5,690 research outputs found

    Necessary Conditions for the Generic Global Rigidity of Frameworks on Surfaces

    Full text link
    A result due in its various parts to Hendrickson, Connelly, and Jackson and Jord\'an, provides a purely combinatorial characterisation of global rigidity for generic bar-joint frameworks in R2\mathbb{R}^2. The analogous conditions are known to be insufficient to characterise generic global rigidity in higher dimensions. Recently Laman-type characterisations of rigidity have been obtained for generic frameworks in R3\mathbb{R}^3 when the vertices are constrained to lie on various surfaces, such as the cylinder and the cone. In this paper we obtain analogues of Hendrickson's necessary conditions for the global rigidity of generic frameworks on the cylinder, cone and ellipsoid.Comment: 13 page

    Stress matrices and global rigidity of frameworks on surfaces

    Get PDF
    In 2005, Bob Connelly showed that a generic framework in \bR^d is globally rigid if it has a stress matrix of maximum possible rank, and that this sufficient condition for generic global rigidity is preserved by the 1-extension operation. His results gave a key step in the characterisation of generic global rigidity in the plane. We extend these results to frameworks on surfaces in \bR^3. For a framework on a family of concentric cylinders, cones or ellipsoids, we show that there is a natural surface stress matrix arising from assigning edge and vertex weights to the framework, in equilibrium at each vertex. In the case of cylinders and ellipsoids, we show that having a maximum rank stress matrix is sufficient to guarantee generic global rigidity on the surface. We then show that this sufficient condition for generic global rigidity is preserved under 1-extension and use this to make progress on the problem of characterising generic global rigidity on the cylinder.Comment: Significant changes due to an error in the proof of Theorem 5.1 in the previous version which we have only been able to resolve for 'generic' surface

    Rigidity of Frameworks Supported on Surfaces

    Get PDF
    A theorem of Laman gives a combinatorial characterisation of the graphs that admit a realisation as a minimally rigid generic bar-joint framework in \bR^2. A more general theory is developed for frameworks in \bR^3 whose vertices are constrained to move on a two-dimensional smooth submanifold \M. Furthermore, when \M is a union of concentric spheres, or a union of parallel planes or a union of concentric cylinders, necessary and sufficient combinatorial conditions are obtained for the minimal rigidity of generic frameworks.Comment: Final version, 28 pages, with new figure

    A characterisation of generically rigid frameworks on surfaces of revolution

    Get PDF
    A foundational theorem of Laman provides a counting characterisation of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterisation was obtained for frameworks in three dimensions whose vertices are constrained to concentric spheres or to concentric cylinders. Noting that the plane and the sphere have 3 independent locally tangential infinitesimal motions while the cylinder has 2, we obtain here a Laman-Henneberg theorem for frameworks on algebraic surfaces with a 1-dimensional space of tangential motions. Such surfaces include the torus, helicoids and surfaces of revolution. The relevant class of graphs are the (2,1)-tight graphs, in contrast to (2,3)-tightness for the plane/sphere and (2,2)-tightness for the cylinder. The proof uses a new characterisation of simple (2,1)-tight graphs and an inductive construction requiring generic rigidity preservation for 5 graph moves, including the two Henneberg moves, an edge joining move and various vertex surgery moves.Comment: 23 pages, 5 figures. Minor revisions - most importantly, the new version has a different titl

    A Constructive Characterisation of Circuits in the Simple (2,2)-sparsity Matroid

    Get PDF
    We provide a constructive characterisation of circuits in the simple (2,2)-sparsity matroid. A circuit is a simple graph G=(V,E) with |E|=2|V|-1 and the number of edges induced by any X⊊VX \subsetneq V is at most 2|X|-2. Insisting on simplicity results in the Henneberg operation being enough only when the graph is sufficiently connected. Thus we introduce 3 different join operations to complete the characterisation. Extensions are discussed to when the sparsity matroid is connected and this is applied to the theory of frameworks on surfaces to provide a conjectured characterisation of when frameworks on an infinite circular cylinder are generically globally rigid.Comment: 22 pages, 6 figures. Changes to presentatio

    Non-crossing frameworks with non-crossing reciprocals

    Full text link
    We study non-crossing frameworks in the plane for which the classical reciprocal on the dual graph is also non-crossing. We give a complete description of the self-stresses on non-crossing frameworks whose reciprocals are non-crossing, in terms of: the types of faces (only pseudo-triangles and pseudo-quadrangles are allowed); the sign patterns in the self-stress; and a geometric condition on the stress vectors at some of the vertices. As in other recent papers where the interplay of non-crossingness and rigidity of straight-line plane graphs is studied, pseudo-triangulations show up as objects of special interest. For example, it is known that all planar Laman circuits can be embedded as a pseudo-triangulation with one non-pointed vertex. We show that if such an embedding is sufficiently generic, then the reciprocal is non-crossing and again a pseudo-triangulation embedding of a planar Laman circuit. For a singular (i.e., non-generic) pseudo-triangulation embedding of a planar Laman circuit, the reciprocal is still non-crossing and a pseudo-triangulation, but its underlying graph may not be a Laman circuit. Moreover, all the pseudo-triangulations which admit a non-crossing reciprocal arise as the reciprocals of such, possibly singular, stresses on pseudo-triangulation embeddings of Laman circuits. All self-stresses on a planar graph correspond to liftings to piece-wise linear surfaces in 3-space. We prove characteristic geometric properties of the lifts of such non-crossing reciprocal pairs.Comment: 32 pages, 23 figure

    The orbit rigidity matrix of a symmetric framework

    Full text link
    A number of recent papers have studied when symmetry causes frameworks on a graph to become infinitesimally flexible, or stressed, and when it has no impact. A number of other recent papers have studied special classes of frameworks on generically rigid graphs which are finite mechanisms. Here we introduce a new tool, the orbit matrix, which connects these two areas and provides a matrix representation for fully symmetric infinitesimal flexes, and fully symmetric stresses of symmetric frameworks. The orbit matrix is a true analog of the standard rigidity matrix for general frameworks, and its analysis gives important insights into questions about the flexibility and rigidity of classes of symmetric frameworks, in all dimensions. With this narrower focus on fully symmetric infinitesimal motions, comes the power to predict symmetry-preserving finite mechanisms - giving a simplified analysis which covers a wide range of the known mechanisms, and generalizes the classes of known mechanisms. This initial exploration of the properties of the orbit matrix also opens up a number of new questions and possible extensions of the previous results, including transfer of symmetry based results from Euclidean space to spherical, hyperbolic, and some other metrics with shared symmetry groups and underlying projective geometry.Comment: 41 pages, 12 figure
    • …
    corecore