11,711 research outputs found

    An NMF solution for the Petri Nets to State Charts case study at the TTC 2013

    Full text link
    Software systems are getting more and more complex. Model-driven engineering (MDE) offers ways to handle such increased complexity by lifting development to a higher level of abstraction. A key part in MDE are transformations that transform any given model into another. These transformations are used to generate all kinds of software artifacts from models. However, there is little consensus about the transformation tools. Thus, the Transformation Tool Contest (TTC) 2013 aims to compare different transformation engines. This is achieved through three different cases that have to be tackled. One of these cases is the Petri Net to State Chart case. A solution has to transform a Petri Net to a State Chart and has to derive a hierarchical structure within the State Chart. This paper presents the solution for this case using NMF Transformations as transformation engine.Comment: In Proceedings TTC 2013, arXiv:1311.7536. arXiv admin note: substantial text overlap with arXiv:1312.034

    Isotactics as a foundation for alignment and abstraction of behavioral models

    Get PDF
    There are many use cases in business process management that require the comparison of behavioral models. For instance, verifying equivalence is the basis for assessing whether a technical workflow correctly implements a business process, or whether a process realization conforms to a reference process. This paper proposes an equivalence relation for models that describe behaviors based on the concurrency semantics of net theory and for which an alignment relation has been defined. This equivalence, called isotactics, preserves the level of concurrency of aligned operations. Furthermore, we elaborate on the conditions under which an alignment relation can be classified as an abstraction. Finally, we show that alignment relations induced by structural refinements of behavioral models are indeed behavioral abstractions

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Scale-invariant cellular automata and self-similar Petri nets

    Full text link
    Two novel computing models based on an infinite tessellation of space-time are introduced. They consist of recursively coupled primitive building blocks. The first model is a scale-invariant generalization of cellular automata, whereas the second one utilizes self-similar Petri nets. Both models are capable of hypercomputations and can, for instance, "solve" the halting problem for Turing machines. These two models are closely related, as they exhibit a step-by-step equivalence for finite computations. On the other hand, they differ greatly for computations that involve an infinite number of building blocks: the first one shows indeterministic behavior whereas the second one halts. Both models are capable of challenging our understanding of computability, causality, and space-time.Comment: 35 pages, 5 figure

    Unfolding Shape Graphs

    Get PDF
    Shape graphs have been introduced in [Ren04a, Ren04b] as an abstraction to be used in model checking object oriented software, where states of the system are represented as graphs. Intuitively, the graphs modeling the states represent the structure of objects dynamically allocated in the heap. State transitions are then generated by applying graph transformation rules corresponding to the statements of the program. Since the state space of such systems is potentially unbounded, the graphs representing the states are abstracted by shape graphs. Graph transformation systems may be analyzed [BCK01, BK02] by constructing finite structures that approximate their behaviour with arbitrary accuracy, by using techniques developed in the context of Petri nets. The approach of [BK02] is to construct a chain of finite under-approximations of the Winskel’s style unfolding of a graph grammar, as well as a chain of finite over-approximations of the unfolding, where both chains converge to the full unfolding. The approximations may then be used to check properties of the underlying graph transformation system. We apply this technique to approximate the behaviour of systems represented by shape graphs and graph tranformation rules

    Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets

    Full text link
    We propose a framework for the specification of behaviour-preserving reconfigurations of systems modelled as Petri nets. The framework is based on open nets, a mild generalisation of ordinary Place/Transition nets suited to model open systems which might interact with the surrounding environment and endowed with a colimit-based composition operation. We show that natural notions of bisimilarity over open nets are congruences with respect to the composition operation. The considered behavioural equivalences differ for the choice of the observations, which can be single firings or parallel steps. Additionally, we consider weak forms of such equivalences, arising in the presence of unobservable actions. We also provide an up-to technique for facilitating bisimilarity proofs. The theory is used to identify suitable classes of reconfiguration rules (in the double-pushout approach to rewriting) whose application preserves the observational semantics of the net.Comment: To appear in "Logical Methods in Computer Science", 41 page

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    A distributed knowledge-based approach to flexible automation : the contract-net framework

    Get PDF
    Includes bibliographical references (p. 26-29)
    corecore