacement vectors u 

and P Na. That is, uMia Ma 

I / 
and u Na are related according to the formula Ma 

/ 
= 

Ma llM N a  (7 )  

where the T superscript means the transpose of the matrix. 

It is necessary to consider only one of the two force and displacement vectors 

for the member a to characterize the behavior of that element, since Eqs. (6) and 

(7) establish dependencies between quantities associated with each end. In the 

following, force and displacement vectors associated with the node on which the  

element is negatively incident are taken as the characteristic vectors of the 
/ 

element. Thus, for an element a the characteristic force vector is pa = 'p' 

and the characteristic displacement vector is 
Na 

I i 

a - - %a* 
A 6 x 6 flexibility matrix for element ct can be obtained which relates the 

element force and displacement vectors according to 

where, for a straight bar, 

0 0 0 0 0 

... 
0 

J ... 
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In t h i s  equation, I1 and I2 are  the  pr incipal  moments of i ne r t i a ,  J i s  -the tors ion 

constant, E i s  the  e l a s t i c  modulus, and G i s  the  shear modulus. 

are defined by the equations 

The functions Y ! i  

= 2 (A1 - tanh ?\I) ; Y2 = 5 (sech h l  - 1) ; Y3 = $ (A2 - tanh A2). 
X1 
2 

I I Y! = - tanh h ; Y! = - tanh hl 6 A, 2 7 h, 
L I 

i f  the axial  force i s  t e n s i l e  and 

'6 = 5;; t an  h2 ; Y - - 7 - x1 tan 

2 2 i f '  TIL miai force i s  compressive, H e r e p  i s  the warping constant, hl = plL /E13, 

h2 = 7jiL /E1 
2 2 2 

- 2' 3 and h = ( G J  -t r2p1) L2/EP, rs being the polar radius of gyration ' 

about che shear center. 

To analyze a s t ructure  containing many elements, as i n  Fig. 3, it i s  desirable 

t o  r e l a t e  a l l  the quantit ies associated w i t h  the  elements to the  same coordinates. 

Z2, Z iie:zce, a global coordinate system Z1, 

i n  the structure.  

i s  established a t  an a rb i t ra ry  point 3 
An orthogonal transformation matrix ka exis t s  for  each element 

U, which rotates  the element's l oca l  coordinate system in to  the global coordinate 

I 
The element force and displacement vectors 2 and u '  are  referred to the a a 



global system by the transformations 

where 

T a =  ["" 0 
The flexibility and arm matrices of the element a are expressed in the global 

system by the congruent transformations 

T'ne complete set of force vectors corresponding to all the e elements of the 

structure are now arranged in a 6e x 1 vector p called the internal force vector 
of the system: 

(14) 4 p = ml> P2,. . . ' e * 0 ,P e 3 

Similarly, The d5splacement vectors corresponding to each force vector (U, = UNa) 

are arranged in a $e x 1 vector U : 

Le = EL$, u . . . ,I$,, . . . ,u 1 
2' e 

Vectors u andp are related as follows: 

>?nere F is she 6e x 6e unassembled flexibility matrix 
P 

of the structure: 



16. 
In  addition to t he  in t e rna l  forces ,  external  forces, represented by 6 x 1 

vectors PM and P,, a c t  a t  nodes M and N, 

of nodes M are  likewise represented by 6 x 1 vectors 

complete s e t  of external force vectors corresponding to a l l  of t h e  57: nodes are 

The (absolute) displacements and ro ta t ions  

U, and %* F'urther, t he  

arranged i n  65 x 1 vector 

and the displacement vectors corresponding to each node are  arranged i n  a 6ii x 1 

vector 

iJ= c u  u . . . , u-3 
1' 2' n 

IUCIDENCE MATRIX OF A STRUCTUTiE 

The incidence relationships between the nodes and branches of the  s t ruc ture ' s  

graph are  specified by an incidence matrix Q which i s  formulated a f t e r  the  l inks  

are  specified and the nodes and branches a re  numbered. 

DiMaggio and Sp i l l e r s  c221, the  matrix Q i s  defined as containing the generic 

element Q, where 

Using notation similar t o  

r 
. Q  i f  element CL i s  not incident on node F 

i f  element CL i s  posi t ively incident on node E ( 2 0 )  an .-t'- I i f  element ct i s  negatively incident on node 

The generic element Q, i s  a 6 x 6 matrix fo r  a space frame and the  matrix Q i s  

of order 6e x 6;. 

Tne s t a t i c  re la t ion  between the  in te rna l  forces and the  apTlied loads i s  given 

T 
P = Q 

Ti% Y A X I X  FORCE METEOD 

The incidence matrix caxx be used to obtain the  fundamental s t a t i c  matrices 



used i n  Argyris’ force method C30l. To t h i s  end, f i r s t  p a r t i t i o n  t h e  incident 

matrix as  follows: 

Q =  ( 2 2 )  

where 

i s  the 6m x 6; matrix corresponding to t he  l inks.  

Q T  i s  the 6; x 6; matrix corresponding t o  the t r e e  branches and Q, 
Equation (21) can thus be 

writ ten 

= P  

I 
T’ne in te rna l  forces PL a re  equivalent t o  the redundant forces 

ends of the l inks.  

x at  the  negative 

Expanding Eq. (23) and solving for the  in t e rna l  forces i n  the t r e e  branches 

gives 
T-1 T-1 T 
T T Q L  * P -  Q i P, = 

4- Since g J J ” ,  = x , the  in t e rna l  force matrix can be wr i t ten  fo r  the  s t ruc ture  as 
JJ 

T’ne rekx2ants  of Eq. 

x 
X 

P =  B P f  
0 

(24) can be determined by ifiposing compatibility a t  t h e  

cuts i n  the  i inks.  The redundants i n  terms of the  applied loads are ‘given by 



where F i s  the  unassembled f l e x i b i l i t y  matrix defined i n  Eq. (17). 

forces i n  the s t ructure  a re  then given by 

p= E P  

trher e 

18. 

The in t e rna l  

Tne displacement vector , corresponding t o  the  nodes, i s  given by 

where 

4-E3 Y- F 

i s  the f l e x i b i l i t y  of the e n t i r e  s t ructure .  

R3 r;n example, consider the  space f r a e  Ln Fig.  3. The n o d s ~  and. members are 

numbered as shown i n  Fig. 4c, according t o  the  convention described ea r l i e r .  

Members 1,2,3, and 4 are  t r e e  branches and 5,6,7,8, and 9 a re  l inks.  The transpose 

of the  incidence matrix i s  wri t ten as 

a =  - 53C 

Fram Eq. (26), the  and matrices a re  
X 

7 

I 
0 

0 o : o  

0 
- - 

0 
B =  

X 

! -I -I I : o  
0 0  
.- 
i "1 ( 3 3 )  
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These matrices are introduced into Eqs.  (27) through (31) and the analysis 

is conpleted. 

Structural Releases. The above formulation is based on the assumption that 

each member in the space frame transmits six stress resultants. In many structures, 

howcvor, various types oP structural releases (e.g., hinges, free ends, etc,) are 

present and the procedure discussed previously must be modified accordingly. This 

modified procedure also allows alternate redundants to be selected so that the 
m 

conditioning of the matrix B ' F 8 is im-proved for inversion. 
X X 

I 

Let x denote the 6m x 1 vector of redundant forces, each component of which 

is referred to its appropriate local coordinate system. 

are present in the links of the system, a matrix 0 exists such that 
Assuming that r releases 

where D is L nonsingular matrix of ones and zeros and x * is the (6m .. r) x 1 
vector of redundant forces in the released system. 

The original 

by the formula 

/ 
redundant force vector >( in global coordinates is related to x 

x =  AX' (35 1 

in which is a 6m x 6m transformation matrix. Thus 

where A = 0 . Introducing Eq. (36) into Eq. (25), a new 8 matrix 
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i s  obtained which relates 

proceeds as before except 

$to the  redundants i n  the  released system. 

t h a t  B i s  used instead of B . 
The analysis 

* 
X X 

If releases are present i n  the t r e e  branches, both Bo and Bx must be modified 

though a procedure similar to t ha t  outlined above. 

NONLINEAR ANTALYSES 

Once the topological formulation of a l inear  s t ruc tura l  problem i s  completed, 

the  s t ruc tura l  matrices can be modified t o  account for  nonlinear s t ruc tu ra l  

behavior. 

problem: 

In general, there are  two sources of nonlinearity i n  the s t ruc tura l  

(1) geometric nonlinearity, which occurs when deformations are  of such 

magnitude t h a t  t he i r  influence i n  equilibrium considerations cannot be ignored, 

( 2 )  material nonlinearity, which occurs when the s t ress -s t ra in  re lat ions of the 

s t ruc tura l  materials are  nonlinear. 

discussion of approximate procedures for handling both types of nonlinearity. 

Geometric Nonlinearity. The e f fec ts  of large deformations a re  accounted for  by 

computing the s t a t i c  matrices from the geometry of the deformed rather than the 

undeformed structure.  Consider, for  example, the  forces a t  node B of member AB 

shown i n  Fig. o.  

The remainder of "chis paper is devoted t o  the  

/ The components of the internal  force vectorpB w e ,  by definit ion,  

the s t r e s s  resul tants  developed p a r a l l e l  and normal to the  ba r ' s  cross section a t  

B. 

do not ac t  pa ra l l e l  to the  loca l  coordinate axes due t o  the rotat ions eB1 = uB4, 

8 ~ 2  = uB5, In  the l inear  theory, however, no d is t inc t ion  i s  

made between the  deformed and the undeformed s t ructure  i n  applying s t a t i c s .  

T'nese are indicated'by dashed l ines  i n  the figure.  Clearly, these vectors 

= U B ~  of end B. 

Hence, 

the l i x a r  theory assumes thax these forces are pa ra l l e l  to the  or ig ina l  l o c a l  

coordinate axes, as i s  indicate? by the  sol id  l i nes  i n  the figure. 

Let $3; denote the s t ress-resul tant .vector  a t  B as given by the l inear  theory 

and let V B  denote the force vector a t  B with components pa ra l l e l  t o  the  loca l  
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coordinates. If terms of quadratic and higher order i n  t h e  ro ta t ions  are neglected, 

. it i s  easily shown tha t  

where 

I n  addition, the  distance between A and 3 has changed due t o  deformation of 

the  member so t h a t  instead of Eq. (6) the  arm matrix i s  given by 

The procedure fo r  including such nonlinear e f f ec t s  i s  outlined as follows: 

(1) Perform a l inear  analysis of the  s t ruc ture  using f l e x i b i l i t y  matrices for 

which the  functions Yi i n  Eq. (9) a re  uni ty  (that i s ,  neglect the  influence of axial 

loads on the  f l e x i b i l i t i e s ) .  

(2) Using the r e su l t s  of s tep  1 and Eqs. (9) compute new f l e x i b i l i t y  matrices 

( tha t  is, t h i s  time account fo r  the  influence of a x i a l  loads).  

(3) Using Eqs. (38), (39), and (40) and the  displacements and rotat ions 

obtained i n  steF 1, compute modified force vectors,  arm matrices, and node- 

incidence matrices. 

(4) Introduce the r e su l t s  of s teps  2 and 3 i n t o  Eqs. (27) through (32) and, 



hence, analyze the s t ructure  using the modified matrices. 

(5) Use the r e su l t s  of s tep 4 t o  compute new f l e x i b i l i t y ,  node force,  and 

incidcnce matrices and repeat the  process u n t i l  the  solution converges t o  a 

desired degree. 

$tzbil i%y. 

buckling loads. Briefly, the  f i n a l  f l e x i b i l i t y  matrix 

A slight modification of the above procedure can be used t o  compute 

i s  computed using the  

general element f l e x i b i l i t i e s  given i n  Eq. (9). 

espressed i n  terms of h p  , where P 

i s  a load parameter such tha t  h > 0. 

Each element f l e x i b i l i t y  i s  
* * 

i s  a reference external load vector and h 

The s t a b i l i t y  c r i t e r ion  i s  

det(  ) = 0 (41) 
where K = F-'. 
i n  increments hi i n  such a way tha t  for  the j t h  increment, Eq. (41) i s  a 

f'unction of (Chi) P *. The value x of $ h i  which s a t i s f i e s  Eq. (41) i s  the c r i t i c a l  

load parameter for  the s t ructure  and x P 

Material Nonlinearity. The s t a t i c  and kinematic conditions to be sa t i s f i ed  i n  a 

s t ruc tura l  system depend upon the connectivity of the  system but they a re  

independen?; of the material  properties of the system. 

construct?: of nonlinear materials, i t s  toTologica1 graph leads t o  the same incidence 

matrices and s t a t i c  matrices B o  and 

with the  same topological graph. 

the  force-displacement re la t ions,  since, for  a nonlinear material, the  f l e x i b i l i t i e s  

are  nonlinear functions of the node forces. 

By then assigning successive values t o  h ,  the  load P i s  applied 

3 
1 * i 

i s  t he  vector of c r i t i c a l  loads. 

Hence, i f  a s t ructure  i s  

tha t  a re  obtained for  a l inear  s t ructure  X 

The nonlinearity enters the problem only through 

I n  the analysis of e las to-plast ic  and cer ta in  nonlinearly e l a s t i c  structures,  

the force-displacement re la t ions f o r  a typ ica l  bar element can be wri$ten i n  the 

form 



where f i s  t h e  f l e x i b i l i t y  matrix given by the  l i nea r  theory CEq, (91 and 

g (pNi) i s  a 6 x l m a t r i x  whose elements a re  nonlinear functions of the generalized 

node forces pNA. 

Osgood type s t ress -s t ra in  l a w  was given by Oden c311 and i s  not discussed here. 

After the appropriate transformations, a f i n a l  system of nonlinear equations i n  the  

A formula f o r  t he  matrix 8 for a mater ia l  exhibit ing a Rmberg- 

redundants i s  obtained of the form 

where G (P) and G (X) contain nonlinear functions of the  applied forces and the  

redundants. 

using Eq. (25), element displacements a re  calculated using Eq. (42), and node 

displacements are  computed using Eq. (30). 

Once these equations are  solved, t he  in t e rna l  forces are determined 

O f  the v r r i e t y  of methods available to solve systems of equations of the  form 

i n  Eq. (43), one of the  most expedient i s  a var ia t ion  of the Newton-Raphson 

method [321. In  t h i s  method, the  system of nonlinear equations i s  f i rs t  wri t ten 

i n  YrAL. form 

H (x) = Q  (44) 
whick 4s then expanded i n  a Taylor's se r ies  about 

l inear ized problem. 

x O, t he  solution t o  the  

Taking only two terms of t h i s  expansion, one f inds 

H (x) = W (x,) + J 0 ( X (l)- X o )  (45 1 

where x (l) i s  the corrected solut ion and Jo = c 
matrix corresponding to x . Equations (45) a r e  now l inea r  i n  x (l),. These 

are  solved for  the corrected solution vector 

1 i s  the  Jacobian axj 
0 

X ( l )  and the  process i s  



25. 

repeated u n t i l  Eq. (44) i s  sa t i s f i ed  t o  a desired degree of accuracy. 

recurrence formula i s  obtained by solving Eq. (45) for the  corrected ‘solution 

vector of the j 3- 1. %h cycle: 

A general 

coNcLusIoNs 

Network topology provides e f f ic ien t  means t o  es tabl ish the  kinematic and 

kinet ic  conditions t o  be sa t i s f i ed  i n  a s t ruc tura l  problem. 

topological properties of a given s t ruc tura l  system, the f’undamental s t a t i c  

matrices B o  and 

In  the case of large deformations, these matrices become functions of the  

displacements and can be generated through an i t e r a t i v e  analysis procedure. 

materially nonlinear structures,  the  s t a t i c  matrices a re  unaffected and nonlinearity 

i s  introduced only through the  force-displacement re la t ions of the structure.  

From purely 

B, of the matrix force method can be automatically generated. 

I n  
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