5 research outputs found

    Evidence Propagation and Consensus Formation in Noisy Environments

    Full text link
    We study the effectiveness of consensus formation in multi-agent systems where there is both belief updating based on direct evidence and also belief combination between agents. In particular, we consider the scenario in which a population of agents collaborate on the best-of-n problem where the aim is to reach a consensus about which is the best (alternatively, true) state from amongst a set of states, each with a different quality value (or level of evidence). Agents' beliefs are represented within Dempster-Shafer theory by mass functions and we investigate the macro-level properties of four well-known belief combination operators for this multi-agent consensus formation problem: Dempster's rule, Yager's rule, Dubois & Prade's operator and the averaging operator. The convergence properties of the operators are considered and simulation experiments are conducted for different evidence rates and noise levels. Results show that a combination of updating on direct evidence and belief combination between agents results in better consensus to the best state than does evidence updating alone. We also find that in this framework the operators are robust to noise. Broadly, Yager's rule is shown to be the better operator under various parameter values, i.e. convergence to the best state, robustness to noise, and scalability.Comment: 13th international conference on Scalable Uncertainty Managemen

    The Impact of Network Connectivity on Collective Learning

    Full text link
    In decentralised autonomous systems it is the interactions between individual agents which govern the collective behaviours of the system. These local-level interactions are themselves often governed by an underlying network structure. These networks are particularly important for collective learning and decision-making whereby agents must gather evidence from their environment and propagate this information to other agents in the system. Models for collective behaviours may often rely upon the assumption of total connectivity between agents to provide effective information sharing within the system, but this assumption may be ill-advised. In this paper we investigate the impact that the underlying network has on performance in the context of collective learning. Through simulations we study small-world networks with varying levels of connectivity and randomness and conclude that totally-connected networks result in higher average error when compared to networks with less connectivity. Furthermore, we show that networks of high regularity outperform networks with increasing levels of random connectivity.Comment: 13 pages, 5 figures. To appear at the 15th International Symposium on Distributed Autonomous Robotic Systems 2021. Presented at the joint DARS-SWARM 2021 symposium held (virtually) in Kyoto, Japa

    Collective preference learning in the best-of-n problem:From best-of-n to ranking n

    Get PDF

    Negative updating applied to the best-of-n problem with noisy qualities

    Get PDF
    The ability to perform well in the presence of noise is an important consideration when evaluating the effectiveness of a collective decision-making framework. Any system deployed for real-world applications will have to perform well in complex and uncertain environments, and a component of this is the limited reliability and accuracy of evidence sources. In particular, in swarm robotics there is an emphasis on small and inexpensive robots which are often equipped with low-cost sensors more prone to suffer from noisy readings. This paper presents an exploratory investigation into the robustness of a negative updating approach to the best-of-n problem which utilises negative feedback from direct pairwise comparison of options and opinion pooling. A site selection task is conducted with a small-scale swarm of five e-puck robots choosing between n= 7 options in a semi-virtual environment with varying levels of sensor noise. Simulation experiments are then used to investigate the scalability of the approach. We now vary the swarm size and observe the behaviour as the number of options n increases for different error levels with different pooling regimes. Preliminary results suggest that the approach is robust to noise in the form of noisy sensor readings for even small populations by supporting self-correction within the population
    corecore