15,117 research outputs found

    Negative association in uniform forests and connected graphs

    Full text link
    We consider three probability measures on subsets of edges of a given finite graph GG, namely those which govern, respectively, a uniform forest, a uniform spanning tree, and a uniform connected subgraph. A conjecture concerning the negative association of two edges is reviewed for a uniform forest, and a related conjecture is posed for a uniform connected subgraph. The former conjecture is verified numerically for all graphs GG having eight or fewer vertices, or having nine vertices and no more than eighteen edges, using a certain computer algorithm which is summarised in this paper. Negative association is known already to be valid for a uniform spanning tree. The three cases of uniform forest, uniform spanning tree, and uniform connected subgraph are special cases of a more general conjecture arising from the random-cluster model of statistical mechanics.Comment: With minor correction

    Minimal spanning forests

    Full text link
    Minimal spanning forests on infinite graphs are weak limits of minimal spanning trees from finite subgraphs. These limits can be taken with free or wired boundary conditions and are denoted FMSF (free minimal spanning forest) and WMSF (wired minimal spanning forest), respectively. The WMSF is also the union of the trees that arise from invasion percolation started at all vertices. We show that on any Cayley graph where critical percolation has no infinite clusters, all the component trees in the WMSF have one end a.s. In Zd\mathbb{Z}^d this was proved by Alexander [Ann. Probab. 23 (1995) 87--104], but a different method is needed for the nonamenable case. We also prove that the WMSF components are ``thin'' in a different sense, namely, on any graph, each component tree in the WMSF has pc=1p_{\mathrm{c}}=1 a.s., where pcp_{\mathrm{c}} denotes the critical probability for having an infinite cluster in Bernoulli percolation. On the other hand, the FMSF is shown to be ``thick'': on any connected graph, the union of the FMSF and independent Bernoulli percolation (with arbitrarily small parameter) is a.s. connected. In conjunction with a recent result of Gaboriau, this implies that in any Cayley graph, the expected degree of the FMSF is at least the expected degree of the FSF (the weak limit of uniform spanning trees). We also show that the number of infinite clusters for Bernoulli(pup_{\mathrm{u}}) percolation is at most the number of components of the FMSF, where pup_{\mathrm{u}} denotes the critical probability for having a unique infinite cluster. Finally, an example is given to show that the minimal spanning tree measure does not have negative associations.Comment: Published at http://dx.doi.org/10.1214/009117906000000269 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The looping rate and sandpile density of planar graphs

    Full text link
    We give a simple formula for the looping rate of loop-erased random walk on a finite planar graph. The looping rate is closely related to the expected amount of sand in a recurrent sandpile on the graph. The looping rate formula is well-suited to taking limits where the graph tends to an infinite lattice, and we use it to give an elementary derivation of the (previously computed) looping rate and sandpile densities of the square, triangular, and honeycomb lattices, and compute (for the first time) the looping rate and sandpile densities of many other lattices, such as the kagome lattice, the dice lattice, and the truncated hexagonal lattice (for which the values are all rational), and the square-octagon lattice (for which it is transcendental)

    Determinantal probability measures

    Get PDF
    Determinantal point processes have arisen in diverse settings in recent years and have been investigated intensively. We study basic combinatorial and probabilistic aspects in the discrete case. Our main results concern relationships with matroids, stochastic domination, negative association, completeness for infinite matroids, tail triviality, and a method for extension of results from orthogonal projections to positive contractions. We also present several new avenues for further investigation, involving Hilbert spaces, combinatorics, homology, and group representations, among other areas.Comment: 50 pp; added reference to revision. Revised introduction and made other small change

    Processes on Unimodular Random Networks

    Full text link
    We investigate unimodular random networks. Our motivations include their characterization via reversibility of an associated random walk and their similarities to unimodular quasi-transitive graphs. We extend various theorems concerning random walks, percolation, spanning forests, and amenability from the known context of unimodular quasi-transitive graphs to the more general context of unimodular random networks. We give properties of a trace associated to unimodular random networks with applications to stochastic comparison of continuous-time random walk.Comment: 66 pages; 3rd version corrects formula (4.4) -- the published version is incorrect --, as well as a minor error in the proof of Proposition 4.10; 4th version corrects proof of Proposition 7.1; 5th version corrects proof of Theorem 5.1; 6th version makes a few more minor correction
    • …
    corecore