2,591 research outputs found

    Structural Deep Embedding for Hyper-Networks

    Full text link
    Network embedding has recently attracted lots of attentions in data mining. Existing network embedding methods mainly focus on networks with pairwise relationships. In real world, however, the relationships among data points could go beyond pairwise, i.e., three or more objects are involved in each relationship represented by a hyperedge, thus forming hyper-networks. These hyper-networks pose great challenges to existing network embedding methods when the hyperedges are indecomposable, that is to say, any subset of nodes in a hyperedge cannot form another hyperedge. These indecomposable hyperedges are especially common in heterogeneous networks. In this paper, we propose a novel Deep Hyper-Network Embedding (DHNE) model to embed hyper-networks with indecomposable hyperedges. More specifically, we theoretically prove that any linear similarity metric in embedding space commonly used in existing methods cannot maintain the indecomposibility property in hyper-networks, and thus propose a new deep model to realize a non-linear tuplewise similarity function while preserving both local and global proximities in the formed embedding space. We conduct extensive experiments on four different types of hyper-networks, including a GPS network, an online social network, a drug network and a semantic network. The empirical results demonstrate that our method can significantly and consistently outperform the state-of-the-art algorithms.Comment: Accepted by AAAI 1

    Discriminant Projective Non-Negative Matrix Factorization

    Get PDF
    Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers W-T X as their coefficients, i.e., X approximate to WWT X. Since PNM

    On the classification of rank two representations of quasiprojective fundamental groups

    Full text link
    Suppose XX is a smooth quasiprojective variety over \cc and \rho : \pi _1(X,x) \to SL(2,\cc) is a Zariski-dense representation with quasiunipotent monodromy at infinity. Then ρ\rho factors through a map XYX\to Y with YY either a DM-curve or a Shimura modular stack.Comment: minor changes in exposition, citation
    corecore