16 research outputs found

    Distributed Computing in the Asynchronous LOCAL model

    Full text link
    The LOCAL model is among the main models for studying locality in the framework of distributed network computing. This model is however subject to pertinent criticisms, including the facts that all nodes wake up simultaneously, perform in lock steps, and are failure-free. We show that relaxing these hypotheses to some extent does not hurt local computing. In particular, we show that, for any construction task TT associated to a locally checkable labeling (LCL), if TT is solvable in tt rounds in the LOCAL model, then TT remains solvable in O(t)O(t) rounds in the asynchronous LOCAL model. This improves the result by Casta\~neda et al. [SSS 2016], which was restricted to 3-coloring the rings. More generally, the main contribution of this paper is to show that, perhaps surprisingly, asynchrony and failures in the computations do not restrict the power of the LOCAL model, as long as the communications remain synchronous and failure-free

    Optimal Vertex Fault Tolerant Spanners (for fixed stretch)

    Full text link
    A kk-spanner of a graph GG is a sparse subgraph HH whose shortest path distances match those of GG up to a multiplicative error kk. In this paper we study spanners that are resistant to faults. A subgraph H⊆GH \subseteq G is an ff vertex fault tolerant (VFT) kk-spanner if H∖FH \setminus F is a kk-spanner of G∖FG \setminus F for any small set FF of ff vertices that might "fail." One of the main questions in the area is: what is the minimum size of an ff fault tolerant kk-spanner that holds for all nn node graphs (as a function of ff, kk and nn)? This question was first studied in the context of geometric graphs [Levcopoulos et al. STOC '98, Czumaj and Zhao SoCG '03] and has more recently been considered in general undirected graphs [Chechik et al. STOC '09, Dinitz and Krauthgamer PODC '11]. In this paper, we settle the question of the optimal size of a VFT spanner, in the setting where the stretch factor kk is fixed. Specifically, we prove that every (undirected, possibly weighted) nn-node graph GG has a (2k−1)(2k-1)-spanner resilient to ff vertex faults with Ok(f1−1/kn1+1/k)O_k(f^{1 - 1/k} n^{1 + 1/k}) edges, and this is fully optimal (unless the famous Erdos Girth Conjecture is false). Our lower bound even generalizes to imply that no data structure capable of approximating distG∖F(s,t)dist_{G \setminus F}(s, t) similarly can beat the space usage of our spanner in the worst case. We also consider the edge fault tolerant (EFT) model, defined analogously with edge failures rather than vertex failures. We show that the same spanner upper bound applies in this setting. Our data structure lower bound extends to the case k=2k=2 (and hence we close the EFT problem for 33-approximations), but it falls to Ω(f1/2−1/(2k)⋅n1+1/k)\Omega(f^{1/2 - 1/(2k)} \cdot n^{1 + 1/k}) for k≥3k \ge 3. We leave it as an open problem to close this gap.Comment: To appear in SODA 201

    Fast Computation of Small Cuts via Cycle Space Sampling

    Full text link
    We describe a new sampling-based method to determine cuts in an undirected graph. For a graph (V, E), its cycle space is the family of all subsets of E that have even degree at each vertex. We prove that with high probability, sampling the cycle space identifies the cuts of a graph. This leads to simple new linear-time sequential algorithms for finding all cut edges and cut pairs (a set of 2 edges that form a cut) of a graph. In the model of distributed computing in a graph G=(V, E) with O(log V)-bit messages, our approach yields faster algorithms for several problems. The diameter of G is denoted by Diam, and the maximum degree by Delta. We obtain simple O(Diam)-time distributed algorithms to find all cut edges, 2-edge-connected components, and cut pairs, matching or improving upon previous time bounds. Under natural conditions these new algorithms are universally optimal --- i.e. a Omega(Diam)-time lower bound holds on every graph. We obtain a O(Diam+Delta/log V)-time distributed algorithm for finding cut vertices; this is faster than the best previous algorithm when Delta, Diam = O(sqrt(V)). A simple extension of our work yields the first distributed algorithm with sub-linear time for 3-edge-connected components. The basic distributed algorithms are Monte Carlo, but they can be made Las Vegas without increasing the asymptotic complexity. In the model of parallel computing on the EREW PRAM our approach yields a simple algorithm with optimal time complexity O(log V) for finding cut pairs and 3-edge-connected components.Comment: Previous version appeared in Proc. 35th ICALP, pages 145--160, 200

    Optimal Vertex Fault-Tolerant Spanners in Polynomial Time

    Full text link
    Recent work has pinned down the existentially optimal size bounds for vertex fault-tolerant spanners: for any positive integer kk, every nn-node graph has a (2k−1)(2k-1)-spanner on O(f1−1/kn1+1/k)O(f^{1-1/k} n^{1+1/k}) edges resilient to ff vertex faults, and there are examples of input graphs on which this bound cannot be improved. However, these proofs work by analyzing the output spanner of a certain exponential-time greedy algorithm. In this work, we give the first algorithm that produces vertex fault tolerant spanners of optimal size and which runs in polynomial time. Specifically, we give a randomized algorithm which takes O~(f1−1/kn2+1/k+mf2)\widetilde{O}\left( f^{1-1/k} n^{2+1/k} + mf^2\right) time. We also derandomize our algorithm to give a deterministic algorithm with similar bounds. This reflects an exponential improvement in runtime over [Bodwin-Patel PODC '19], the only previously known algorithm for constructing optimal vertex fault-tolerant spanners.Comment: Appears in SODA 2021. Corrects some references, answers reviewer comment

    Sparse Covers for Planar Graphs and Graphs that Exclude a Fixed Minor

    Get PDF
    We consider the construction of sparse covers for planar graphs and other graphs that exclude a fixed minor. We present an algorithm that gives a cover for the γ-neighborhood of each node. For planar graphs, the cover has radius less than 16γ and degree no more than 18. For every n node graph that excludes a minor of a fixed size, we present an algorithm that yields a cover with radius no more than 4γ and degree O(logn). This is a significant improvement over previous results for planar graphs and for graphs excluding a fixed minor; in order to obtain clusters with radius O(γ), it was required to have the degree polynomial in n. Our algorithms are based on a recursive application of a basic routine called shortest-path clustering, which seems to be a novel approach to the construction of sparse covers. Since sparse covers have many applications in distributed computing, including compact routing, distributed directories, synchronizers, and Universal TSP, our improved cover construction results in improved algorithms for all these problems, for the class of graphs that exclude a fixed minor
    corecore