26 research outputs found

    Continuum Percolation in the Relative Neighborhood Graph

    Full text link
    In the present study, we establish the existence of nontrivial site percolation threshold in the Relative Neighborhood Graph (RNG) for Poisson stationary point process with unit intensity in the plane

    Continuum percolation with steps in an annulus

    Full text link
    Let A be the annulus in R^2 centered at the origin with inner and outer radii r(1-\epsilon) and r, respectively. Place points {x_i} in R^2 according to a Poisson process with intensity 1 and let G_A be the random graph with vertex set {x_i} and edges x_ix_j whenever x_i-x_j\in A. We show that if the area of A is large, then G_A almost surely has an infinite component. Moreover, if we fix \epsilon, increase r and let n_c=n_c(\epsilon) be the area of A when this infinite component appears, then n_c\to1 as \epsilon \to 0. This is in contrast to the case of a ``square'' annulus where we show that n_c is bounded away from 1.Comment: Published at http://dx.doi.org/10.1214/105051604000000891 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Continuum Percolation in the Intrinsically Secure Communications Graph

    Full text link
    The intrinsically secure communications graph (iS-graph) is a random graph which captures the connections that can be securely established over a large-scale network, in the presence of eavesdroppers. It is based on principles of information-theoretic security, widely accepted as the strictest notion of security. In this paper, we are interested in characterizing the global properties of the iS-graph in terms of percolation on the infinite plane. We prove the existence of a phase transition in the Poisson iS-graph, whereby an unbounded component of securely connected nodes suddenly arises as we increase the density of legitimate nodes. Our work shows that long-range communication in a wireless network is still possible when a secrecy constraint is present.Comment: Accepted in the IEEE International Symposium on Information Theory and its Applications (ISITA'10), Taichung, Taiwan, Oct. 201

    Percolation in invariant Poisson graphs with i.i.d. degrees

    Full text link
    Let each point of a homogeneous Poisson process in R^d independently be equipped with a random number of stubs (half-edges) according to a given probability distribution mu on the positive integers. We consider translation-invariant schemes for perfectly matching the stubs to obtain a simple graph with degree distribution mu. Leaving aside degenerate cases, we prove that for any mu there exist schemes that give only finite components as well as schemes that give infinite components. For a particular matching scheme that is a natural extension of Gale-Shapley stable marriage, we give sufficient conditions on mu for the absence and presence of infinite components

    Analyzing Interference from Static Cellular Cooperation using the Nearest Neighbour Model

    Full text link
    The problem of base station cooperation has recently been set within the framework of Stochastic Geometry. Existing works consider that a user dynamically chooses the set of stations that cooperate for his/her service. However, this assumption often does not hold. Cooperation groups could be predefined and static, with nodes connected by fixed infrastructure. To analyse such a potential network, in this work we propose a grouping method based on proximity. It is a variation of the so called Nearest Neighbour Model. We restrict ourselves to the simplest case where only singles and pairs of base stations are allowed to be formed. For this, two new point processes are defined from the dependent thinning of a Poisson Point Process, one for the singles and one for the pairs. Structural characteristics for the two are provided, including their density, Voronoi surface, nearest neighbour, empty space and J-function. We further make use of these results to analyse their interference fields and give explicit formulas to their expected value and their Laplace transform. The results constitute a novel toolbox towards the performance evaluation of networks with static cooperation.Comment: 10 pages, 6 figures, 12 total subfigures, WIOPT-SPASWIN 201

    Poisson trees, succession lines and coalescing random walks

    Get PDF
    We give a deterministic algorithm to construct a graph with no loops (a tree or a forest) whose vertices are the points of a d-dimensional stationary Poisson process S, subset of R^d. The algorithm is independent of the origin of coordinates. We show that (1) the graph has one topological end --that is, from any point there is exactly one infinite self-avoiding path; (2) the graph has a unique connected component if d=2 and d=3 (a tree) and it has infinitely many components if d\ge 4 (a forest); (3) in d=2 and d=3 we construct a bijection between the points of the Poisson process and Z using the preorder-traversal algorithm. To construct the graph we interpret each point in S as a space-time point (x,r)\in\R^{d-1}\times R. Then a (d-1) dimensional random walk in continuous time continuous space starts at site x at time r. The first jump of the walk is to point x', at time r'>r, (x',r')\in S, where r' is the minimal time after r such that |x-x'|<1. All the walks jumping to x' at time r' coalesce with the one starting at (x',r'). Calling (x',r') = \alpha(x,r), the graph has vertex set S and edges {(s,\alpha(s)), s\in S}. This enables us to shift the origin of S^o = S + \delta_0 (the Palm version of S) to another point in such a way that the distribution of S^o does not change (to any point if d = 2 and d = 3; point-stationarity).Comment: 15 pages. Second version with minor correction

    Percolation in the Secrecy Graph

    Get PDF
    The secrecy graph is a random geometric graph which is intended to model the connectivity of wireless networks under secrecy constraints. Directed edges in the graph are present whenever a node can talk to another node securely in the presence of eavesdroppers, which, in the model, is determined solely by the locations of the nodes and eavesdroppers. In the case of infinite networks, a critical parameter is the maximum density of eavesdroppers that can be accommodated while still guaranteeing an infinite component in the network, i.e., the percolation threshold. We focus on the case where the locations of the nodes and eavesdroppers are given by Poisson point processes, and present bounds for different types of percolation, including in-, out- and undirected percolation.Comment: 22 pages, 3 figure
    corecore