546 research outputs found

    A Knowledge Gradient Policy for Sequencing Experiments to Identify the Structure of RNA Molecules Using a Sparse Additive Belief Model

    Full text link
    We present a sparse knowledge gradient (SpKG) algorithm for adaptively selecting the targeted regions within a large RNA molecule to identify which regions are most amenable to interactions with other molecules. Experimentally, such regions can be inferred from fluorescence measurements obtained by binding a complementary probe with fluorescence markers to the targeted regions. We use a biophysical model which shows that the fluorescence ratio under the log scale has a sparse linear relationship with the coefficients describing the accessibility of each nucleotide, since not all sites are accessible (due to the folding of the molecule). The SpKG algorithm uniquely combines the Bayesian ranking and selection problem with the frequentist 1\ell_1 regularized regression approach Lasso. We use this algorithm to identify the sparsity pattern of the linear model as well as sequentially decide the best regions to test before experimental budget is exhausted. Besides, we also develop two other new algorithms: batch SpKG algorithm, which generates more suggestions sequentially to run parallel experiments; and batch SpKG with a procedure which we call length mutagenesis. It dynamically adds in new alternatives, in the form of types of probes, are created by inserting, deleting or mutating nucleotides within existing probes. In simulation, we demonstrate these algorithms on the Group I intron (a mid-size RNA molecule), showing that they efficiently learn the correct sparsity pattern, identify the most accessible region, and outperform several other policies

    Optimal treatment allocations in space and time for on-line control of an emerging infectious disease

    Get PDF
    A key component in controlling the spread of an epidemic is deciding where, whenand to whom to apply an intervention.We develop a framework for using data to informthese decisionsin realtime.We formalize a treatment allocation strategy as a sequence of functions, oneper treatment period, that map up-to-date information on the spread of an infectious diseaseto a subset of locations where treatment should be allocated. An optimal allocation strategyoptimizes some cumulative outcome, e.g. the number of uninfected locations, the geographicfootprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategyfor an emerging infectious disease is challenging because spatial proximity induces interferencebetween locations, the number of possible allocations is exponential in the number oflocations, and because disease dynamics and intervention effectiveness are unknown at outbreak.We derive a Bayesian on-line estimator of the optimal allocation strategy that combinessimulation–optimization with Thompson sampling.The estimator proposed performs favourablyin simulation experiments. This work is motivated by and illustrated using data on the spread ofwhite nose syndrome, which is a highly fatal infectious disease devastating bat populations inNorth America

    A Bayesian experimental autonomous researcher for mechanical design

    Get PDF
    While additive manufacturing (AM) has facilitated the production of complex structures, it has also highlighted the immense challenge inherent in identifying the optimum AM structure for a given application. Numerical methods are important tools for optimization, but experiment remains the gold standard for studying nonlinear, but critical, mechanical properties such as toughness. To address the vastness of AM design space and the need for experiment, we develop a Bayesian experimental autonomous researcher (BEAR) that combines Bayesian optimization and high-throughput automated experimentation. In addition to rapidly performing experiments, the BEAR leverages iterative experimentation by selecting experiments based on all available results. Using the BEAR, we explore the toughness of a parametric family of structures and observe an almost 60-fold reduction in the number of experiments needed to identify high-performing structures relative to a grid-based search. These results show the value of machine learning in experimental fields where data are sparse.Published versio
    corecore