2,249 research outputs found

    Privacy and spectral analysis of social network randomization

    Get PDF
    Social networks are of significant importance in various application domains. Un- derstanding the general properties of real social networks has gained much attention due to the proliferation of networked data. Many applications of networks such as anonymous web browsing and data publishing require relationship anonymity due to the sensitive, stigmatizing, or confidential nature of the relationship. One general ap- proach for this problem is to randomize the edges in true networks, and only release the randomized networks for data analysis. Our research focuses on the development of randomization techniques such that the released networks can preserve data utility while preserving data privacy. Data privacy refers to the sensitive information in the network data. The released network data after a simple randomization could incur various disclosures including identity disclosure, link disclosure and attribute disclosure. Data utility refers to the information, features, and patterns contained in the network data. Many important features may not be preserved in the released network data after a simple randomiza- tion. In this dissertation, we develop advanced randomization techniques to better preserve data utility of the network data while still preserving data privacy. Specifi- cally we develop two advanced randomization strategies that can preserve the spectral properties of the network or can preserve the real features (e.g., modularity) of the network. We quantify to what extent various randomization techniques can protect data privacy when attackers use different attacks or have different background knowl- edge. To measure the data utility, we also develop a consistent spectral framework to measure the non-randomness (importance) of the edges, nodes, and the overall graph. Exploiting the spectral space of network topology, we further develop fraud detection techniques for various collaborative attacks in social networks. Extensive theoretical analysis and empirical evaluations are conducted to demonstrate the efficacy of our developed techniques

    A Comprehensive Bibliometric Analysis on Social Network Anonymization: Current Approaches and Future Directions

    Full text link
    In recent decades, social network anonymization has become a crucial research field due to its pivotal role in preserving users' privacy. However, the high diversity of approaches introduced in relevant studies poses a challenge to gaining a profound understanding of the field. In response to this, the current study presents an exhaustive and well-structured bibliometric analysis of the social network anonymization field. To begin our research, related studies from the period of 2007-2022 were collected from the Scopus Database then pre-processed. Following this, the VOSviewer was used to visualize the network of authors' keywords. Subsequently, extensive statistical and network analyses were performed to identify the most prominent keywords and trending topics. Additionally, the application of co-word analysis through SciMAT and the Alluvial diagram allowed us to explore the themes of social network anonymization and scrutinize their evolution over time. These analyses culminated in an innovative taxonomy of the existing approaches and anticipation of potential trends in this domain. To the best of our knowledge, this is the first bibliometric analysis in the social network anonymization field, which offers a deeper understanding of the current state and an insightful roadmap for future research in this domain.Comment: 73 pages, 28 figure

    Preserving Link Privacy in Social Network Based Systems

    Full text link
    A growing body of research leverages social network based trust relationships to improve the functionality of the system. However, these systems expose users' trust relationships, which is considered sensitive information in today's society, to an adversary. In this work, we make the following contributions. First, we propose an algorithm that perturbs the structure of a social graph in order to provide link privacy, at the cost of slight reduction in the utility of the social graph. Second we define general metrics for characterizing the utility and privacy of perturbed graphs. Third, we evaluate the utility and privacy of our proposed algorithm using real world social graphs. Finally, we demonstrate the applicability of our perturbation algorithm on a broad range of secure systems, including Sybil defenses and secure routing.Comment: 16 pages, 15 figure

    Privacy-Preserving Data Analysis on Graphs and Social Networks

    Full text link
    • …
    corecore