827 research outputs found

    Deep Network Uncertainty Maps for Indoor Navigation

    Full text link
    Most mobile robots for indoor use rely on 2D laser scanners for localization, mapping and navigation. These sensors, however, cannot detect transparent surfaces or measure the full occupancy of complex objects such as tables. Deep Neural Networks have recently been proposed to overcome this limitation by learning to estimate object occupancy. These estimates are nevertheless subject to uncertainty, making the evaluation of their confidence an important issue for these measures to be useful for autonomous navigation and mapping. In this work we approach the problem from two sides. First we discuss uncertainty estimation in deep models, proposing a solution based on a fully convolutional neural network. The proposed architecture is not restricted by the assumption that the uncertainty follows a Gaussian model, as in the case of many popular solutions for deep model uncertainty estimation, such as Monte-Carlo Dropout. We present results showing that uncertainty over obstacle distances is actually better modeled with a Laplace distribution. Then, we propose a novel approach to build maps based on Deep Neural Network uncertainty models. In particular, we present an algorithm to build a map that includes information over obstacle distance estimates while taking into account the level of uncertainty in each estimate. We show how the constructed map can be used to increase global navigation safety by planning trajectories which avoid areas of high uncertainty, enabling higher autonomy for mobile robots in indoor settings.Comment: Accepted for publication in "2019 IEEE-RAS International Conference on Humanoid Robots (Humanoids)

    Network Uncertainty Informed Semantic Feature Selection for Visual SLAM

    Full text link
    In order to facilitate long-term localization using a visual simultaneous localization and mapping (SLAM) algorithm, careful feature selection can help ensure that reference points persist over long durations and the runtime and storage complexity of the algorithm remain consistent. We present SIVO (Semantically Informed Visual Odometry and Mapping), a novel information-theoretic feature selection method for visual SLAM which incorporates semantic segmentation and neural network uncertainty into the feature selection pipeline. Our algorithm selects points which provide the highest reduction in Shannon entropy between the entropy of the current state and the joint entropy of the state, given the addition of the new feature with the classification entropy of the feature from a Bayesian neural network. Each selected feature significantly reduces the uncertainty of the vehicle state and has been detected to be a static object (building, traffic sign, etc.) repeatedly with a high confidence. This selection strategy generates a sparse map which can facilitate long-term localization. The KITTI odometry dataset is used to evaluate our method, and we also compare our results against ORB_SLAM2. Overall, SIVO performs comparably to the baseline method while reducing the map size by almost 70%.Comment: Published in: 2019 16th Conference on Computer and Robot Vision (CRV

    Games Under Network Uncertainty

    Full text link
    We consider an incomplete information network game in which agents' information is restricted only to the identity of their immediate neighbors. Agents form beliefs about the adjacency pattern of others and play a linear-quadratic effort game to maximize interim payoffs. We establish the existence and uniqueness of Bayesian-Nash equilibria in pure strategies. In this equilibrium agents use local information, i.e., knowledge of their direct connections to make inferences about the complementarity strength of their actions with those of other agents which is given by their updated beliefs regarding the number of walks they have in the network. Our model clearly demonstrates how asymmetric information based on network position and the identity of agents affect strategic behavior in such network games. We also characterize agent behavior in equilibria under different forms of ex-ante prior beliefs such as uniform priors over the set of all networks, Erdos-Renyi network generation, and homophilic linkage

    Network uncertainty in selfish routing

    Get PDF
    We study the problem of selfish routing in the presence of incomplete network information. Our model consists of a number of users who wish to route their traffic on a network of m parallel links with the objective of minimizing their latency. However, in doing so, they face the challenge of lack of precise information on the capacity of the network links. This uncertainty is modelled via a set of probability distributions over all the possibilities, one for each user. The resulting model is an amalgamation of the KP-model of [13] and the congestion games with user-specific functions of [17]. We embark on a study of Nash equilibria and the price of anarchy in this new model. In particular, we propose polynomial-time algorithms for computing some special cases of pure Nash equilibria and we show that negative results of [17], for the non-existence of pure Nash equilibria in the case of three users, do not apply to our model. Consequently, we propose an interesting open problem in this area, that of the existence of pure Nash equilibria in the general case of our model. Furthermore, we consider appropriate notions for the social cost and the price of anarchy and obtain upper bounds for the latter. With respect to fully mixed Nash equilibria, we propose a method to compute them and show that when they exist they are unique. Finally we prove that the fully mixed Nash equilibrium maximizes the social welfare. 1

    Demand Uncertainty and Airline Network Morphology with Strategic Interactions

    Get PDF
    In this paper, we examine how strategic interactions affect airline network. We develop a three stage duopoly game: at stage 1 airlines determines their network structure (linear versus hub-and-spoke). At stage 2 they decide on their capacities, and at stage 3 firms compete in quantities. The main feature of the model is that firms have to decide on network structure and capacities while facing demand uncertainty. We show that while hubbing is efficient, airlines may choose a linear network for strategic reasons. Furthermore, we show that this structure softens competition by preventing contagion of competition across markets.Airlines, Competition, Capacity constraints, Network, Uncertainty

    Incorporating Social Network Variables into Relational Turbulence Theory: Popping the Dyadic Bubble

    Get PDF
    abstract: Relational turbulence theory (RTT) has primarily explored the effects of relational uncertainty and partner interdependence on relational outcomes. While robust, the theory fails to account for uncertainties and perceived interdependence stemming from extra-dyadic factors (such as partners’ social networks). Thus, this dissertation had two primary goals. First, scales indexing measures of social network-based relational uncertainty (i.e., network uncertainty) and social network interdependence are tested for convergent and divergent validity. Second, measurements of network uncertainty and interdependence are tested alongside measures featured in RTT to explore predictive validity. Results confirmed both measurements and demonstrated numerous significant relationships for turbulence variables. Discussions of theoretical applications and future directions are offered.Dissertation/ThesisDoctoral Dissertation Communication Studies 201
    • …
    corecore