5 research outputs found

    Neighborhood Matching Network for Entity Alignment

    Full text link
    Structural heterogeneity between knowledge graphs is an outstanding challenge for entity alignment. This paper presents Neighborhood Matching Network (NMN), a novel entity alignment framework for tackling the structural heterogeneity challenge. NMN estimates the similarities between entities to capture both the topological structure and the neighborhood difference. It provides two innovative components for better learning representations for entity alignment. It first uses a novel graph sampling method to distill a discriminative neighborhood for each entity. It then adopts a cross-graph neighborhood matching module to jointly encode the neighborhood difference for a given entity pair. Such strategies allow NMN to effectively construct matching-oriented entity representations while ignoring noisy neighbors that have a negative impact on the alignment task. Extensive experiments performed on three entity alignment datasets show that NMN can well estimate the neighborhood similarity in more tough cases and significantly outperforms 12 previous state-of-the-art methods.Comment: 11 pages, accepted by ACL 202

    MEAformer: Multi-modal Entity Alignment Transformer for Meta Modality Hybrid

    Full text link
    As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with relevant images attached. We noticed that current MMEA algorithms all globally adopt the KG-level modality fusion strategies for multi-modal entity representation but ignore the variation in modality preferences for individual entities, hurting the robustness to potential noise involved in modalities (e.g., blurry images and relations). In this paper, we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, which dynamically predicts the mutual correlation coefficients among modalities for entity-level feature aggregation. A modal-aware hard entity replay strategy is further proposed for addressing vague entity details. Experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has a comparable number of parameters, optimistic speed, and good interpretability. Our code and data are available at https://github.com/zjukg/MEAformer.Comment: Repository: https://github.com/zjukg/MEAforme

    Neighborhood Matching Network for Entity Alignment

    No full text
    Structural heterogeneity between knowledge graphs is an outstanding challenge for entity alignment. This paper presents Neighborhood Matching Network (NMN), a novel entity alignment framework for tackling the structural heterogeneity challenge. NMN estimates the similarities between entities to capture both the topological structure and the neighborhood difference. It provides two innovative components for better learning representations for entity alignment. It first uses a novel graph sampling method to distill a discriminative neighborhood for each entity. It then adopts a cross-graph neighborhood matching module to jointly encode the neighborhood difference for a given entity pair. Such strategies allow NMN to effectively construct matching-oriented entity representations while ignoring noisy neighbors that have a negative impact on the alignment task. Extensive experiments performed on three entity alignment datasets show that NMN can well estimate the neighborhood similarity in more tough cases and significantly outperforms 12 previous state-of-the-art methods.Comment: 11 pages, accepted by ACL 202
    corecore