882,064 research outputs found
Structural Analysis of Network Traffic Matrix via Relaxed Principal Component Pursuit
The network traffic matrix is widely used in network operation and
management. It is therefore of crucial importance to analyze the components and
the structure of the network traffic matrix, for which several mathematical
approaches such as Principal Component Analysis (PCA) were proposed. In this
paper, we first argue that PCA performs poorly for analyzing traffic matrix
that is polluted by large volume anomalies, and then propose a new
decomposition model for the network traffic matrix. According to this model, we
carry out the structural analysis by decomposing the network traffic matrix
into three sub-matrices, namely, the deterministic traffic, the anomaly traffic
and the noise traffic matrix, which is similar to the Robust Principal
Component Analysis (RPCA) problem previously studied in [13]. Based on the
Relaxed Principal Component Pursuit (Relaxed PCP) method and the Accelerated
Proximal Gradient (APG) algorithm, we present an iterative approach for
decomposing a traffic matrix, and demonstrate its efficiency and flexibility by
experimental results. Finally, we further discuss several features of the
deterministic and noise traffic. Our study develops a novel method for the
problem of structural analysis of the traffic matrix, which is robust against
pollution of large volume anomalies.Comment: Accepted to Elsevier Computer Network
Transport on complex networks: Flow, jamming and optimization
Many transport processes on networks depend crucially on the underlying network geometry, although the exact relationship between the structure of the network and the properties of transport processes remain elusive. In this paper we address this question by using numerical models in which both structure and dynamics are controlled systematically. We consider the traffic of information packets that include driving, searching and queuing. We present the results of extensive simulations on two classes of networks; a correlated cyclic scale-free network and an uncorrelated homogeneous weakly clustered network. By measuring different dynamical variables in the free flow regime we show how the global statistical properties of the transport are related to the temporal fluctuations at individual nodes (the traffic noise) and the links (the traffic flow). We then demonstrate that these two network classes appear as representative topologies for optimal traffic flow in the regimes of low density and high density traffic, respectively. We also determine statistical indicators of the pre-jamming regime on different network geometries and discuss the role of queuing and dynamical betweenness for the traffic congestion. The transition to the jammed traffic regime at a critical posting rate on different network topologies is studied as a phase transition with an appropriate order parameter. We also address several open theoretical problems related to the network dynamics
Statistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization
Statistical traffic data analysis is a hot topic in traffic management and
control. In this field, current research progresses focus on analyzing traffic
flows of individual links or local regions in a transportation network. Less
attention are paid to the global view of traffic states over the entire
network, which is important for modeling large-scale traffic scenes. Our aim is
precisely to propose a new methodology for extracting spatio-temporal traffic
patterns, ultimately for modeling large-scale traffic dynamics, and long-term
traffic forecasting. We attack this issue by utilizing Locality-Preserving
Non-negative Matrix Factorization (LPNMF) to derive low-dimensional
representation of network-level traffic states. Clustering is performed on the
compact LPNMF projections to unveil typical spatial patterns and temporal
dynamics of network-level traffic states. We have tested the proposed method on
simulated traffic data generated for a large-scale road network, and reported
experimental results validate the ability of our approach for extracting
meaningful large-scale space-time traffic patterns. Furthermore, the derived
clustering results provide an intuitive understanding of spatial-temporal
characteristics of traffic flows in the large-scale network, and a basis for
potential long-term forecasting.Comment: IET Intelligent Transport Systems (2013
Sonification of Network Traffic Flow for Monitoring and Situational Awareness
Maintaining situational awareness of what is happening within a network is
challenging, not least because the behaviour happens within computers and
communications networks, but also because data traffic speeds and volumes are
beyond human ability to process. Visualisation is widely used to present
information about the dynamics of network traffic dynamics. Although it
provides operators with an overall view and specific information about
particular traffic or attacks on the network, it often fails to represent the
events in an understandable way. Visualisations require visual attention and so
are not well suited to continuous monitoring scenarios in which network
administrators must carry out other tasks. Situational awareness is critical
and essential for decision-making in the domain of computer network monitoring
where it is vital to be able to identify and recognize network environment
behaviours.Here we present SoNSTAR (Sonification of Networks for SiTuational
AwaReness), a real-time sonification system to be used in the monitoring of
computer networks to support the situational awareness of network
administrators. SoNSTAR provides an auditory representation of all the TCP/IP
protocol traffic within a network based on the different traffic flows between
between network hosts. SoNSTAR raises situational awareness levels for computer
network defence by allowing operators to achieve better understanding and
performance while imposing less workload compared to visual techniques. SoNSTAR
identifies the features of network traffic flows by inspecting the status flags
of TCP/IP packet headers and mapping traffic events to recorded sounds to
generate a soundscape representing the real-time status of the network traffic
environment. Listening to the soundscape allows the administrator to recognise
anomalous behaviour quickly and without having to continuously watch a computer
screen.Comment: 17 pages, 7 figures plus supplemental material in Github repositor
Network link dimensioning : a measurement & modeling based approach
Adequate network link dimensioning requires a thorough insight into the interrelationship between: (i) the traffic offered (in terms of the average load, but also its fluctuations), (ii) the desired level of performance, and (iii) the required bandwidth capacity. It is clear that more capacity is needed when the average traffic load becomes higher, the fluctuations become fiercer, or the performance criterion becomesmore stringent. Existing approaches to network link dimensioning are often based on rules of thumb, e.g., `take the average traffic rate at timeswhen the network is relatively busy, and add 30%to cater for fluctuations¿. Clearly, such an approach does not explicitly incorporate the fierceness of the traffic rate¿s fluctuations, or the desired level of performance.\ud
A common approach to estimate the average traffic rate is as follows. A networkmanager regularly polls the so-called Interfaces Group MIB via the Simple NetworkManagement Protocol (SNMP), for instance through a tool such as the Multi-Router Traffic Grapher (MRTG). This yields the average rate of the offered traffic since the last poll. The polling interval generally is in the order of 5minutes. Evidently, the fierceness of fluctuation of the traffic rate within these 5 minute intervals is unknown to the network manager. These fluctuations may, however, be considerably large, and noticeable to users of the network. If, at timescales of say 5 seconds, more traffic is offered to a network link than it can transfer during that interval, traffic may be lost. Such loss is generally known as possibly leading to performance degradation and this may well be noticeable to a network user; for instance, entirewords may be lost in a (voice) conversation. Hence, it is in the interest of network users, and for obvious business reasons also to network operators, to have sufficient bandwidth capacity available to meet the demand at timescales considerably smaller than 5 minutes. \ud
In this thesis, we develop an alternative approach to network link dimensioning, which explicitly incorporates the offered traffic in terms of both the average rate as well as its fluctuations at small timescales, and the desired level of performance. This is expressed throughmathematical formulas that give the required bandwidth capacity, given the characteristics of the offered traffic, and the performance criterion
- …
