141 research outputs found

    Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations

    Get PDF
    Time series velocity signals obtained from large-eddy simulations (LES) within the logarithmic region of the zero-pressure gradient turbulent boundary layer over a smooth wall are used in combination with an empirical, predictive inner-outer wall model [I. Marusic, R. Mathis, and N. Hutchins, “Predictive model for wall-bounded turbulent flow,” Science 329, 193 (2010)10.1126/science.1188765] to calculate the statistics of the fluctuating streamwise velocity in the inner region. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Re_τ = 7300, 13 600, and 19 000. The LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Reτ = 62 000, 100 000, and 200 000 that lie within a gap in log (Re_τ) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a loglike increase in the near-wall peak of the streamwise turbulence intensities with Re_τ and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows

    Recovery of wall-shear stress to equilibrium flow conditions after a rough-to-smooth step change in turbulent boundary layers

    Get PDF
    This paper examines the recovery of the wall-shear stress of a turbulent boundary layer that has undergone a sudden transition from a rough to a smooth surface. Early work of Antonia and Luxton (J. Fluid Mech., vol. 53, 1972, pp. 737–757) questioned the reliability of standard smooth-wall methods for measuring wall-shear stress in such conditions, and subsequent studies show significant disagreement depending on the approach used to determine the wall-shear stress downstream. Here we address this by utilising a collection of experimental databases at Reτ≈4100 that have access to both ‘direct’ and ‘indirect’ measures of the wall-shear stress to understand the recovery to equilibrium conditions of the new surface. Our results reveal that the viscous region ( z+≲4 ) recovers almost immediately to an equilibrium state with the new wall conditions; however, the buffer region and beyond takes several boundary layer thicknesses before recovering to equilibrium conditions, which is longer than previously thought. A unique direct numerical simulation database of a wall-bounded flow with a rough-to-smooth wall transition is employed to confirm these findings. In doing so, we present evidence that any estimate of the wall-shear stress from the mean velocity profile in the buffer region or further away from the wall tends to underestimate its magnitude in the near vicinity of the rough-to-smooth transition, and this is likely to be partly responsible for the large scatter of recovery lengths to equilibrium conditions reported in the literature. Our results also reveal that smaller energetic scales in the near-wall region recover to an equilibrium state associated with the new wall conditions within one boundary layer thickness downstream of the transition, while larger energetic scales exhibit an over-energised state for several boundary layer thicknesses downstream of the transition. Based on these observations, an alternative approach to estimating the wall-shear stress from the premultiplied energy spectrum is proposed

    High-Reynolds-number wall-modelled large eddy simulations of turbulent pipe flows using explicit and implicit subgrid stress treatments within a spectral element solver

    Get PDF
    We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the one hand, the explicit stretched-vortex model (by Misra & Pullin [45] and Chung & Pullin [14]), accounts for an explicit treatment of unresolved stresses and is adapted to the high-order solver. On the other hand, an implicit approach based on a spectral vanishing viscosity technique is implemented. The latter implicit technique is modified to incorporate Chung & Pullin virtual-wall model instead of relying on implicit dissipative mechanisms near walls. This near-wall model is derived by averaging in the wall-normal direction and relying in local inner scaling to treat the time-dependence of the filtered wall-parallel velocity. The model requires space-time varying Dirichlet and Neumann boundary conditions for velocity and pressure respectively. We provide results and comparisons for the explicit and implicit subgrid treatments and show that both provide favourable results for pipe flows at Re_τ = 2×10^3 and Re_τ = 1.8×10^5 in terms of turbulence statistics. Additionally, we conclude that implicit simulations are enhanced when including the wall model and provide the correct statistics near walls

    High-Reynolds-number wall-modelled large eddy simulations of turbulent pipe flows using explicit and implicit subgrid stress treatments within a spectral element solver

    Get PDF
    We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the one hand, the explicit stretched-vortex model (by Misra & Pullin [45] and Chung & Pullin [14]), accounts for an explicit treatment of unresolved stresses and is adapted to the high-order solver. On the other hand, an implicit approach based on a spectral vanishing viscosity technique is implemented. The latter implicit technique is modified to incorporate Chung & Pullin virtual-wall model instead of relying on implicit dissipative mechanisms near walls. This near-wall model is derived by averaging in the wall-normal direction and relying in local inner scaling to treat the time-dependence of the filtered wall-parallel velocity. The model requires space-time varying Dirichlet and Neumann boundary conditions for velocity and pressure respectively. We provide results and comparisons for the explicit and implicit subgrid treatments and show that both provide favourable results for pipe flows at Re_τ = 2×10^3 and Re_τ = 1.8×10^5 in terms of turbulence statistics. Additionally, we conclude that implicit simulations are enhanced when including the wall model and provide the correct statistics near walls

    Characterization of Dynamic Response of AFM Cantilevers for Microscale Thermofluidic and Biophysical Sensors

    Get PDF
    My doctoral research has focused on the characterization of dynamic response of atomic force microscope (AFM) cantilevers for thermofluidic and biophysical sensors, a novel scanning thermal microscopy technique development using a tipless microcantilever to investigate micro/nanoscale transport properties in liquid, and the characterization of the surface nanomechanical properties of biocompatible polyelectrolyte hydrogels with AFM for biomedical applications. The temperature effects on Sader‟s viscous model for multilayered microcantilevers immersed in an aqueous medium were experimentally verified as a preliminary work. Next, temperature dependence of the near-wall oscillation of microcantilevers submerged in an aqueous medium was investigated to explore the possibility of a near-wall thermometry sensor. By correlating the frequency response of a microcantilever immersed in an aqueous medium near a solid surface (within the width of a microcantilever) with the surrounding liquid temperature, the near-wall region microscale temperature distributions at the probing site were successfully determined. For biological applications, this work has been extended to examine the effect of adsorption-induced surface stress change on the stiffness of a microcantilever immersed in saline solution with varying salt concentrations. It was found that adsorption-induced surface stress change increased the stiffness of a microcantilever in saline solution with increasing salt concentration ranging from 0 to 2 molality. The surface nanomechanical properties of 2-hydroxyethyl methacrylate (HEMA) and 2-methacryloxyethyl trimethyl ammonium chloride (MAETAC) copolymer hydrogels were probed using AFM. The HEMA-MAETAC polyelectrolyte hydrogels with increasing positive charge concentrations ranging from 0 to 400 mM in increments of 40 mM, were fabricated using different proportions of HEMA and MAETAC monomers. Increasing proportions of positively charged MAETAC monomers produced hydrogels with increasingly swollen states and correspondingly decreasing measures of surface elasticity, or Young‟s modulus. The attachment of porcine pulmonary artery endothelial cells (PPAECs) increased with increasing prepared hydrogel charge concentration and subsequently decreasing surface elasticity. Keywords: Atomic Force Microscope (AFM), Microcantilever, Thermofluidic sensor, Hydrogel, Surface elasticit

    Effects of high intensity, large-scale free-stream turbulence on combustor effusion cooling

    Get PDF
    Effects of high intensity, large-scale free-stream turbulence on combustor effusion coolin

    Behaviour of the turbulent boundary layer on curved, porous walls

    Get PDF
    Imperial Users onl
    corecore